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Abstract

In face of a revival of interest in the finite series (FS) method due to recent developments upon generalized Lorenz-
Mie theories (GLMTs), a more general, understandable, and systematic formulation is proposed. Possibly due to an
apparent lack of flexibility in the FS method’s earlier statements, there has been a void in its use since the 1990s.
Particularly, the method demands some degree of mathematical labor each time it is applied to a different kind of field
profile. Furthermore, the algebraic complexity of its earlier occurrences might also have weighted upon the method’s
historical shunning. Dissecting the later works reclaiming the FS, several possibilities for generalization, simplification,
and organization were found. Accordingly, with the intent to render the method more approachable and to encourage its
use, this work derives an alternative path suitable for both understanding and implementation. Applying the procedure,
expressions for the beam shape coefficients of freely propagating Laguerre-Gaussian beams are obtained in closed form
in a more straightforward manner when compared to previous formulations – this time not relying on recursions.
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1. Introduction

An effective class of approaches for solving problems
in electromagnetic scattering is commonly known as T-
matrix methods [1–3]. These generically consist of formu-
lations equivalent to expressing fields in a basis of vec-
tor spherical wave functions (VSWFs) to model scattering
phenomena through transformations described by matrix
operators in the function space [4]. Within this category lie
the generalized Lorenz-Mie theories (GLMTs) [4–6]. Still,
there is a variety of GLMTs to choose, and, among them,
the GLMT stricto sensu, which refers to the scattering
by a single homogeneous sphere of arbitrary refractive in-
dex. In broad strokes, the GLMT stricto sensu – which
shall be addressed as “the GLMT” throughout this work –
mainly consists of modeling scattering phenomena in terms
of beam-shape coefficients (BSCs) which factor in the mul-
tipole expansion of the incident field from Bromwich scalar
potentials [5] or in terms of VSWFs [4]. Therefore, once
the BSCs are known, scattering events can be studied in
depth through the GLMT.

Since finding BSCs for a specific kind of wave arrange-
ment is usually not a trivial task, the subject has been
studied in depth throughout the years. Thus several differ-
ent methods may be found in the literature. Usual exam-
ples include: quadrature methods [5, 7, 8]; the (integral)
localized approximation (LA) [9–13]; the finite series (FS)
method [7, 14]; or the angular spectrum decomposition

(ASD), e.g. Sections 3 and 4 in [15]. Each procedure fea-
tures its own set of advantages and disadvantages. As one
might expect, localized approximations generally do not
deliver the exact coefficients of Maxwellian beams, even
though they are often more time-efficient than, say, nu-
merical quadrature methods [16, 17]. On the other hand,
quadrature methods do entail integral expressions that in-
deed represent the exact BSCs, which may even be faster
than the LA when such quadratures are given by explicit
solutions. The FS method for finding BSCs, which, like
quadratures, is mathematically rigorous in the sense that
it delivers the exact BSCs, plays a central role in this arti-
cle. Nevertheless, FS have historically been put aside due
to their intricate mathematical formulation which might
seem rather baffling to the untrained eye. This resulted
in a hiatus of decades in its use since its inception in the
1980s by Gouesbet, Gréhan & Maheu [7, 14]. Further-
more, unlike numerical quadrature methods, the FS tends
to lack flexibility, potentially demanding an undesirable
load of algebraic effort each time it is applied to a new
sort of wave.

More recently, the FS method has been brought back to
model relevant classes of waves other than regular Gaus-
sian beams in the GLMT, such as: Bessel beams [18], freely
propagating Laguerre-Gaussian (LG) beams [17, 19], lens-
focused LG beams [20, 21], and Bessel-Gaussian beams
[22], Hermite-Gaussian beams [23], Ince-Gaussian beams
[24], etc. Such families of “Gaussian-like” beams have been
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shown to benefit quite considerably from the FS, delivering
exact BSCs while outperforming numerical quadratures in
computational efficiency [17, 21]. Closely watching each
of these later FS formulations, improving upon a general-
ization by Ambrosio [18], we have been able to hone the
FS method’s mathematical formalism in a cleaner, yet no
less systematic, layout, better suited to aid its following
computational implementation. Moreover, the FS frame-
work here presented should serve as a more understand-
able guideline to anybody interested in applying it in real
problems.

To illustrate the value in this new procedure, we refer
to a recent FS formulation, in retrospect, of freely prop-
agating LG beams by Gouesbet, Votto & Ambrosio [19]
which relied on recursions, demanding some degree of care
in its implementation [17]. This time, however, we arrive
at closed form expressions for these LG BSCs eliminating
recursions and mitigating eventual issues with respect to
the numerical error propagation which tends to occur for
Gaussian-like beams under the FS. Such closed-form ex-
pressions were already obtained in Ref. [17], but this time
they are deduced in a significantly more straightforward
manner illustrating the importance of such a framework
for the method. Given the relevance of such beams due to
their ability to transfer angular momentum to illuminated
objects, such improvements are in order [25–35].

In short, this article is organized in the following set of
sections. Section 2 derives the main expressions, stating
the general FS method. In Section 3, the LG BSCs are
found in closed form through the FS procedure. In most
numerical experiences with the FS method, some peculiar-
ities have been found; Section 4 then shows some results
for LG BSCs paying attention to any issues involving er-
ror propagation. Finally, we give our closing remarks in
Section 5.

2. Finite series method

2.1. The Neumann expansion theorem in context

In works regarding the finite series method, the Neu-
mann Expansion Theorem (NET) is usually presented
as a special case of Gegenbauer’s generalization of Neu-
mann’s expansion [36, Section 16.13]. Its statement is of-
ten presented as follows.

Theorem (NET). Let g : (0,∞) → C be a map that
satisfies the Bessel function Neumann expansion

x
1
2 g(x) =

∞∑
n=0

cnJn+1/2(x), (2.1)

and the Maclaurin series

g(x) =

∞∑
n=0

bnx
n, (2.2)

both convergent. One then may write the Neumann coef-
ficients cn in (2.1) in terms of the Maclaurin coefficients
bn in (2.2) – through a “finite series”:

cn =

(
n+

1

2

)≤n/2∑
p=0

2
1
2+n−2p

Γ
(
1
2 + n− p

)
p!

bn−2p. (2.3)

Even though this statement of the NET could be used
to derive the FS method as it is, it might be preferable
to equivalently adapt it to the subsequent GLMT steps
before. Matching usual GLMT field expressions [5], we do
so in terms of spherical Bessel functions of the first kind
jn instead of the half-integer order Bessel functions Jn+ 1

2

in (2.1). From the definition of spherical Bessel functions,

Jn+1/2(x) =

√
2x

π
jn(x), (2.4)

the Bessel function Neumann expansion in (2.1) may be
written as a spherical Bessel function Neumann se-
ries:

x
1
2 g(x) =

∞∑
n=0

cnx
1
2

√
2

π
jn(x), (2.5)

g(x) =

∞∑
n=0

αnjn(x), (2.6)

where αn = cn
√

2/π. Therefore, in order to pave the way
for a more understandable definition of the FS method,
the NET may be alternately stated as below.

Theorem (Adapted NET). Let f : (0,∞)→ C admitting
convergent spherical Bessel function Neumann series and
Maclaurin series such that

f(x) =

∞∑
n=0

αnjn(x) =

∞∑
n=0

bnx
n, (2.7)

then its Neumann coefficients αn may be written in terms
of the Maclaurin coefficients bn as

αn =
2n+ 1√

π

≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p. (2.8)

As a side note, see that we maintain the notation for
the the Maclaurin coefficients bn found in other works em-
ploying the FS method, even though their expressions may
not be identical due to the fact that the adapted NET
now concerns the coefficients αn instead of cn [18–20, 22].
Since these bn do play the same role in both versions of the
method, producing the same BSCs overall, their notation
is kept the same.

2.2. Finite series: throwing the NET into the GLMT

Here, we assemble the FS from the adapted NET.
Throughout the literature, it is usual to address the follow-
ing set of steps as “the NET procedure” [5, 19]. In brief,
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the FS method allows writing BSCs through weighted
sums of Maclaurin coefficients of a function that depends
on the field profile in a subset of R3. Throughout this pa-
per, we denote the spherical coordinates by (r, θ, φ), where
θ gives polar angles, and φ azimuth angles.

Consider a monochromatic beam of wave number k,
whose BSCs are gmn,TM and gmn,TE, to compose an elec-
tric field E and a magnetic field H. We wish to determine
any such beam’s BSC gmn,TX, where TX is either the trans-
verse magnetic TM or the transverse electric TE mode,
given that the radial components of the electromagnetic
fields are known. In order to find each gmn,TX, define Xr

to be such that the pair (Xr,TX) is either (Er,TM) or
(Hr,TE), and fix θ = θ0. For each m, let the function
fm : (0,∞)→ C, defined as

fm(kr) =
kr

X0

∫ 2π

0

Xr (r, θ0, φ) e−imφ dφ, (2.9)

assume convergent Maclaurin series as in (2.7) from the
adapted NET. This definition of fm in (2.9) shall be jus-
tified further ahead. We claim that, applying the NET to
the GLMT incident field expressions, the TX BSCs gmn,TX

may be given in terms of these Maclaurin coefficients bj
through the finite sum

gmn,TX =

≤n/2∑
q=0

Fmn,qbn−2q. (2.10)

This is a generic way to state the FS method, with the
Fmn,q coefficients as determined further ahead.

More simply, to compute a BSC gmn,TX through
the FS method is to:

(i) express the incident field’s radial component
Xr at θ = θ0,

(ii) find the function fm(x = kr) as in (2.9),

(iii) calculate the Maclaurin coefficients bn of fm,

(iv) apply the NET to find the TX BSC gmn,TX

through (2.10).

The brief description above is more valuable than it may
seem at first glance. Essentially, it shows that writing the
Maclaurin expansion for a chosen θ0 allows finding any
BSC through the coefficients Fmn,q once they are deter-
mined. Moreover, it is a manageable frame for further
implementing the FS method in a programming language.
With respect to code, this formulation serves as a basis
for an abstract class that implements the FS in Votto’s
open-source Python package for the GLMT, glmtech [37].
With the Fmn,q as deduced below, the Python class solely
requires a method for evaluating the Maclaurin coefficients
bj , as in step (iii) above, to then return any desired BSC.
Generic expressions for FS BSCs as in (2.10), in terms of
the Maclaurin coefficients of their specific fm functions,
are given below.

Again, as we shall soon see, whereas the TM and TE
BSC equations derived below may not seem identical to
other FS formulations, they do represent the same exact
BSCs. That is, even though our adaptation preserves the
notation for the coefficients bj , their definition does slightly
differ for the sake of algebraic simplification as explained
above.

2.2.1. TM mode

According to the GLMT (see [5, Eq. (3.10)] or [20, Eq.
(47)]), the electric field’s radial component may be laid in
the form

Er =

∞∑
n=1

n∑
m=−n

E0(−i)n+1 2n+ 1

kr
gmn,TM

× jn(kr)P |m|n (cos θ) exp(imφ),

(2.11)

where jn denotes the spherical Bessel functions of the

first kind, and P
|m|
n denotes the associated Legendre func-

tions using Hobson’s notation. Similar to the quadrature
method [5], we integrate from 0 to 2π with respect to φ
in order to eliminate the inner m-sum with the following
orthogonality relation in mind:∫ 2π

0

eimφe−ipφdφ = 2πδpm, (2.12)

where δ is the Kronecker delta – δba = 1 if a = b and
δba = 0 otherwise. Fixing m, multiplying by exp(−imφ),
and integrating both sides of (2.11), we obtain∫ 2π

0

Er exp(−imφ)dφ

=

∞∑
n=1

2πE0(−i)n+1 2n+ 1

kr
gmn,TM

× P |m|n (cos θ)jn(kr).

(2.13)

Note it suffices to fix a value for θ to obtain a Neumann
series as in Section 2.1. Then, let θ = θ0,

fm(kr) =
kr

E0

∫ 2π

0

Er|θ=θ0 exp(−imφ)dφ

=

∞∑
n=1

[
2π(−i)n+1(2n+ 1)P |m|n (cos θ0)gmn,TM

]
︸ ︷︷ ︸

αn

jn(kr)

=

∞∑
n=1

αnjn(kr) =

∞∑
n=0

bn(kr)n.

(2.14)

Now, if x = kr, we have a Neumann series in the same
form of (2.7), where

fm(x) =
x

E0

∫ 2π

0

Er

(x
k
, θ0, φ

)
e−imφdφ, (2.15a)

αn = 2π(−i)n+1(2n+ 1)P |m|n (cos θ0)gmn,TM, (2.15b)
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for n ≥ 1, in which we note α0 = 0.
Should we know the Maclaurin coefficients bn for fm(x)

beforehand, we may use the FS expression in (2.8) for the
Neumann coefficients αn to then obtain from (2.15b) that,

if P
|m|
n (cos θ0) 6= 0,

gmn,TM =
in+1

2π
3
2P
|m|
n (cos θ0)

×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p.

(2.16)

2.2.2. TE mode

The starting point is very similar to the TM mode’s
(2.11) [5, 20]

Hr =

∞∑
n=1

n∑
m=−n

H0(−i)n+1 2n+ 1

kr
gmn,TE

× jn(kr)P |m|n (cos θ) exp(imφ).

(2.17)

Consequently, fixing θ = θ0 gives

fm(x) =
x

H0

∫ 2π

0

Hr

(x
k
, θ0, φ

)
e−imφdφ, (2.18a)

αn = 2π(−i)n+1(2n+ 1)P |m|n (cos θ0)gmn,TE, (2.18b)

for n ≥ 1, and α0 = 0.
As in the TM mode, if fm’s Maclaurin coefficients bn

are known, from (2.8) and (2.18b):

gmn,TE =
in+1

2π
3
2P
|m|
n (cos θ0)

×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p,

(2.19)

but only if P
|m|
n (cos θ0) 6= 0.

From the deductions above, one may notice that both
TM and TE modes only differ on how the fm function is
evaluated. That is, their Fmn,q coefficients from (2.10) are
the same:

Fmn,q =
in+12n−2q−1

π3/2P
|m|
n (cos θ0)q!

Γ

(
1

2
+ n− q

)
, (2.20)

for P
|m|
n (cos θ0) 6= 0.

2.3. The choice of θ0

So long as the singularity conditions are satisfied, the
FS method leaves the choice of θ0 open. That is, Eqs.
(2.16) and (2.19) only hold strictly under the condition

that P
|m|
n (cos θ0) 6= 0. Historically, it has been usual to

adopt cos θ0 = 0, with the caveat that singularity condi-
tions cannot be satisfied for odd (n−m) where Pmn (0) = 0.
In such cases, nevertheless, it is possible to evaluate closed-
form expressions for Maclaurin coefficients by adopting a

complementary procedure. We therefore now deal with the
deviant case when cos θ0 = 0, i.e. θ0 = π/2. For this, we
split the BSC expressions into two different cases depend-
ing on what gmn,TX is evaluated: when (n−m) is (i) even,
and (ii) odd. Suitably, with reference to equations below,
(2.16) for TM BSCs becomes (2.24) for even (n−m) and
(2.29) whenever it is odd. Likewise, (2.19) for TE BSCs
splits into (2.30) and (2.32).

For this specific case where θ0 = π/2 the associated
Legendre special values at the origin are, for (n−m) even
[38],

Pmn (0) = (−1)
n+m

2
(n+m− 1)!!

2
n−m

2

(
n−m

2

)
!
, (2.21)

and Pmn (0) = 0 otherwise. Note that for odd natural num-
bers n [39, Eq. 6.1.12]

n!! =

n+1
2∏

p=1

(2p− 1) =
2
n+1
2

√
π

Γ
(n

2
+ 1
)

(2.22)

is the semi-factorial of n; then for even (n−m),

Pmn (0) = (−1)
n+m

2
2m√
π

Γ
(
n+m+1

2

)(
n−m

2

)
!
. (2.23)

It then becomes possible to rewrite (2.16) for even (n−m)
as

gmn,TM =
(−i)|m|−1

2|m|+1π

(
n−|m|

2

)
!

Γ
(
n+|m|+1

2

)
×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p.

(2.24)

For odd (n − m) when θ0 = π/2, the function fm(x)
should be defined differently, meaning that the expressions
for Maclaurin coefficients are not identical to (2.24). The
first derivative of associated Legendre functions also holds
the following special values at cos θ = 0 [38]:

dPmn (0)

d cos θ
= (−1)

n+m−1
2

(n+m)!!

2
n−m−1

2

(
n−m−1

2

)
!
, (2.25)

for odd (n−m), while it equals zero otherwise. Substitut-
ing the semi-factorial, we obtain

dPmn (0)

d cos θ
=

(−1)
n+m−1

2 2m+1

√
π

Γ
(
n+m

2 + 1
)(

n−m−1
2

)
!

(2.26)

for odd (n−m).
In this case, the FS expressions should be:

fm(x) =
x

E0

∫ 2π

0

∂Er
(
θ = π

2

)
∂ cos θ

exp(−imφ)dφ

=

∞∑
n=0

bnx
n,

(2.27)

αn = 2π(−i)n+1(2n+ 1)
dP
|m|
n (0)

d cos θ
gmn,TM, (2.28)
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with α0 = 0. Then, from Eqs. (2.8) and (2.28):

gmn,TM =
(−i)|m|−2

2|m|+2π

(
n−|m|−1

2

)
!

Γ
(
n+|m|

2 + 1
)

×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p

(2.29)

for odd (n−m).
Expressions for the TE mode are analogous and are

given below. For (n−m) even:

fm(x) =
x

H0

∫ 2π

0

Hr

(
θ =

π

2

)
e−imφdφ

=

∞∑
n=0

bnx
n,

gmn,TE =
(−i)|m|−1

2|m|+1π

(
n−|m|

2

)
!

Γ
(
n+|m|+1

2

)
×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p.

(2.30)

and, for (n−m) odd,

fm(x) =
x

H0

∫ 2π

0

∂Hr

(
θ = π

2

)
∂ cos θ

exp(−imφ)dφ

=

∞∑
n=0

bnx
n,

(2.31)

gmn,TE =
(−i)|m|−2

2|m|+2π

(
n−|m|−1

2

)
!

Γ
(
n+|m|

2 + 1
)

×
≤n/2∑
p=0

2n−2p
Γ
(
1
2 + n− p

)
p!

bn−2p.

(2.32)

3. Laguerre-Gaussian beams

The freely propagating LG beams here studied are com-
posed of LG modes, solutions to the scalar paraxial wave
equation in cylindrical coordinates. Assuming propaga-
tion in the z-direction, their linearly polarized electric field
phasors are then given by

E(r) = x̂LG (r) exp(−ikz), (3.1)

with its corresponding instantaneous field given by
E(r, t) = Re {E(r) exp(+iωt)}, where ω is the angular fre-
quency and k is the wave number. Since the scalar approx-
imation is employed, the field E does not satisfy Maxwell’s
equations; see that ∇·E 6= 0 in general for non-trivial solu-
tions. This is what we mean by saying that such LG beam
formulation is non-Maxwellian, which carries some impli-
cations when applying the GLMT that shall be explained

in the next section. For now, we focus on obtaining LG
BSCs through the FS steps deduced in Section 2.

First of all, since the BSCs of a (p, l) order LG beam
satisfy the properties [19]

gl±1n,TE = ∓igl±1n,TM, (3.2)

gmn,TE = gmn,TM = 0, for all m 6= l ± 1, (3.3)

it suffices to find only TM BSCs. LG beams, in the formu-
lation presented below, are an example where it is prefer-
able to adopt θ0 = π/2, even though it implies finding two
sets of Maclaurin coefficients.

As emphasized, in order to evaluate TM BSCs gmn,TM, it
suffices to find Maclaurin coefficients bj for the two cases
where (n−m) is even or odd. Orderly, to find closed-form
BSCs, for even (n−m):

(1.i) express Er at θ = π/2,

(1.ii) find the respective fm function,

(1.iii) calculate the Maclaurin coefficients bj of fm,

(1.iv) substitute the bj coefficients in Eq. (2.24);

and for odd (n−m):

(2.i) express ∂Er/∂ cos θ at θ = π/2,

(2.ii) find the respective fm function,

(2.iii) calculate the Maclaurin coefficients bj of fm,

(2.iv) substitute the bj coefficients in Eq. (2.29).

3.1. Formulation

A z-propagating (p, l) LG mode, solution to the scalar
paraxial wave equation in cylindrical coordinates (ρ, φ, z),
may be defined by its wave number k, beam waist radius
w0, degree p and topological charge l. Let the Rayleigh
length be zR = kw2

0/2. In an on-axis configuration, the
mode can be expressed as [40]

LGp,l =
Cp,l
w

( ρ
w

√
2
)l
Llp

(
2
ρ2

w2

)
exp (ilφ) exp

(
− ρ

2

w2

)
× exp

[
−ik

ρ2

2R
+ i(2p+ l + 1)ψ

]
,

(3.4)

where Llp are associated Laguerre polynomials, the beam
radius w is

w = w(z) = w0

√
1 +

z2

z2R
, (3.5)

radius of curvature

R = R(z) =
z2 + z2R

z
, (3.6)

5



fundamental Gouy phase

ψ = ψ(z) = arctan

(
z

zR

)
, (3.7)

and normalization factor Cp,l specific to the mode being

Cp,l =

√
2p!

π(1 + δ0l )(p+ l)!
, (3.8)

so that 〈LGp,l,LGp′,l′〉 =
∫∫∞
−∞ LGp,lLG∗p′,l′ dxdy = δp

′

p δ
l′

l

fixing z = 0. The associated Laguerre polynomials are
given in closed form by [39, Section 22.3]

Llp(x) =

p∑
u=0

(−1)u

u!

(
p+ l

p− u

)
xu (3.9)

for l > −1.

Assume that the corresponding non-Maxwellian electric
field is

E = x̂LGp,l exp(−ikz), (3.10)

then its radial component is

Er = LGp,l exp(−ikz) sin θ cosφ. (3.11)

The electric field’s radial component is, therefore, given in
spherical coordinates by:

Er(r, θ, φ) = E0
Cp,l
w

(√
2
r

w
sin θ

)l
Llp

(
2
r2

w2
sin2 θ

)
× exp

[
−ik

r2

2R
sin2 θ + i(2p+ l + 1)ψ + ilφ

]
× exp

(
− r

2

w2
sin2 θ

)
× exp (−ikr cos θ) sin θ cosφ.

(3.12)

Note that (3.12) may be shown to be equivalent, up to
re-normalization, to Eq. (22) in [41] and Eq. (17) in [19].

Since each mode shall be reproduced separately, it is
unnecessary to our purposes to carry the normalization
factor Cp,l through the calculations here forth. Therefore,
we incorporate Cp,l into the amplitudes E0 or H0 from
now on.

3.2. Applying the finite series method

As stated before, since we shall choose θ0 = π/2, the FS
procedure is split into two different cases: case 1, where
(n −m) is even, and case 2, otherwise. The BSCs them-
selves are finally determined by plugging the Maclaurin
coefficients bj : (i) from (3.23) into (2.24) in case 1, and
(ii) from (3.38) into (2.29) in case 2.

3.2.1. Case 1

For x = kr and s = 1/kw0, and noting that w = w0

for θ = π/2, the radial electric field of the LG beam at
θ = π/2 is given, according to (3.12), as

Er

(x
k
,
π

2
, φ
)

= E0ks
(√

2sx
)l
Llp
(
2s2x2

)
× exp

(
−s2x2

)
eilφ cosφ

(3.13)

so that, for m ∈ Z

fm(x) =
x

E0

∫ 2π

0

Er

(
θ =

π

2

)
e−imφ dφ

= πksx
(√

2sx
)l
Llp
(
2s2x2

)
× exp

(
−s2x2

) (
δl+1
m + δl−1m

)
,

(3.14)

so that gmn,TM = 0 for all m 6= l±1. Therefore, for m = l±1
and omitting the sub-index,

f(x) = πk2l/2Llp
(
2s2x2

)
sl+1xl+1 exp(−s2x2), (3.15)

which we want to Maclaurin-expand.
Now, to write the associated Laguerre polynomials in

closed-form, define (see, e.g. Eq. (18.59) of Ref. [42]):

αlp,u =
(−1)u

u!

(
p+ l

p− u

)
2us2u

=
(−1)u

u!

(p+ l)!

(p− u)!(l + u)!
2us2u

(3.16)

so that, from (3.9),

Llp(2s
2x2) =

p∑
u=0

αlp,ux
2u. (3.17)

Substituting (3.17) into (3.15),

f(x) = πk2l/2sl+1

p∑
u=0

αlp,u
[
x2u+l+1 exp

(
−s2x2

)]
.

(3.18)

Consider the following Maclaurin expansion:

xµ exp
(
−s2x2

)
=

∞∑
j=0

(−1)j

j!
s2jx2j+µ, (3.19)

and change the index in the sum in (3.19) so that we have
a proper xj term, i.e.

xµ exp
(
−s2x2

)
=

∞∑
j=µ

(j−µ) even

(is)j−µ(
j−µ
2

)
!
xj

=

∞∑
j=0

β(j, µ)xj

(3.20)

6



by defining

β(j, µ) =


(is)j−µ

( j−µ2 )!
, j ≥ µ, (j − µ) even,

0, otherwise.
(3.21)

Substituting (3.20) into (3.18),

f(x) =

∞∑
j=0

[
πk2l/2sl+1

p∑
u=0

αlp,uβ(j, 2u+ l + 1)

]
xj

=

∞∑
j=0

bjx
j ,

(3.22)

the Maclaurin coefficients bj become evident:

bj = πk2l/2sl+1

p∑
u=0

αlp,uβ(j, 2u+ l + 1), (3.23)

for even (n − m), so that the corresponding TM BSCs
gmn,TM are readily obtained from Eq. (2.24).

3.2.2. Case 2

From (3.12),

∂Er
(
θ = π

2

)
∂cos θ

= E0ik2
l
2Llp

(
2s2x2

)
×
[
2s2

(
2p+ l + 1− s2x2

)
− 1
]

× (sx)l+1 exp
(
−s2x2

)
eilφ cosφ.

(3.24)

For (n−m) odd, define fm as

fm(x) =
x

E0

∫ 2π

0

∂Er
(
θ = π

2

)
∂ cos θ

e−imφdφ, (3.25)

then

fm(x) = ikx2l/2Llp
(
2s2x2

) [
2s2

(
2p+ l + 1− s2x2

)
− 1
]

× sl+1xl+1 exp
(
−s2x2

)
π
(
δl+1
m + δl−1m

)
.

(3.26)

So, we should only consider the two cases where m = l±1,
for which fm(x) is the same. Let

A = iπk2l/2
[
2s2(2p+ l + 1)− 1

]
sl+1, (3.27)

B = −2iπk2l/2sl+5, (3.28)

then, omitting the sub-index,

f(x) =
(
A+Bx2

)
Llp
(
2s2x2

)
xl+2 exp

(
−s2x2

)
. (3.29)

Making use of the notation established in Eqs. (3.16),
(3.21) we shall expand f . Rewriting Laguerre polynomials
as in (3.17),

f(x) =

p∑
u=0

(
A+Bx2

)
αlp,u

[
x2u+l+2 exp

(
−s2x2

)]
.

(3.30)

Also consider f(x) = fA(x) + fB(x) with

fA(x) = A

p∑
u=0

αlp,u
[
x2u+l+2 exp

(
−s2x2

)]
=

∞∑
j=0

bAj x
j ,

(3.31)

fB(x) = B

p∑
u=0

αlp,u
[
x2u+l+4 exp

(
−s2x2

)]
=

∞∑
j=0

bBj x
j ,

(3.32)

then

f(x) =

∞∑
j=0

bjx
j =

∞∑
j=0

(
bAj + bBj

)
xj . (3.33)

Through (3.20),

fA(x) =

∞∑
j=0

[
A

p∑
u=0

αlp,uβ(j, 2u+ l + 2)

]
xj , (3.34)

fB(x) =

∞∑
j=0

[
B

p∑
u=0

αlp,uβ(j, 2u+ l + 4)

]
xj . (3.35)

It then becomes evident that

bAj = A

p∑
u=0

αlp,uβ(j, 2u+ l + 2), (3.36)

bBj = B

p∑
u=0

αlp,uβ(j, 2u+ l + 4), (3.37)

such that finally

bj = bAj + bBj

=

p∑
u=0

αlp,u [Aβ (j, 2u+ l + 2) +Bβ (j, 2u+ l + 4)]

(3.38)

for odd (n−m), so that the corresponding TM BSCs gmn,TM

are readily obtained from Eq. (2.29).

4. Results

Before anything else, it should be noticed that the FS
method is prone to severe numerical error propagation
when depicting BSCs gmn,TX for high n values so that the
numerical precision must be managed accordingly [21]. For
better illustration this section is divided into two parts.
Subsection 4.1 shows results with parameters with higher
degree of paraxiality, avoiding numerical abnormalities,
making it possible to study the features that arise in the
remodelling of non-Maxwellian beams. It might be per-
tinent to address that the BSCs in Subsection 4.1 should
still blow up for some n, but that value is much higher
than the values computed there. Subsection 4.2 depicts
the FS blowups that arise for Gaussian-like beams which
come into being in two kinds: one due to numerical preci-
sion, another due to deeper mathematical implications of
the method, the latter is yet to be better understood in
works solely dedicated to them.
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4.1. Remodelling aspects

Results here shown assume monochromatic LG beams
with wavelength λ = 632.8 nm, and waist parameter s =
1/kw0 = 0.01. All BSCs featured in this subsection have
been evaluated with 15 decimal places (dps) of precision
without showing any numerical abnormalities such as val-
ues blowing up or behaving chaotically.

Fig. 1 depicts TM BSCs of three different orders of
LG beam. Computationally, the runtimes of closed-form
coefficients deduced above do not significantly differ from
those of the recursive FS BSCs shown by Gouesbet, Votto
& Ambrosio [17, 19]. Assuming that factorials and Γ func-
tions are evaluated at linear time complexity in the worst
case, it is clear, from expressions (3.23) and (3.38), that
Maclaurin coefficients bn corresponding to a LGp,l beam
are evaluated at a time complexity of O(np). Therefore,
from (2.10), the respective BSC gmn,TX should have time

complexity of O(n2p), or simply O(n2) since p should not
scale significantly when compared to n. This is the same
implied by the previous FS recursive method [17, 19]. Even
though both time complexities are asymptotically equiva-
lent, eliminating recursion evidently reduces memory com-
plexity since there is no recursion call stack to store.

Now, due to the field decomposition into Maxwellian
spherical wave functions, the GLMT must necessarily re-
produce fields that are solutions to Maxwell’s equations.
However, as emphasized in Section 3, the LG BSC expres-
sions were obtained through an electric vector field which
ultimately is non-Maxwellian. Therefore, one cannot ex-
pect the GLMT-reconstructed fields to exactly match the
paraxial formulation everywhere in space. This, neverthe-
less, indicates no contradiction in the FS method. That is,
the method itself only “sees” radial components at a spe-
cific region in the space regardless of the vector field
they pertain to. Fundamentally, the FS method shows
that, once Er (resp. Hr) is known at a locus θ = θ0 for
some fixed θ0 ∈ (0, π), the set of all TM BSCs gmn,TM (resp.
TE BSCs gmn,TE) becomes uniquely determined, thus rep-
resenting a unique TM (resp. TE) solution to Maxwell’s
equations.

In the case of the LG BSCs deduced above, whilst the
radial components of the electromagnetic field must ex-
actly match the paraxial approximation fed to the FS al-
gorithm, it should not be the case for the other field com-
ponents, since the original paraxial field does not satisfy
Maxwell’s equations. In Fig. 2, the x, y, and z electric field
components are reconstructed with the computed BSCs.
Whereas the x-polarized paraxial approximation, given by
E = x̂LGp,l exp(−ikz) from (3.4), should only have a non-
zero electric field x-component, we may see from Fig. 2
that the GLMT-reconstructed fields at least bear an addi-
tional non-zero z-component so that ∇ ·E = 0 is satisfied
along with a non-zero y-component due to Ampère’s law:
note that ∂Hz/∂x is not guaranteed to be equal to zero
when taking the y-component of ∇ ×H into account for
determining Ey.

(a)

(b)

(c)

Figure 1: TM BSC square magnitude for several orders of LG
modes LGp,l of wavelength λ = 632.8 nm and waist parameter
s = (kw0)−1 = 0.01. All plots feature values for both m = l − 1
in the black continuous curves whose values may be seen in the axes
at the left-hand side, and m = l + 1 in the red dashed lines, the
values of which are in the right-hand side.

8



−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 0, l = 1

1

2

3

4

×104

(a) LG0,1 |Ex|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 0, l = 1

50

100

150

200

250

(b) LG0,1 |Ey|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 0, l = 1

0.2

0.4

0.6

0.8

1.0

1.2

×103

(c) LG0,1 |Ez|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 2, l = 1

1

2

3

4

×104

(d) LG2,1 |Ex|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3
y
/
w

0

p = 2, l = 1

100

200

300

400

(e) LG2,1 |Ey|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 2, l = 1

0.5

1.0

1.5

2.0

×103

(f) LG2,1 |Ez|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 5, l = 2

1

2

3

×104

(g) LG5,2 |Ex|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 5, l = 2

50

100

150

(h) LG5,2 |Ey|

−2 0 2

x/w0

−3

−2

−1

0

1

2

3

y
/
w

0

p = 5, l = 2

0.5

1.0

1.5

2.0
×103

(i) LG5,2 |Ez|

Figure 2: GLMT-reconstructed electric field rectangular components magnitudes |Ex|, |Ey |, |Ez | for LG beams of several orders.

4.2. Numerical aspects

The FS method may exhibit a peculiar behaviour when
applied to Gaussian-like beams. It is also relevant to men-
tion that the remodelling of paraxial Gaussian-like beams
into Maxwellian solutions may also cause diverging be-
haviours [43], which is the case for the FS for higher n
values, depending on the beam waist w0. Wherever the
paraxial approximation starts to lose its validity, this is
more prone to take place. Nevertheless, this is a com-
plex subject of our study deserving its own place in other
works to be published analysing both the numerical and
mathematical aspects of the issue meticulously.

Results shown in this subsection assume wavelength of
λ = 1064 nm and beam-waist parameter s = 0.05. Fig. 3
depicts the TM BSCs of the LG0,1 mode evaluated with
several degrees of numerical precision. We may see that
the BSCs behave differently depending on the number of
decimal places used: if precision is too low, the BSCs blow

up earlier. The BSCs seem to behave the same, nonethe-
less, for high enough precision, but they still blow up at
the same place, which is still observed for precisions higher
than 2000 dps. Therefore, we see that, indeed, the blowups
that come from a mathematical failure of convergence due
to the remodelling have been depicted in Fig. 3.

5. Conclusion

In sum, in face of the FS method’s capability of acquir-
ing BSCs that are both exact and, for several classes of
fields, time-efficient, such procedure would not deserve to
be put aside as has been the case since the late 1980’s. Ad-
dressing such issues, this work presents the FS method in
a more approachable, algorithmic, manner, while illustrat-
ing its usefulness by deducing new closed-form expressions
of freely-propagating LG BSCs. Consequently, such refor-
mulation has allowed a more general implementation of the
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Figure 3: Absolute value of the LG0,1 mode TM BSCs with m = 2
evaluated with 15, 100, and 2000 decimal places of precision. Values
in logarithmic scale.

method, as it may be seen in the glmtech Python package
by Votto [37].

In contrast with previous descriptions of LG VSWF ex-
pansion coefficients [17, 19, 44], which heavily relied on
recursions, here BSCs are presented in closed form ob-
tained with significantly more straightforward steps. That
is, if the reader were to compare the deduction of such ex-
pressions in this work with the ones in Ref. [17], they
would see that the same results are here obtained in half
the number of pages. This illustrates the need for a more
systematic and more approachable framework of the FS
method. Given the importance of LG beams for electro-
magnetic scattering applications, it is relevant to seek ac-
curate and efficient methods for their decomposition into
VSWFs. Moreover, a straightforward description of FS LG
BSCs should seem even more important when considering
that they allow the inclusion of other high-order Gaussian
beams, such as Hermite-Gaussian beams [23] and Ince-
Gaussian beams [24], into the GLMT, since they form a
complete orthogonal basis of solutions to the paraxial wave
equation [40, 44].
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