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Abstract

Most statistical and machine learning models used for binary data modeling and classifi-
cation assume that the data are balanced. However, this assumption can lead to poor pre-
dictive performance and bias in parameter estimation when there is an imbalance in the
data due to the threshold election for the binary classification. To address this challenge,
several authors suggest using asymmetric link functions in binary regression, instead of
the traditional symmetric functions such as logit or probit, aiming to highlight characteris-
tics that would help the classification task. Therefore, this study aims to introduce new
classification functions based on the Lomax distribution (and its variations; including
power and reverse versions). The proposed Bayesian functions have proven asymmetry
and were implemented in a Stan program into the R workflow. Additionally, these func-
tions showed promising results in real-world data applications, outperforming classical
link functions in terms of metrics. For instance, in the first example, comparing the reverse
power double Lomax (RPDLomax) with the logit link showed that, regardless of the data
imbalance, the RPDLomax model assigns effectively lower mean posterior predictive
probabilities to failure and higher probabilities to success (21.4% and 63.7%, respec-
tively), unlike Logistic regression, which does not clearly distinguish between the mean
posterior predictive probabilities for these two classes (36.0% and 39.5% for failure and
success, respectively). That is, the proposed asymmetric Lomax approach is a competi-
tive model for differentiating binary data classification in imbalanced tasks against the
Logistic approach.

1 Introduction

Various classification tasks are subconsciously undertaken on a daily basis. Clothes are sorted
and placed in appropriate drawers, messages and emails are prioritized, dishes are categorized
as either dirty or clean, and tasks are assessed based on difficulty levels. While seemingly
straightforward, these activities do not entail critical consequences when missclassified. Con-
versely, the failure of a medical professional to diagnose cancer could lead to the patient’s
demise in a short period. Similarly, frequent misclassification of clients as either good or bad
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payers by a financial institution may result in significant financial losses, potentially reaching
billions. The significance of accurate modeling and classification becomes apparent in scenar-
ios where high stakes underscore their pivotal role across diverse domains.

The term “imbalanced binary data” denotes a dataset in which one of the classes signifi-
cantly outweighs the other in terms of observations. For example, in default prediction, there
are typically more good payers than bad payers, and in cancer detection, the number of healthy
individuals far exceeds those diagnosed with the disease. This imbalance poses as a challenge
for binary data modeling and classification, as most machine learning algorithms and statisti-
cal models presume an even distribution of observations across both categories [1]. Conse-
quently, these algorithms often prioritize the majority class over the minority class, even
though the minority class is frequently of greater interest.

In binary regression, symmetric link functions, such as logit and probit functions, are often
chosen, implying equal probabilities for both categories. However, recent research, exemplified
by [2], argues that asymmetric link functions may better suit the task of handling imbalanced
data by allowing for distinct probabilities for each category. Adopting symmetric link func-
tions in such cases, as noted by [3], can result in substantial bias in parameter estimation and
success probability prediction.

To address this challenge, [4] proposed a method to transform well-known distributions to
derive more flexible and asymmetric link functions. This approach involves exponentiating
existing cumulative distribution functions by the positive parameter A, acting as an asymmetry
parameter, providing control over the distribution’s shape. This transformation introduces
asymmetry and maintains a connection with symmetric link functions.

The main objective of this paper is to introduce novel asymmetric classification functions
based on the Lomax distribution to improve the modeling and classification of imbalanced
binary data. The proposed models offer the advantage of incorporating only one additional
parameter, thereby establishing a parametrically defined alternative to traditional binary
regression methods. This approach ensures interpretability, leveraging the asymmetry genera-
tion method proposed by [4].

1.1 Contributions

The main contributions of the proposed models are defined as follows:

i) Propose new asymmetric classification functions that outperform traditional symmetric
functions in classifying imbalanced data.

ii) Compare the proposed link functions with traditional link functions (logit, probit, cauchit,
loglog, and cloglog), focusing on the logit link due to its popularity in classification.

iii) Introduce new asymmetric functions that require only one additional parameter to gener-
ate asymmetry. This approach reduces variance in parameter estimation and enhances
model stability, offering a more robust alternative to other asymmetric classification
functions.

iv) Provide a model that can be easily implemented within the R workflow, facilitating its
adoption and application in real-world data analysis.

v) Ensure the parametric models are interpretable, with all parameters clearly defined. The
inclusion of the asymmetry parameter A allows for a direct relationship with symmetric
classification models, regulating the model’s asymmetry.
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vi) Present a Bayesian approach to interpret the models, offering a comprehensive understand-
ing of the parameter distributions and their impact on classification.

1.2 Article organization

The structure of this article is as follows. In Section 2, related works in literature are discussed.
Section 3 introduces the asymmetric Lomax distributions. Section 4 presents the Bayesian
binary regression model using the distributions introduced in Section 3. Section 5 provides the
results of simulations and Bayesian analysis of these distributions. In Section 6, the proposed
methodology is exemplified in two applications: one related to image classification (wilt), and
another related to blood donation. Section 7 discusses the results of this work. Finally, Section
8 contains some final remarks and future research directions.

2 Literature review

In academic literature, several authors have explored asymmetric link functions as alternatives
to conventional symmetric models. Notable examples include [5], who explored the perfor-
mance of various asymmetric link functions in predicting mortality in life insurance, and [6],
who employed the asymmetric Student’s t-distribution to identify patients with Parkinson’s
disease. Additionally, [7] investigated Fréchet, Weibull, and Gumbel link functions to model
bankruptcy occurrences in small and medium-sized businesses. Nevertheless, it is crucial to
acknowledge that these models often lack a mechanism for controlling asymmetry through an
additional parameter, making it challenging to establish connections with conventional sym-
metric models [2].

In addition to these models, researchers have made efforts to transform or generalize well-
known distributions to obtain more flexible and asymmetric link functions in binary regres-
sion. Noteworthy examples include the asymmetric logistic distribution addressed by [8], and
the exponentiated-exponential logistic distribution explored by [9]. Furthermore, it is worth
mentioning the logisticF and logisticKZ distributions presented by [10], as well as the generali-
zation proposed by [11] based on the log F family, encompassing a range of models. A com-
mon feature of these models is the introduction of at least two additional parameters, raising
concerns about the associated cost in terms of increased variance, as pointed out by [12].

In contrast, the approach presented by [4] offers a advantage as it requires the inclusion of
just a single parameter, which in turn establishes a direct link with symmetric link functions.
Despite its potential benefits, the use of this transformation in binary regression has been rela-
tively underexplored. While it has been applied to classic models such as the normal, logistic,
Cauchy, Student’s t, Laplace, and Gumbel distributions [4, 13-16], there remains ample oppor-
tunity to investigate its impact on a wider range of distributions.

To address this gap, our study aims to develop a new model by applying [4]’s transforma-
tion to the Lomax distribution. This paper explores Bazan’s method within this context, offer-
ing a novel approach to modeling and classifying imbalanced binary data with minimal
additional parameters while maintaining interpretability.

3 Asymmetric Lomax distributions

In this section, we will introduce asymmetric Lomax models, namely the power double Lomax
(PDLomax) and the reverse power double Lomax (RPDLomax) models. First, we will provide
the definition of the double Lomax (DLomax) distribution proposed by [17], which is an
extension of the Lomax distribution (also known as Pareto Type II distribution) on the real
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line. For further details on the Lomax distribution, see, e.g., [18, 19]. A random variable X € R
follows a DLomax distribution with parameters u € R and o > 0 if its probability density func-
tion (pdf) and cumulative distribution function (cdf) are given, respectively, by

1
| m’ x < u,
x)=— and G(x) =
0= & 1
’ e, x>u
2(1+ =)

If y = 0and o = 1, then it is referred to as the standard DLomax distribution. [17] derived this
distribution from the ratio of two independent and identically distributed standard classical
Laplace random variables.

To construct new asymmetric link functions using the standard DLomax distribution as a
base, we consider the power transformation proposed by [4]. Thus, if Fp is a power distribution
with base distribution G, then its pdf and cdf are described by the following exponentiation
process:

foladh) =G and  F(xlh) = [GW)T',

with A > 0. Now, Fp is a reverse power distribution with base distribution G, and its pdf and
cdf are described as follows:

fue(3lh) = 2g(=x)[G(=0)""  and  Fp(xlh) = 1 - [G(—x)]",

where X > 0. For several properties that establish the relationship between the power and
reverse power distributions, see, e.g., the work of [15].

Consequently, a random variable X has a standard PDLomax distribution with an asymme-
try parameter A > 0, if its pdf can be written as follows:

> 1
21+ )2 [2(1%)} ) x <0,
folx) = A
A 1 Mt O
2(1+]x])? [ o 2(1+x):| o x>
with cdf given by
LT
[
FP(x) = N
1
{1 - 2(1+x)j| ; x>0

Furthermore, a random variable X follows a standard RPDLomax distribution with an
asymmetry parameter A > 0, if its pdf is described as follows:

A—1
. {1—%} . x<0,

2(1+]x]) 2(1—x
fRP(x) = -
A 1|

2(1+]x))? {2(1“)} ’ x>0,
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with cdf given by

Note that Fgp(x) = 1 — Fp(x). Thus, the PDLomax and RPDLomax distributions are dis-
tinct but closely related since one reflects the other. Also, Fp(—x) # 1 — Fp(x) and Frp(—x) #
1 — Frp(x), which shows that Fp and Fgp are not symmetric.

To the best of our knowledge, these two probability distributions have not been presented
in the literature. However, their complete characterization (statistical properties such as
moments, including the mean, variance, skewness and kurtosis) is not within the scope of this
paper and will be discussed in the future.

Figs 1 and 2 show, respectively, the pdf and cdf plots of the standard PDLomax and RPDLo-
max distributions for various values of A.

Fig 1 shows that the addition of the A parameter can introduce both right (positive) and left
(negative) skewness. In particular, for the standard PDLomax distribution (left panel), when A
< 1, the density curve concentrates to the left; when A > 1, the density curve concentrates to
the right; and at A = 1, we have the original distribution (standard DLomax distribution). The
standard RPDLomax distribution (right panel) exhibits the opposite behavior, as both func-
tions are reflections of each other.

In Fig 2, one can see how the variation in A modifies the cumulative density function. Note
that the variation of this parameter not only affects the interval where the greatest probability
is concentrated, but also affects the slope of the probability curve. In particular, for the stan-
dard PDLomax distribution (left panel), when A < 1, it is more likely that X < 0, but when
A > 1, it is more likely that X > 0. That is, in the context of binary regression, in which this cdf
is used as a link function, it is expected that when A < 1, there is a greater proportion of failures
than successes (more 0’s than 1’s); and when A > 1, there must be a higher proportion of suc-
cesses. When A = 1, it is an atypical case in which successes and failures will be balanced. For
the standard RPDLomax distribution (right panel), an inverse behavior is observed.

PDLomax RPDLomax

— A025 — 025
=== M=075
B |
-- M2

044 oo Med

density

density

004

10 5 0 10

Fig 1. Probability density functions of the standard PDLomax and RPDLomax distributions at various values of
A

https://doi.org/10.1371/journal.pone.0311246.9001
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Fig 2. Cumulative distribution functions of the standard PDLomax and RPDLomax distributions at various
values of L.

https://doi.org/10.1371/journal.pone.0311246.9002

The A parameter directly affects the rate at which the cdf increases. A larger A results in a
steeper cdf slope, making it approach 1 more quickly as x increases. Conversely, a smaller A
produces a gentler slope. In the RPDLomax distribution, a gentler slope (A < 1) corresponds
to a higher proportion of 0’s, enabling it to manage greater imbalances of 0’s more effectively
than the PDLomax distribution. On the other hand, the PDLomax distribution exhibits gentler
slopes (A < 1) when there are more 1’s than 0’s, allowing it to handle higher proportions of 1’s.

4 Bayesian binary regression model

In this section, we will present the new asymmetric Lomax model for binary regression using
the distributions introduced in the previous section. Utilizing the notation defined earlier, this
model can be described by the following set of equations:

ind.

Y|, A '~ Bernoulli(p,),

p.=FE (),
n, = x;ﬂa
B,\) ~ m(B,N),

where F, represents the distributions previously introduced, f is the vector of regression coef-
ficients, A is the asymmetry parameter introduced by the power and reverse power transforma-
tions, and 7 is the prior distribution for the parameters f and A.

In this work, it will be assumed that all parameters are independent, meaning that the prior
distribution is given by n(a, b) = n(a)n(b). Therefore, the priors used in the models will be
based on the study by [4]. Additionally, following the authors’ recommendation, the parameter
A will be reparameterized as J = log(1), since this reparameterization enhances the efficiency of
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parameter estimates. The set of equations below describes the model used:

Y,|B,0 g Bernoulli(p,),
p; = F;(n,),
xp,
B, % Normal(0,10%), j=1,2,...,k,
0 ~ Uniform(—2, 2),

where Fs represents the cdf of the reparameterized PDLomax or RPDLomax distribution.

Note that the prior distribution of § is a uniform distribution on (-2, 2), that is, A is
restricted to the interval (¢7%, %) = (0.14, 7.39). The reason for this choice is that values outside
this range have a very low probability of occurrence [16]. Moreover, the asymmetry of the
power distributions remains practically constant when A > 6 [13]. It can be observed that the
asymmetry of the PDLomax and RPDLomax distributions is constant outside the interval
established in this prior distribution. Despite this parameterization, the results in the following
sections will be presented in terms of A to maintain a direct connection with symmetric link
functions and the success rate.

The posterior distribution for the binary regression models that have the asymmetry
parameter A is given by

(B, 0|X,y) o< L(B,d|X,y)n(B)n(),

where 7(f) is the prior distribution of 8, with f8; £ Normal(0,10%), forj=1,2, ..., k; n(5) is
the prior distribution of 8, with § = log(A) ~ Uniform(-2, 2); and £(8, J|X, y) is the likelihood
function of the parameters given the dataset, represented by the formula:

n

L(B,o|X,y) = H [Fs(n)"[1 — F(S(ni)]lfyf.

i=1

Thus, combining the expressions described previously, the posterior distribution can be
written as:

N o 1 g1
n(ﬁ75|X )’ X H 1 - (7’1)] ]1:!: 10\/57‘[@{['){ - 2(102) }Z

y, L=y : ﬁJQ
o H [1 = F;(n)] Hexp{ - 2(10) }

Note that the posterior distribution (1) is not similar to known distributions. Therefore,
parameter estimation does not have an analytical solution and needs to be calculated
computationally.

The Bayesian classifier approach is considered advantageous due to its use of the predictive
posterior, which provides a probability distribution over the sensitivity probability of the i-th
outcome, P(Y, = 1|X,) = p,. This allows for a more nuanced understanding of uncertainty in
predictions, making it particularly useful when dealing with limited data (due to the possibility
of incorporating priors). In contrast, the frequentist approach typically provides point esti-
mates without capturing the full range of uncertainty (just a point estimation decision criteria),
which can lead to less robust predictions. Therefore, the Bayesian approach, focusing on the
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predictive posterior, probabilistically offers a more comprehensive and complete uncertainty
framework for making predictions.

All parameter estimation was performed using the stan package in the R software [20].
This program conducts its estimations using the No-U-Turn Sampler (NUTS) technique pro-
posed by [21]. NUTS is a Markov chain Monte Carlo (MCMC) algorithm employed for Bayes-
ian inference. It is a self-tuning variant of the Hamiltonian Monte Carlo (HMC) method,
which efficiently explores the parameter space by utilizing gradient information to avoid ran-
dom walks and provide faster convergence. NUTS uses a recursive algorithm to build a set of
likely candidate points, covering a wide range of the target distribution, and it automatically
stops when it starts returning to the same place. Empirically, NUTS performs at least as effi-
ciently as HMC, and sometimes more efficiently, even when well specified, with the advantage
that NUTS operates without user intervention [21]. A more detailed review of the NUTS algo-
rithm applied to power and reverse power models can be found in the work of [15].

To compare the model fits, Bayesian metrics based on the posterior mean of deviance and
the deviance from the posterior mean were used, represented by the following formulas:

— 1
i (s) 50 : () sy — _ (s) 50
D=3 D3,  with D5 = ~2log(p0ip”,3").
and
D= ( Z B, Z 5t )
fors=1,..., S, where S is the size of the posterior sample. From these values, the effective

number of parameters, p, = D — D, can be calculated. Subsequently, measures such as devi-
ance information criterion (DIC = D + p, = 2D — D), expected Akaike information crite-
rion (EAIC = D + 2k, where k is the number of the model’s parameters), and expected
Bayesian information criterion (EBIC = D + klog(n), where n is the sample size, that is, the
number of observations of the response variable Y) are computed. Additionally, Watanabe-

Akaike information criterion (WAIC = —2(LPPD — pyy,c), with LPPD =

> log (Sil Zf:l P18, 5(5))) and pyue =231, (log (571 Zf:1 P18, 5(5))) -
S log(p(y,BY, 5(‘>)))) and leave-one-out (LOO) metrics are considered.

The LOO metric, similar to WAIC, is a fully Bayesian metric. However, it has a high
computational cost when dealing with very large samples. Therefore, [22] proposed the Pareto
smoothed importance sampling leave-one-out (PSIS-LOO) cross-validation method. This
metric can then be calculated as follows:

- (Sl pl8Y.0)
ELPD p55-100 = Z log <Z W )

i=1 s=1 s=1 Wi

where
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with

w1 pB”0")
L ppBY, Y)Y T p(BY, 0 y)

9

fors=1,...,S.

The smaller the value of all these metrics, the better the model fit.

To assess the model’s adequacy, quantile residuals, as proposed by [23], were utilized.
When the model assumptions are met, these residuals follow a normal distribution, regardless
of the response variable’s distribution.

5 Simulation studies

In this section, we will present simulation studies that aim to verify the accuracy of the Bayes-
ian estimation procedure (Section 5.1), and evaluate whether the proposed models can per-
form better than the logistic regression model in different imbalanced scenarios (Section 5.2).

5.1 Parameter recovery

In order to assess the ability of the proposed models to estimate their parameters, a simulation
study was conducted. In this study, 100 random samples of size n = {500, 1, 000, 2, 000} were
generated for each of the proposed models and also for the logistic model (used for compari-
son). For models that include the asymmetry parameter (1), four additional scenarios were
considered: A = {0.25, 0.5, 2, 4}. The covariate X was simulated from a uniform distribution on
the interval (-3, 3), and the regression coefficients were fixed at # = (8, B1) = (0, 1).

To estimate the parameters using the stan software, 200 iterations, 4 chains, and 100 sam-
ples of warm-up were considered for each chain. Consequently, for each replica, 400 samples
of each estimated parameter were generated. The metrics used to assess the models’ perfor-
mance were bias and root mean squared error (RMSE), which are defined, respectively, as fol-
lows:

Bias(0) = li(ém —60) and RMSE(0) = li(ém — ),
R R

r=1 r=1

where 6 € 0 = (A, B) (is one of the three parameters), R is the number of replications in the sim-

ulation (in this case, R = 100), 0 represents the true parameter value, and 0 stands for the pos-
terior mean of parameter 0 in replication r.

Furthermore, the quality of the interval estimation was verified, observing the relative fre-
quency of times in which the true parameter (6) was contained in percentiles 2.5% and 97.5%,
that is, the proportion of times in which the original parameter was between percentiles 2.5%
and 97.5% of the samples of the posterior distribution, here called coverage probability (CP).
That is,

1 R
CP = E21(0 € [LL, UL)),

r=1

where LL and UL are, respectively, the lower (2.5%) and upper (97.5%) limits of the posterior
samples for each replicate. In other words, we calculated the coverage of the 95% credibility
interval of MCMC chains. Hence, it is expected that, in 95% of cases, the real value of the
parameter will be contained within this range.
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Table 1. Bias, RMSE and CP calculated for the parameters S, #,, and A.

Model n Bo B A
Bias RMSE CP Bias RMSE CP | Bias RMSE CcP
Logistic 500 0.009 0.011 0.96 0.016 0.009 0.95 - - -
1,000 0.007 0.003 0.91 0.007 0.004 0.95 - - -
2,000 0.002 0.008 0.91 0.002 0.001 0.97 - - -
DLomax 500 0.011 0.016 0.96 0.066 0.037 0.96 - - -
1,000 0.007 0.009 0.96 0.049 0.020 0.92 - - -
2,000 0.001 0.004 0.95 0.020 0.007 0.93 - - -
PDLomax(A = 0.25) 500 0.964 9.806 0.95 0.785 1.059 0.88 0.044 0.345 0.93
1,000 0.558 3.448 0.94 0.410 0.395 0.90 0.023 0.026 0.91
2,000 0.317 1.862 0.95 0.176 0.128 0.94 0.009 0.011 0.96
PDLomax(A = 0.5) 500 -0.186 0.279 0.93 0.307 0.242 0.90 -0.039 0.009 0.91
1,000 -0.033 0.140 0.93 0.161 0.081 0.87 -0.012 0.007 0.91
2,000 -0.028 0.064 0.95 0.062 0.020 0.94 -0.005 0.004 0.91
PDLomax(A = 2) 500 -0.030 0.119 0.92 0.096 0.035 0.96 -0.002 0.166 0.95
1,000 -0.014 0.027 0.95 0.053 0.016 0.97 0.006 0.040 0.94
2,000 0.009 0.014 0.93 0.022 0.006 0.96 0.009 0.019 0.95
PDLomax(A = 4) 500 0.103 0.101 0.97 0.382 0.258 0.90 0.746 1.496 0.96
1,000 0.200 0.110 0.89 0.224 0.105 0.86 0.748 1.545 0.83
2,000 0.143 0.066 0.86 0.130 0.053 0.87 0.513 0.898 0.87
RPDLomax(A = 0.25) 500 -0.733 7.506 0.95 0.640 0.801 0.89 0.026 0.223 0.95
1,000 -0.385 2.266 0.95 0.306 0.269 0.91 0.015 0.019 0.93
2,000 -0.204 0.862 0.93 0.132 0.095 0.96 0.011 0.005 0.96
RPDLomax(A = 0.5) 500 0.112 0.494 0.87 0.297 0.258 0.92 -0.008 0.026 0.89
1,000 0.028 0.112 0.96 0.118 0.061 0.93 -0.007 0.005 0.94
2,000 0.032 0.037 0.97 0.046 0.019 0.94 -0.008 0.002 0.95
RPDLomax(A = 2) 500 -0.047 0.102 0.91 0.088 0.032 0.96 0.010 0.167 0.92
1,000 -0.027 0.042 0.92 0.063 0.024 0.89 0.052 0.094 0.93
2,000 0.003 0.011 0.99 0.019 0.008 0.96 -0.003 0.016 0.96
RPDLomax(A = 4) 500 -0.182 0.124 0.93 0.338 0.199 0.87 0.906 1.848 0.98
1,000 -0.187 0.093 0.91 0.225 0.115 0.84 0.740 1.438 0.85
2,000 -0.135 0.076 0.89 0.140 0.065 0.88 0.454 1.028 0.86

https://doi.org/10.1371/journal.pone.0311246.t001

Table 1 reveals that in most models, the bias of the estimator f, decreases as the sample size

increases. The models dealing with more imbalanced data, i.e., with A = 0.25 and A = 4, show
higher bias and higher RMSE. The same holds for f3;: its bias also decreases as the sample size
increases, as does its RMSE. In comparison to the logistic model, in smaller sample sizes, the
proposed models exhibit more bias in parameter recovery. However, as the sample size grows,
the difference between these models becomes negligible.

Regarding the parameter A, a slight increase in bias and RMSE is noticeable from n = 500 to
n =1, 000 when A = 4. This might occur because, as stated by [13], the relationship between an
increase in A and asymmetry is not linear. Beyond a certain point, any increase in A results in
insignificant increments in asymmetry. Nevertheless, a strong downward trend in both bias
and RMSE is evident when # = 2, 000, indicating the potential for reducing bias in the model
asymptotically. For the remaining models with the parameter A, both bias and RMSE decrease
as the sample size increases.

PLOS ONE | https://doi.org/10.1371/journal.pone.0311246  October 16, 2024

10/24


https://doi.org/10.1371/journal.pone.0311246.t001
https://doi.org/10.1371/journal.pone.0311246

PLOS ONE Fixing imbalanced binary classification: An asymmetric Bayesian learning approach

Table 2. Mean proportion of 1’s, for A = {0.25, 0.5, 2, 4}, of the samples of the power Cauchy model.

A=0.25 A=05 rA=2 r=4
Mean proportion of 1’s 0.800 0.661 0.329 0.198
https://doi.org/10.1371/journal.pone.0311246.1002

Finally, the credibility intervals for the parameters of all models seem to have a reasonable
behavior, given the number of repetitions of the experiment; however, it is notable that the CP
is smaller when A = 4.

5.2 Misspecification

As in the work of [13], imbalanced data were generated based on the power Cauchy model,
with fixed regression coefficients f, and f; set to B = (8o, 1) = (0, 1). The (sole) covariate X
was simulated from a uniform distribution on the interval (=3, 3). Four different scenarios
were simulated with varying levels of imbalance, considering the parameter A = {0.25, 0.5, 2, 4}
of the power Cauchy distribution. The binary regression model using the power Cauchy link
function is presented below:

Y.|X. = x. "¢ Bernoulli(p,),
1 N
pi= ;arCtan(ﬂo + Bix;) + 9]

In this experiment, 100 samples with the power Cauchy distribution were generated follow-
ing the structure outlined above, each containing 5,000 observations. Table 2 displays the
degree of imbalance in each sample.

To compare the fit of the proposed models with the logistic regression model, the WAIC
and LOO metrics were examined. These metrics were chosen because they tend to perform
better in model selection than other metrics such as DIC, as these only consider point esti-
mates, while the WAIC and LOO metrics take into account the entire posterior distribution of
the parameters [24]. In addition, they are fully Bayesian measures. From these metrics, the
means of LOO and WAIC in each scenario (LOO and WAIC, respectively), the percentage of
times that the metric of each link is less than the logistic link (%100 and %waic), and the vari-
ance of each of these metrics (s, and s, ) were calculated. That is,

__ 1 R 1 R
LOO = E Z LOO(r>, WAIC = E Z WAIC(r)7
r=1 r=1
1& 1R
%00 = EZ [(LOO" < LOO),  Yoruc = ﬁz I(WAIC" < WAIC{)),
r=1 r=1
R R

Stoo = ﬁZ(LOO(’) ~T00)", e = ﬁ 3 (WAIC" —~ WAIC)”,

r=1 r=1

where R is the number of simulation replicas (in this case, R = 100), and I denotes the indicator
function.

Table 3 shows that in all cases, at least one of the proposed models (PDLomax and RPDLo-
max) performed better than the logistic regression. When A = 0.25, the RPDLomax model,
even with LOO and WAIC values higher than logistic regression, still outperforms it in 58% of
cases in both metrics. When A = 0.5, it can be observed that the PDLomax and RPDLomax
models have lower WAIC and LOO values than the logistic model, performing better in over
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Table 3. Comparative Bayesian measures of the proposed models and binary logistic regression.

Link LOO Stoo %100 WAIC Sharc Y%owaIC
A=0.25

Logit 5,007.371 71.147 - 5,007.343 71.147 -
DLomax 5,007.349 71.169 49 5,007.320 71.169 49
PDLomax 5,008.029 70.471 44 5,008.002 70.471 45
RPDLomax 5,008.471 70.813 58 5,008.448 70.811 58
A=0.5

Logit 6,403.237 39.623 - 6,403.208 39.622 -
DLomax 6,403.268 39.645 40 6,403.239 39.645 41
PDLomax 6,403.053 39.570 66 6,403.025 39.571 66
RPDLomax 6,403.113 39.602 62 6,403.086 39.602 62
A=2

Logit 6,334.080 38.417 - 6,334.051 38.417 -
DLomax 6,333.970 38.384 60 6,333.942 38.384 60
PDLomax 6,333.958 38.358 60 6,333.931 38.359 60
RPDLomax 6,333.960 38.404 59 6,333.932 38.404 59
A=4

Logit 4,977.608 65.323 - 4,977.579 65.322 -
DLomax 4,977.568 65.304 51 4,977.540 65.305 52
PDLomax 4,979.453 65.368 65 4,979.433 65.373 62
RPDLomax 4,978.640 65.189 42 4,978.616 65.189 43

https://doi.org/10.1371/journal.pone.0311246.t003

60% of cases, with the PDLomax model outperforming all (66% of success compared to logistic
regression). When A = 2, the PDLomax and RPDLomax models present lower average LOO
and WAIC values than logistic regression and also outperform it most of the time; in this case,
the PDLomax model had better results (LOO and WAIC were lower than the logistic model in
60% of cases). Finally, at A = 4, the PDLomax model, even with WAIC and LOO values higher
than the logistic model, has lower LOO in 65% of cases and lower WAIC in 62% of cases.

6 Applications

This section presents two applications that were developed in order to illustrate the perfor-

mance of the DLomax, PDLomax, and RPDLomax link functions on real data. First, the pro-
posed models were applied to a database with images of diseased trees (Section 6.1), and then
the effect of these new link functions was studied on a blood donation database (Section 6.2).

6.1 Wilt dataset

This study considers a dataset comprised of image segments resulting from the pansharpening
technique, as described in the work of [25], for the detection of diseased pine and oak trees.
This dataset was created because in Japan, beetles that feed on pine and oak trees are responsi-
ble for the majority of damage to forested areas, as they transmit diseases to the trees, causing
them to wither. Hence, rapid detection, removal, or treatment of newly infected trees is neces-
sary to prevent the beetles from emerging the following year and spreading their diseases. The
discoloration of the foliage is a clear sign of infection, so the detection of a diseased tree is usu-
ally associated with the detection of a discolored tree. Due to the fact that the number of dis-
eased trees was much smaller compared to the number of healthy trees in the study area,
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Table 4. Descriptive measures of the Wilt dataset. SD = standard deviation.

Variable
GLCM_Pan
Mean_G
Mean_R
Mean_NIR
SD_Pan

https://doi.org/10.1371/journal.pone.0311246.t1004

Mean Min. Max. SD
127.07 81.12 167.94 10.67
209.80 117.20 1848.90 78.68
107.74 50.58 1594.58 71.77
453.70 144.90 1597.30 156.20
20.64 5.77 62.39 6.76

collecting images of diseased trees was more challenging and time-consuming. Consequently,
an imbalanced dataset was constructed.

This dataset was introduced in the paper [25] and is available in the UCI repository [26].
For this study, the validation dataset, which consists of 500 observations, was considered.
Below is a brief description of the variables in the dataset (given the complexity of the subject,
more information about the variables can be found in [25]):

o GLCM_Pan: gray-level co-occurrence matrix (GLCM) mean texture;

o Mean_G: mean green value;

o Mean_R: mean red value;

e Mean_NIR: mean near-infrared (NIR) value;

o SD_Pan: standard deviation of the panchromatic (Pan) band;

« Y: binary variable indicating whether the tree is diseased (1) or not (0).

Table 4 presents the descriptive statistics for each of the variables. This dataset exhibits a
37.4% success (observed diseased trees, Y = 1) rate.

When analyzing the data, it was found that the variables Mean_G and Mean_R had a corre-
lation of 0.98. We then removed the variable Mean_G from the subsequent analysis, since it
was more correlated with the other variables. Therefore, the models were adjusted using the
standardized variables GLCM_Pan, Mean_R, Mean_NIR and SD_Pan. Once again, the models
were fitted using the stan package of the R software. In each case, 5,000 iterations, 4 chains,
and 2,500 warm-up iterations were considered. In almost all cases (except for the PDLomax

distribution), convergence was achieved based on the potential scale reduction statistic (ﬁ) of
[27]. The PDLomax model encountered convergence issues, potentially influenced by several
factors, particularly the choice of priors for A and f.

It is evident from Table 5 that the RPDLomax model stands out when compared to the
other models (including the well-known logistic, probit, cauchit, loglog, and complementary
log-log or cloglog models). This model had significantly lower values for DIC, EAIC, EBIC,
LOO, and WAIC, demonstrating its superior suitability for the dataset compared to the other
models presented. The DLomax model, on the other hand, was the second-best performing
model, obtaining the second lowest measures for DIC, EAIC, EBIC, LOO, and WAIC. The
cauchit model, although achieving metrics similar to the DLomax model, did not exhibit any
measures superior to the RPDLomax and DLomax models.

As the RPDLomax model was chosen, Table 6 provides descriptive statistics of the posterior
distribution samples for this model. In this table, it can be observed that the 90% credibility
interval for the skewness parameter A does not encompass the one value, suggesting that the
current model cannot be reduced to the base model (DLomax). Additionally, the 90% credibil-
ity intervals for the f; and 3, parameters encompass the zero value; thus, the GLCM_Pan and
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Table 5. Comparison metrics of the models fitted to the Wilt dataset.

Model Pd D D DIC EAIC EBIC LOO WAIC
DLomax 4.658 532.591 527.933 537.249 542.591 563.664 537.874 537.863
PDLomax - - - - - - - -

RPDLomax 3.985 428.726 424.741 432.711 440.726 466.013 441.044 441.031
Logistic 5.059 657.361 652.302 662.420 667.361 688.434 688.290 700.992
Probit 5.003 660.494 655.492 665.497 670.494 691.567 675.818 672.110
Cauchit 4916 543.991 539.076 548.907 553.991 575.064 549.015 549.008
loglog 5.060 635.796 630.735 640.856 645.796 666.869 656.906 667.428
cloglog 4919 662.544 657.625 667.463 672.544 693.617 670.433 668.231

https://doi.org/10.1371/journal.pone.0311246.t005

SD_Pan covariates are not significant. Despite that, these covariates were kept in the model as
they are important for ensuring that the model’s residuals meet the assumption of normality.

Using the posterior mean as the point estimate for the parameters, the adopted model can
be represented by the formula:

7, =26.110 + 1.142 X, + 137.094X,, — 19.340 X,, 4 0.206 X,,,

1 0.256
1= 1-g——=|  m <0,
A |: 2(1 - ’71‘)]
pi=
) 1 0.256 R N 0
a0+q) o MTT

171. X, s Bernoulli(p,),

where X3, X5, X5, and X are, respectively, the standardized GLCM_Pan, Mean_R, Mean_NIR,
and SD_Pan variables.
Observing the signs of the parameters, it can be interpreted that:

o As the variables GLCM_Pan, Mean_R and SD_Pan increase, the probability of the tree being
diseased also increases;

o As the variable Mean_NIR increases, the probability of the tree being diseased decreases;

o The variable Mean_R plays a significant role in calculating the probability of the tree being
diseased, given the magnitude of its associated parameter. This makes sense because dry
trees lose their green color and exhibit more reddish tones;

Table 6. Descriptive measures of the parameters of the RPDLomax model fitted to the Wilt dataset.

Covariate Parameter Mean SD Median Percentile 5% Percentile 95%
Intercept Bo 26.110 11.423 24.445 10.738 47.329
GLCM_Pan B 1.142 1.732 1.026 -1.464 4.141
Mean_R Ba 137.094 53.400 128.895 64.941 236.957
Mean_NIR B3 -19.340 7.268 -18.330 -32.818 -9.549
SD_Pan Ba 0.206 2.120 0.332 -3.300 3.307
Skewness A 0.256 0.038 0.251 0.203 0.327

https://doi.org/10.1371/journal.pone.0311246.t006
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Fig 3. Nonlinear effect of each variable on the probability that a tree is diseased (P(Y = 1)), on average, when the
other variables are constant, based on the adjusted RPDLomax model (Wilt dataset).

https://doi.org/10.1371/journal.pone.0311246.9003

In addition to interpreting the signs of the parameters, the impact can be observed of the
variation of each variable on the probability of a tree being diseased. In Fig 3, the effect of the
variation of each variable is presented, maintaining the others at their average value.

From Fig 3, the significant impact of the variable Mean_R can be seen, in which there is a
sharp increase in the probability of success (diseased tree) in the range between 90 and 100.
When Mean_R equals 90, the probability of success is 0.015, while for Mean_R equals 100, the
probability of success is 0.558. On the other hand, the other variables seem to have a smaller
influence on the probability of success as their curves show little variation.

The interpretations provided above, Bayesian Statistics also allows us to interpret the proba-
bilities of success (Y = 1) of each of the observations. In Fig 4, it is noted that some observa-
tions have a very low probability of success, and their distributions are concentrated in an
interval close to 0, while other observations, in turn, are concentrated in points closer to the
center, or have a more flattened distribution. Thus, observations can be identified that have a
greater degree of uncertainty in their classification.

The residuals of this model are displayed graphically in Fig 5. It can be observed that the
residuals behave as expected, showing no signs that they do not follow a normal distribution
(left panel). Additionally, it can be noted that the residuals appear to be distributed randomly,
with no strong evidence of a trend or changes in variance (right panel).
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Fig 4. Density of the predictive probabilities estimated by the RPDLomax model adopted in the first application (Wilt dataset), for

observations #200 to 220. The red line represents the average of the estimated diseased tree probabilities, P(Y, = 1|X,) = p,.
https://doi.org/10.1371/journal.pone.0311246.9004

PLOS ONE | https://doi.org/10.1371/journal.pone.0311246  October 16, 2024 16/24


https://doi.org/10.1371/journal.pone.0311246.g004
https://doi.org/10.1371/journal.pone.0311246

PLOS ONE

Fixing imbalanced binary classification: An asymmetric Bayesian learning approach

Quantile residuals
°
S
Quantile residuals

400 500

0 200 300
Theoretical quantiles Observed

Fig 5. Plots of the quantile residuals of the RPDLomax model fitted to the Wilt dataset.
https://doi.org/10.1371/journal.pone.0311246.9005

In Fig 6, it is clear that the RPDLomax model assigns low mean posterior predictive proba-
bilities to failure and higher mean posterior predictive probabilities to success (left panel). This
is in contrast to the logistic regression model, which does not clearly distinguish between the
mean predictive probabilities for the two classes (right panel). In Table 7, the median posterior

~

predictive probability for the not diseased tree group, P(Y = 1|Y = 0, X), based on the
RPDLomax model was 1.2%, while for the Logistic model was 34.4%. In comparison, the

median predictive probability for the diseased tree, P(Y = 1|Y = 1, X), based on the RPDLo-
max model was 66.9%, versus 39.2% for the Logistic model.

6.2 Blood donation dataset

The database used was introduced and analyzed by [28], and is available in the UCI repository
[26]. This dataset comprises 748 random samples of blood donor data from the Blood Transfu-
sion Center in Hsin-Chu City, Taiwan, with the following variables:

RPDLomax Logistic

0.754

}

Probability
°
b
g
Probability
°
g

—

0.254 0.251

Class Class

Fig 6. Boxplots of the estimated mean predictive probabilities for each observation, based on the RPDLomax
model and the Logistic model for each class (Wilt dataset).

https://doi.org/10.1371/journal.pone.0311246.g006
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Table 7. Descriptive statistics (minimum, first quartile, median, mean, third quartile, maximum) of probabilities for the RPDLomax and Logistic models by class
(Wilt dataset).

Model Class Min. 1st Qu. Median Mean 3rd Qu. Max.

RPDLomax Success 0.006 0.636 0.669 0.637 0.701 0.750
Failure 0.002 0.006 0.012 0.214 0.530 0.887

Logistic Success 0.322 0.375 0.392 0.395 0.416 0.493
Failure 0.255 0.317 0.344 0.360 0.372 1.000

https://doi.org/10.1371/journal.pone.0311246.t007

o Recency: number of months since the last donation;

o Frequency: total number of donations made by the donor;

o Time: time, in months, since the first donation;

o Monetary: total, in milliliters (ml), of blood donated since the first donation;

o Y: binary variable indicating whether he/she donated blood (1—yes, 0—no) in March 2007.

Table 8 shows the descriptive statistics for each of these variables. This dataset exhibits a
23% success (1’s) rate.

In the initial analysis, it was observed that the variables Frequency and Monetary had a cor-
relation of 1 (perfect positive correlation). This occurs because 250 ml of blood is donated with
each donation, therefore the Monetary variable, which represents the total donated blood, is
nothing more than the Frequency variable multiplied by 250. Therefore, the decision was made
to exclude the Monetary variable from the model. In addition to the correlation between these
two variables, no other correlations were found that would hinder the model fitting.

Thus, the models were adjusted considering the standardized covariates Recency, Fre-
quency, and Time to predict the variable Y. The stan package in the R software was used for
parameter estimation. For each distribution, 5,000 iterations, 4 chains, and 2,500 warm-up
iterations were considered. Convergence was achieved in all distributions based on the poten-

tial scale reduction statistic (IAQ) by [27].

In Table 9, it can be observed that the RPDLomax model achieved the lowest values in the
DIC, EAIC, LOO, and WAIC metrics, proving to be the model that performed better in most
of the metrics. The cauchit model also showed satisfactory performance; however, it only out-
performed the RPDLomax model in the EBIC metric. On the other hand, the other models
proposed in this work, PDLomax and DLomax, although not performing as well as the
RPDLomax model, demonstrated superiority over most traditional models, as they showed
lower DIC, EAIC, LOO, and WAIC values than the logistic, probit, loglog, and cloglog models.

Considering the model comparison criteria and predictive evaluation, the RPDLomax
model was chosen. Therefore, Table 10 presents the descriptive measures of the posterior sam-
ples of this model’s parameters. Note that all parameters (coefficients) f’s are significant, as
none of the 90% credibility intervals for them include the zero value. Additionally, the 90%

Table 8. Descriptive measures of the Blood Donation dataset.

Variable Mean Min. Max. SD
Recency 9.5 0 74 8.1
Frequency 5.5 1 50 5.8
Time 34.3 2 98 24.4
Monetary 1,378.7 250 12,500 1,459.8

https://doi.org/10.1371/journal.pone.0311246.t008
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Table 9. Comparison metrics of the models fitted to the Blood Donation dataset.

Model Pd D D DIC EAIC EBIC LOO WAIC
DLomax 4.179 708.800 704.620 712.979 716.800 735.269 712.960 712.953
PDLomax 3.545 707.867 704.322 711.412 717.867 740.954 713.474 713.474
RPDLomax 4.963 706.123 701.159 711.086 716.123 739.210 711.542 711.532
Logistic 3.976 711.861 707.885 715.837 719.861 738.330 716.279 716.271
Probit 3.962 713.551 709.589 717.513 721.551 740.020 718.261 718.201
Cauchit 4.111 708.511 704.400 712.622 716.511 734.981 712.855 712.852
loglog 3.995 715.224 711.229 719.219 723.224 741.694 719.814 719.793
cloglog 4.016 715.178 711.162 719.193 723.178 741.647 721.906 720.949

https://doi.org/10.1371/journal.pone.0311246.t009

credibility interval for A does not include the one value, indicating that this parameter is
important for the fit, and the current model cannot be reduced to the base model (DLomax).

It was chosen to use the posterior mean as the point estimate for the parameters. Thus, the
adopted model can be represented as follows:

o~

7, =—1.410 — 1.381 X, + 1.422X,, — 0.889 X,

. |:1 1 :|0.679
2(1 - ;7\1) 7

1 0.679
]. — |\ =< 5 Ai > 0,
[2(1 +11,~)] 1

ind.

?,.|Xi ~ Bernoulli(p,),

i <0,

=)

where X3, X, and Xj are, respectively, the standardized Recency, Frequency, and Time
variables.
Observing the signs of the parameters, it can be interpreted that:

o As the number of months since the last donation (Recency) increases, the probability of the
donor donating blood on the specified date decreases;

o When the number of donations made by the donor (Frequency) increases, the probability of
he/she donating in the period also increases;

o As the time in months since the first donation (Time) increases, the probability of donation
in March 2007 decreases.

These interpretations make sense, as donors who made their first donation a long time ago,
donated infrequently, and have not donated blood for a long time; they represent a profile of

Table 10. Descriptive measures of the parameters of the RPDLomax fitted to the Blood Donation dataset.

Covariate Parameter Mean SD Median Percentile 5% Percentile 95%
Intercept Bo -1.410 0.479 -1.352 -2.281 -0.747

Recency B -1.381 0.356 -1.343 -2.021 -0.872

Frequency B 1.422 0.349 1.396 0.902 2.029

Time B3 -0.889 0.246 -0.870 -1.319 -0.520

Skewness A 0.679 0.148 0.656 0.476 0.955
https://doi.org/10.1371/journal.pone.0311246.t010
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Fig 7. Plots of the quantile residuals of the RPDLomax model fitted to the Blood Donation dataset.
https://doi.org/10.1371/journal.pone.0311246.9007

sporadic donors. On the other hand, donors with a high number of donations represent the
profile of regular donors.

In Fig 7, the quantile residuals exhibit the expected behavior, showing no indications of
deviating from a normal distribution (left panel). Furthermore, the residuals appear to be dis-
tributed randomly, lacking compelling evidence of any discernible trend or variations in vari-
ance (right panel).

Turning our attention to Fig 8, one can discern a shift in the mean predictive distribution
of success (1) versus the failure (0) mean predictive probabilities when transitioning from the
logistic model (right panel) to the RPDLomax model (left panel). In the RPDLomax model,
the medians of these predictives are more distinctly (separable), resulting in a heightened dis-
tinction between the probabilities associated with each class.

RPDLomax Logistic

o
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Probability
o
38

Probability
o
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e ass commme o

0.251 0.251
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Fig 8. Boxplots of the estimated mean predictive probabilities for each observation, based on the RPDLomax
model and the Logistic model for each class (Blood Donation dataset).

https://doi.org/10.1371/journal.pone.0311246.g008
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7 Discussion

In this study, the RPDLomax model was identified as the optimal choice due to its superior
selection metrics (LOO, WAIC, and DIC) and satisfactory fit, with residuals conforming to
necessary assumptions. This finding is consistent with literature indicating that models with
asymmetric links often outperform those with symmetric links in real-world data applications
(5, 7].

The reverse transformation exhibited outstanding performance in predicting real data, sup-
ported by multiple studies [2, 4, 14, 16]. In most cases, the reverse power transformation out-
performed the power transformation, except in [10], where the latter achieved better results.
Therefore, while both transformations yield similar outcomes, the reverse transformation gen-
erally offers a slight performance advantage.

Furthermore, the Bayesian approach for parameter fitting and estimation was explored.
However, it is noted that many studies in this field do not fully utilize all the available informa-
tion from this approach, such as the probability distribution of success for each sample, as
illustrated in Fig 4.

7.1 Implication

The significance and novelty of this work lie in the introduction of new asymmetric classifica-
tion functions that outperform traditional link functions such as logit, cauchit, probit, loglog,
and cloglog. These novel functions offer a robust option for classifying binary imbalanced data
and can be integrated into the R workflow. The simulation studies conducted in this paper
demonstrated that these models can surpass logistic regression in various scenarios. Moreover,
the simulations indicated that the parameters of these models can be recovered with low bias
and reduced variance, particularly in larger samples.

The models were implemented using a Bayesian approach, which provides several advan-
tages. Bayesian methods facilitate the incorporation of prior knowledge into the analysis
through the use of prior distributions. They also offer a natural mechanism for quantifying
uncertainty in parameter estimates and predictions. Additionally, Bayesian methods can
exhibit greater robustness than frequentist methods when dealing with small sample sizes,
owing to the ability to utilize informative prior distributions.

7.2 Limitations

Some limitations of this study should be considered. First, the number of replications and iter-
ations in the simulations was limited. Increasing these in future work could improve the reli-
ability of the results. The PDLomax model demonstrated promising performance with the
second database but failed to converge in the first application. This suggests that the choice of
priors impacts model performance. Future studies should investigate the use of less restrictive
priors to improve convergence.

Moreover, the models were tested only on small datasets with a limited number of numeri-
cal features. The performance of these models on larger datasets with more features, including
categorical variables, remains uncertain. Additionally, while the Bayesian approach offers a
rich interpretative framework, it is computationally intensive, particularly for large-scale data-
sets. Future research should aim to optimize computational efficiency, or alternatively, con-
sider a frequentist approach for handling big data.
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7.3 Future work

In future studies, these presented models can be explored for new applications, especially in
larger datasets. Additionally, the asymmetric link functions can be used as activation functions
in neural networks, as [29] demonstrated that asymmetric activation functions can improve
time series prediction with neural networks in their work. Furthermore, a performance com-
parison (also using, for instance, the evaluation metrics obtained from the confusion matrix,
as well as an appropriate validation scheme) of the presented models with other asymmetric
links (e.g., the ones based on other power and reverse power distributions) can be conducted.
Moreover, implementing these models in R packages would enhance their accessibility and
usability within the research community. Additionally, exploring alternative priors for A could
provide further refinement to the models.

8 Conclusion

In this work, new approaches to modeling imbalanced data were presented by introducing
new link functions for binary regression. These novel link functions were created by applying
the transformation proposed by [4] to the double Lomax distribution (DLomax) [17], in order
to generate the power double Lomax (PDLomax) and reverse power double Lomax (RPDLo-
max) distributions. Despite their various applications, the Lomax distribution and its exten-
sions had not been explored in the context of binary regression until now, making this work a
novel and significant contribution to the literature. Additionally, the evidence pointed out the
advantages of using the Bayesian classification approach by associating each event with a pre-
dictive posterior probability. Then, the Lomax Bayesian learning overcame the Logistic classifi-
cation for differentiating binary data in imbalanced tasks.

Two simulation studies were carried out to assess the models’ ability to recover parameters
and their fit quality under misspecification scenarios. The first study indicated that the pro-
posed models and Bayesian estimation procedure are efficient at parameter recovery and
exhibit reduced estimation bias as the sample size increases. In the second study, it was
observed that the proposed models outperformed logistic regression in terms of model fit qual-
ity as evaluated by LOO and WAIC metrics, both in scenarios with moderate and severe
asymmetry.

The proposed models were also applied to two imbalanced real datasets. The first database
pertains to the classification of potential blood donors, and the second database involves the
classification of image segments to identify diseased trees. In both databases, the RPDLomax
model outperformed conventional link functions such as logit, probit, cauchit, loglog, and clo-
glog, showing the lowest fit metrics (WAIC, LOO, DIC, EAIC, and EBIC).

Finally, it is worth mentioning that all codes developed for this work can be found on the
first author’s GitHub: https://github.com/leticiaferreiramurca/Msc.
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