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Introduction
Polyploidy (whole genome duplication) is a common feature of 
many plant genomes. In addition to being a major driver of evolu

tion in plants (Adams and Wendel 2005; Soltis et al. 2009), many 

important crops are polyploids (Udall and Wendel 2006). 

Notable examples include staple and specialty crops such as 

wheat (Matsuoka 2011), potatoes (Rosyara et al. 2016; Endelman 

et al. 2018), sweetpotatoes (Shirasawa et al. 2017; Mollinari et al. 

2020), and blueberries (Ferrão et al. 2021). Because these crops 

are central to global food security and agricultural economies, 

methods for studying and analyzing polyploid genomic data are 

critical for understanding their biology, improving breeding pro

grams, and supporting future crop development.
Such genomic methods must contend with the fact that mei

osis in polyploids is rather complicated (Stift et al. 2008; 
Voorrips and Maliepaard 2012; Soares et al. 2021). One complica
tion, called “preferential pairing,” arises from hom(oe)ologous 
chromosomal pairing patterns. After replication, hom(oe)ologous 
chromosomes can form either bivalents (as in diploids) or multi
valents. Under strict bivalent formation, if homologous chromo
somes always pair and homoeologous chromosomes never pair, 
resulting in disomic inheritance, this is considered allopolyploidy 
(using the genetic, not taxonomic, definition Doyle and 
Sherman-Broyles 2017). Conversely, if all chromosomes are hom
ologous and bivalent pairing is nonpreferential, resulting in poly
somic inheritance, this is considered autopolyploidy. A 
continuum of partial preferential pairing is possible, giving rise 
to intermediate forms called segmental allopolyploidy, among 
other terms (Bourke et al. 2017). Although segregation patterns 

at a locus vary with the degree of preferential pairing, many cur
rent genomic methods assume strictly disomic or polysomic mod
els, with limited capacity to handle partial preferential pairing 
(Bourke et al. 2018; Mollinari et al. 2020).

Another complication of polyploid meiosis, called “double re
duction,” is possible in the presence of multivalent formation. If 
an odd number of crossovers occur between the centromere and 
a locus, followed by the sister chromatid segments migrating to 
the same pole in both the first and second meiotic divisions, 
then the two sister chromatid segments may end up in the same 
gamete (Stift et al. 2010). A visual illustration of this for a simplex 
locus in a tetraploid is provided in Supplementary Fig. S1 in File S1. 
Consequently, for example, a parent with a simplex marker can 
produce duplex gametes. More generally, segregation patterns 
differ for loci where double reduction is possible. A clear treat
ment of this phenomenon is presented in Huang et al. (2019). 
However, most methods assume the absence of double reduction 
(Bourke et al. 2018; Mollinari et al. 2020).

Polyploid data are also more susceptible to genotype uncer
tainty than diploid data. This is because there are more possible 
genotypes to distinguish in polyploids. Whereas diploid genotyp
ing at a locus with alleles A and a must distinguish among AA, 
Aa, and aa, tetraploid genotyping must distinguish among 
AAAA, AAAa, AAaa, Aaaa, and aaaa. Differentiating among 
more categories is inherently more difficult, and this challenge 
is compounded by features of modern sequencing technologies 
(Baird et al. 2008; Elshire et al. 2011), such as allele bias and 
overdispersion (Gerard et al. 2018). Treating genotypes as known 
without error, when in fact they are error-prone estimates, can 
lead to biased inference. Consequently, researchers have been 
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developing uncertainty-aware methods for many analyses 
(Li 2011; Korneliussen et al. 2014; Gerard 2021a, 2021b).

Even in the face of these complications, the ubiquity of poly
ploid crops has driven the use of experimental polyploid popula
tions in agricultural research for tasks such as linkage mapping, 
quantitative trait locus mapping, and genomic selection 
(Shirasawa et al. 2017; Bourke et al. 2018; de C Lara et al. 2019; 
Mollinari and Garcia 2019; da Silva Pereira et al. 2020; Gemenet 
et al. 2020; Mollinari et al. 2020; Amadeu et al. 2021; Ferrão et al. 
2021; Lau et al. 2022). These sophisticated statistical methods 
require high-quality genotype data to achieve optimal perform
ance. Consequently, genotype data are routinely subjected to 
rigorous quality control procedures (e.g. Bourke et al. 2015; 
Cappai et al. 2020; Mollinari et al. 2020; Batista et al. 2021. Given 
that experimental populations possess well-defined family pedi
grees, a frequent check involves using a χ2-test to compare 
observed offspring genotype frequencies with those predicted by 
Mendelian segregation (Mendel 1866), as is done by the mappoly 
software (Mollinari et al. 2020). However, this method has 
notable limitations: it fails to incorporate features specific to 
polyploid meiosis, such as double reduction and partial preferen
tial pairing as described above, and does not account for the 
increased genotype uncertainty associated with modern sequen
cing technologies.

Recent approaches to testing for segregation distortion by 
Bourke et al. (2018) and Gerard et al. (2025) have been specifically 
tailored to polyploid data. However, both methods exhibit certain 
limitations. Bourke et al. (2018), through the checkF1() function 
of their polymapR software, implement a χ2-test for all polysomic 
and disomic segregation patterns in polyploids. Additionally, their 
method permits a specified proportion of individuals to have “in
valid” genotypes (e.g. offspring genotypes greater than or equal 
to 2 are deemed invalid when the parent genotypes are 0 and 1). 
Despite these features, the approach of Bourke et al. (2018) has 
several shortcomings: (i) it does not account for partial preferen
tial pairing or double reduction, (ii) it addresses genotype uncer
tainty in an ad hoc manner, which results in elevated type I 
error rates (Gerard et al. 2025), and (iii) it conducts separate tests 
for invalid genotypes and segregation distortion, an approach dif
ficult to generalize when accounting for genotype uncertainty. See 
Gerard et al. (2025) for a detailed description of the checkF1() 
function.

Gerard et al. (2025) addressed some of these limitations by de
veloping tests that incorporate both double reduction and partial 
preferential pairing, while systematically accounting for genotype 
uncertainty through the use of genotype likelihoods. However, the 
methods proposed by Gerard et al. (2025) are restricted to tetra
ploids and do not accommodate a proportion of invalid genotypes. 
Allowing for a certain degree of “wiggle room” in invalid genotypes 
can be important, as a SNP may be otherwise valid except for a few 
individuals with anomalous results. Discarding an entire SNP 
based solely on the presence of a few outliers could result in un
necessary data loss.

In this article, we extend the work of Gerard et al. (2025) to de
velop tests for segregation distortion applicable to higher (even) 
ploidies, accounting for partial preferential pairing, invalid gen
otypes, and genotype uncertainty. Our approach integrates in
valid genotypes into a single test for segregation distortion 
using a mixture model of genotype frequencies. Genotype 
uncertainty is addressed in a principled manner through the 
implementation of likelihood ratio tests (LRTs), utilizing 

genotype likelihoods. Our methods further account for the ef
fects of double reduction through a novel result for their gamete 
frequencies at simplex loci, and we demonstrate that our meth
ods are robust to moderate levels of double reduction at non
simplex loci.

Materials and methods
Models for genotype frequencies
In this section, we develop a null model for genotype frequencies 
in an F1 population, defining segregation distortion as deviations 
from these expected frequencies. The model includes a parameter 
β to account for double reduction at simplex loci, a parameter γ 
to account for partial preferential pairing (which is only an im
portant modeling consideration at nonsimplex loci), and a 
parameter π that specifies the tolerated proportion of outliers 
(i.e. “invalid genotypes”).

At a biallelic locus with alleles A and a, a K-ploid individual’s 
genotype is their number of a alleles. The genotype frequencies 
q = (q0, q1, . . . , qK) of an F1 population, where qk is the probability 
an offspring has genotype k, are given by the discrete linear con
volution of parental gamete frequencies pj = (p j0, p j1, . . . , p j,K/2), 
where p jk is the probability parent j’s gamete has genotype k:

qk =
􏽘min (k,K/2)

i=max (0,k−K/2)

p1ip2,k−i. (1) 

Different models for meiosis correspond to different models for 
the p jk’s.

For nonsimplex loci, we account for (partial) preferential pair
ing using the pairing configuration model of Gerard et al. (2018), 
which is graphically represented in Fig. 1. During meiosis, a par
ent’s K chromosome copies form K/2 pairs. Let m = (m0, m1, m2) 
be the pairing configuration, where mj is the number of pairs con
taining j copies of a. Given a pairing configuration, the gamete fre
quencies are:

pk =
m1

k − m2

􏼒 􏼓
1

2m1
. (2) 

All possible values for the pk’s from (2) for ploidies 2 through 12 are 
presented in Supplementary Table S1 in File S1. Since the pairing 
configuration is unknown, let γi denote the probability of pairing 
configuration i ∈ {1, . . . , bKℓ}, where bKℓ is the number of possible 
configurations for a parent with ploidy K and genotype ℓ (Gerard 
et al. 2018):

bKℓ =
K
2 −

􏼆
ℓ
2

􏼇
+ 1 if ℓ ≥ K/2,

􏼄
ℓ
2

􏼅
+ 1 if ℓ < K/2.

.

􏼨

(3) 

Marginalizing over pairing configurations, the gamete frequencies 
become:

pk =
􏽘bKℓ

i=1

γi
mi1

k − mi2

􏼒 􏼓
1

2mi1
. (4) 

Model (4) generalizes the gamete frequencies of allopolyploids (di
somic inheritance) and bivalent pairing autopolyploids (polyso
mic inheritance) (Doyle and Egan 2010; Parisod et al. 2010). For 
allopolyploids, γ is a one-hot vector (only one pairing configuration 
is possible). The value of γ that corresponds to bivalent pairing 
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autopolyploids is given by Gerard et al. (2018). For example, 
for autotetraploids where ℓ = 2, the probability of configuration 
m1 = (1, 0, 1) is 1/3 and the probability of configuration 
m2 = (0, 2, 0) is 2/3, resulting in an autotetraploid segregation 
pattern of

p1/3 + p2 × 2/3

= (0, 1, 0)/3 + (1/4, 1/2, 1/4) × 2/3 = (1, 4, 1)/6.
(5) 

More generally, this model accommodates segmental allopoly
ploids with arbitrary levels of partial preferential pairing.

At simplex loci, only one pairing configuration exists (and so γ = 1). 
This simplifies modeling of double reduction at these loci. Theorem 1
states the gamete frequencies at simplex loci under arbitrary levels 
of double reduction (proof in Supplementary Section S1 in File S1). 
Upper bounds under two models for meiosis (Huang et al. 2019; 
Gerard 2022) appear in Supplementary Table S2 in File S1.

Theorem 1 
Let αi be the probability that there are i pairs of alleles in a gamete that 

are identical by double reduction. Then the gamete frequencies at a sim
plex locus are

p0 = 1
2 + β,

p1 = 1
2 − 2β,

p2 =β, and

p3 = · · · = pK/2 = 0.

(6) 

where

β =
1
K

􏽘⌊K/4⌋

i=1

iαi. (7) 

Fig. 1. A graphical illustration of the pairing configuration model described in Models for genotype frequencies section. A K = 4 tetraploid parent with red and 
black alleles, and thus a dosage of ℓ = 2, is shown. Two pairing configurations are possible: m = (1, 0, 1), where the red alleles pair and the black alleles 
pair, and m = (0, 2, 0), where each pairing consists of one red and one black allele. The configuration m = (0, 2, 0) occurs with probability γ1, and m = 
(1, 0, 1) occurs with probability γ2. Configuration m = (1, 0, 1) produces only gametes with a dosage of k = 1, while m = (0, 2, 0) produces gametes with 
dosages k = 0, 1, 2 in a ratio of 1 : 2 : 1. The parent’s gamete frequencies are a mixture of the frequencies from each configuration, weighted by their 
probabilities (lower left). The allopolyploid case occurs if only one pairing configuration is possible, whereas the autopolyploid case occurs if γ1 = 2/3 and 
γ2 = 1/3.
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To incorporate invalid genotypes, we mix the genotype fre
quencies with a discrete uniform distribution:

qk = (1 − π)
􏽘min (k,K/2)

i=max (0,k−K/2)

p1ip2,k−i + π/(K + 1), (8) 

where π represents the proportion of offspring with anomalous 
genotypes. By default, we set π ≤ 0.03, but this is user-adjustable. 
This enables integrated modeling of genotype frequencies and 
outliers, unlike the two-step approach in polymapR (Bourke 
et al. 2018). This makes it possible to model outliers in the pres
ence of genotype uncertainty in Likelihood ratio tests for segregation 
distortion section.

In summary, we model the genotype frequencies as a mixture 
of the discrete uniform distribution and the convolution of gamete 
frequencies (8). The gamete frequencies can be specified by the 
user to correspond to full autopolyploidy, full allopolyploidy, or 
segmental allopolyploidy through different constraints on γ in 
(4). This model offers several advantages over polymapR (Bourke 
et al. 2018), including support for segmental allopolyploidy (which 
polymapR does not accommodate) and the direct incorporation of 
invalid genotypes into the model, rather than addressing them 
through a two-step procedure. Additionally, this approach ex
tends the methods of Gerard et al. (2025) to higher ploidy levels 
while incorporating the ability to handle invalid genotypes. We ac
count for double reduction at simplex markers, where the effects 
of partial preferential pairing are absent. For clarity, in 
Supplementary Section S2 in File S1 we explicitly write out our 
model for the gamete frequencies for even ploidies 2 through 12.

Likelihood ratio tests for segregation distortion
In this section, we construct LRTs under the null hypothesis that 
the genotype frequencies correspond to one of the models of 
Models for genotype frequencies section. We will construct these tests 
either using known genotypes or by accounting for genotype un
certainty through genotype likelihoods.

The likelihood for the model depends on whether genotypes are 
known or unknown. In the known genotype case, we let xk be the 
count of individuals with genotype k ∈ {0, 1, . . . , K}, which we or
ganize into the vector x = (x0, x1, . . . , xK), with total sample size 
n =

􏽐K
k=0 xk. Given genotype frequencies q, x follows a multinomial 

distribution, with the following likelihood

f (x |q) =
n!

􏽑K
k=0 xk!

􏽙K

k=0

qxk
k . (9) 

In the unknown genotype case, we represent genotype uncer
tainty through genotype likelihoods (Li 2011). Let gik denote the 
genotype likelihood for individual i = 1, 2, . . . , n and genotype 
k = 0, 1, . . . , K. Specifically, gik is the probability of the observed 
data (e.g. sequencing or microarray) for individual i, assuming 
their genotype is k. Given these genotype likelihoods, the likeli
hood function is

f (G |q) =
􏽙n

i=1

􏽘K

k=0

gikqk. (10) 

In the known genotype case (9), the maximum likelihood estimate 
of q under the alternative hypothesis is q̂A = x/n. In the unknown 
genotype case (10), q̂A can be calculated via the expectation–maxi
mization (EM) algorithm of Li (2011). By maximizing either (9) or 

(10) over the null parameter space, we obtain q̂0. Using this, we 
calculate the likelihood ratio statistic (2 times the difference of 
the maximized log-likelihoods under the null and alternative), 

and we compare it to an appropriate χ2 distribution to compute 
a P-value.

Our strategy to maximize over the null parameter space depends 
on the null hypothesis under consideration. If the null hypothesis 

corresponds to a true autopolyploid, the only unknown parameter 

is the invalid mixing proportion π in (8), which we maximize over 

using Brent’s method (Brent 2013). If the null hypothesis corre

sponds to a true allopolyploid (2), the two unknowns are the latent 

pairing configuration and the invalid mixing proportion π in (8). We 

iterate over each of the bKℓ possible pairing configurations, optimiz

ing over π via Brent’s method for each configuration, to identify the 

pairing configuration and π that maximize the likelihood. If the 

null hypothesis corresponds to a segmental allopolyploid (4), the un

knowns include the mixing proportions for pairing configurations in 

both parents, γ1 and γ2, as well as the invalid genotype mixing pro

portion π. This optimization is performed using the method of 

Powell (2009), with initial values obtained via the global optimization 

method of Kucherenko and Sytsko (2005). The simplex constraints 

on the mixing proportions for pairing configurations are incorpo

rated using the parameterization of Betancourt (2012).
The number of degrees of freedom for the null χ2 distribution is 

the difference between the number of parameters under the alter
native and under the null. The number of parameters under the 
alternative is just the ploidy of the offspring. Though, we can im
prove the power of the LRT if we subtract off the number of do
sages whose frequencies are estimated to be 0 both under the 
null and under the alternative (Gerard et al. 2025).

Calculating the number of parameters under the null is tricky 
for two reasons: (i) some null parameters may lie on or near the 
boundary of the null parameter space, requiring extra consider
ation (Self and Liang 1987; Mitchell et al. 2019; Leung and 
Sturma 2024) and (ii) the null parameter space is weakly identi
fied. To address the boundary problem (i), we adapt the data- 
dependent degrees of freedom strategy of Susko (2013). 
Specifically, the number of parameters under the null is estimated 
to be at most the number of parameters in θ that lie in the interior 
of the null parameter space.

For (ii), to define weak identification, let θ be a vector containing 
the null parameters (the γ’s, β’s, and π), then the Jacobian of the func
tion θ→ q is approximately low rank for some values of θ, which re
sults in issues for the asymptotic performance of the LRT (Kleibergen 
2005; Han and McCloskey 2019). To address this weak identifiability 
problem, we calculate the Jacobian matrix for the internal para
meters at the MLE of the function θ→ q. The numeric rank of this 
Jacobian matrix is used as the number of free parameters under 
the null. By default, the numeric rank we used is the number of sin
gular values that are at least one-thousandth as large as the largest 
singular value. This heuristic is based on the literature that shows 
that the number of parameters in an exactly nonidentified param
eter space is the exact rank of the Jacobian (Catchpole and Morgan 
1997; Viallefont et al. 1998; Schmittmann et al. 2010). Thus, we use 
the approximate rank of the Jacobian to approximate the number 
of parameters in an weakly identified parameter space. This heuris
tic works well in practice (Results section), though we have not seen 
its use in prior literature.

The above scenarios assume the parental genotypes are 
known. In the case that parental genotypes are not known, we first 
maximize the likelihood jointly over the parental genotypes and 
the unknown null parameters (the γ’s, β’s, and π). We then proceed 
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with the LRT using the MLEs of the parent genotypes as if they 
were the true parent genotypes.

Implementation features
All methods described in this manuscript are implemented in the 
user-friendly segtest R package on the Comprehensive R Archive 
Network (https://doi.org/10.32614/CRAN.package.segtest). The 
package includes additional features that may be useful for ap
plied researchers: 

1) Bayesian Information Criterion (BIC): segtest computes the 
BIC (Schwarz 1978) of the fitted null model using the esti
mated number of parameters under the null. Researchers 
can visualize BIC distributions across loci to assess model 
suitability, particularly when segregation patterns are un
known (e.g. to determine whether partial preferential pair
ing is present). The model with lower BIC values is 
generally preferred.

2) Outlier Detection: For each individual, segtest calculates 
the posterior probability of having an anomalous genotype 
at a given locus, allowing researchers to treat such geno
types as missing in downstream analyses. This follows a 
standard mixture model approach. For a K-ploid individual, 
let q0, . . . , qK be genotype likelihoods under the assumption 
of no outliers, computed via (1). The likelihoods for an indi
vidual as a nonoutlier (f1) and as an outlier (f0) are defined as 

f1 = qk and f0 = 1
K+1 when the genotype k ∈ {0, . . . , K} is known. 

In the unknown genotype case, given individual genotype 

likelihoods g0, . . . , gK, these become f1 =
􏽐K

k=0 gkqk and 

f0 = 1
K+1

􏽐K
k=0 gk. For a given outlier proportion π, the posterior 

probability that an individual is an outlier is then

πf0

πf0 + (1 − π)f1
. (11) 

3) Integration with updog: segtest includes helper functions 
to format output from updog (Gerard et al. 2018; Gerard 
and Ferrão 2019) for direct input.

4) Parallelization Support: The package supports parallel exe
cution via the future package (Bengtsson 2021), with add
itional compatibility for high-performance computing 
through future.batchtools.

Copy editing
GPT-4o (https://chatgpt.com/) was used in this manuscript for 
light copy editing.

Results
Null simulations
We assessed the type I error control of our new LRT and 
the polymapR test through simulations under the null hypoth
esis of no segregation distortion. The following parameters 
were varied: 

• Ploidy: K ∈ {4, 6, 8}
• Parent genotypes: ℓ1 ∈ {0, . . . , K} and ℓ2 ∈ {ℓ1, . . . , K}
• Sample size: n ∈ {20, 200}
• Read depth: 10 (unknown genotype case) or infinity (known 

genotype case)
• Outlier proportion: π ∈ {0, 0.015, 0.03}
• Mixing proportions for the pairing configuration (for non- 

nulliplex and nosimplex loci):

• If the number of mixture components is 2: 
(γ1, γ2) ∈ {(1, 0), (0.5, 0.5), (0, 1)}

• For K = 8 and ℓ = 4, where three mixture components exist:

(γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)/2,

(1, 0, 1)/2, (0, 1, 1)/2, (1, 1, 1)/3} 

• Double reduction adjustment for simplex loci: β ∈ {0, a/2, a}, 
where a is the maximum value under the complete equation
al segregation (CES) model in Supplementary Table S2 in 
File S1.

This yielded a total of 7,920 distinct simulation scenarios to 
evaluate the null performance of our methods. For each scenario, 
genotype frequencies q0 were determined. In the known geno
type case, genotype counts were drawn from a multinomial dis
tribution (9). In the unknown genotype case, these simulated 
counts were further processed to generate individual sequencing 
read counts according to the model of Gerard et al. (2018), assum
ing no allele bias, a sequencing error rate of 0.01, and an overdis
persion parameter of 0.01. Genotype likelihoods were then 
obtained using the method of Gerard et al. (2018). Each replica
tion involved fitting either our LRT or the polymapR test 
(Bourke et al. 2018). A total of 200 replications were performed 
per simulation scenario.

Figure 2 presents histograms of the type I error rates across the 
7,920 simulation scenarios at a nominal significance level of 0.05. 
Since the expected type I error rate should not exceed 0.05, any ob
served values above this threshold should only be attributable to 
the finite number of simulations. Specifically, the distribution of 
type I errors should be stochastically bounded by X/200, where X fol
lows a binomial distribution with size 200 and success probability 
0.05. For reference, Fig. 2 includes the 99th percentile of this distribu
tion as a blue dotted line. The results indicate that segtest adequate
ly controls type I error for large sample sizes (n = 200) and for nearly 
all scenarios with small sample sizes (n = 20). In some small-sample 
scenarios, slight anticonservatism is observed, which is expected gi
ven that the LRT only asymptotically controls type I error.

In contrast, polymapR fails to control type I error in many scen
arios, particularly for large sample sizes when genotypes are un
known. To illustrate this issue, Fig. 3 presents results from select 
simulation scenarios. These simulations were conducted with a 
sample size of n = 200 octoploid (K = 8) offspring, where one parent 
had a genotype of 0 and the other had a genotype of 6. The figure 
contains quantile–quantile (Q–Q) plots of P-values against the uni
form distribution, stratified by method (segtest or polymapR), 
read depth (10 or infinity), and pairing configuration mixing propor
tions for the second parent ((0.5, 0.5) or (1, 0)). Under the null hy
pothesis, the Q–Q plots should lie entirely at or above the y = x 
line (black), indicating appropriate type I error control.

Segtest satisfies this criterion in all scenarios, demonstrating 
proper type I error control at any significance level. In contrast, 
polymapR fails to control type I error in three cases. The method 
does not account for nonabsolute preferential pairing, meaning 
that γ = (0.5, 0.5) represents an alternative scenario under its 
test, explaining its failure to control type I error at any read depth 
in this case. Additionally, polymapR fails to control type I error at 
low read depths even when absolute preferential pairing (γ = (1, 0)) 
is assumed, a scenario that should fall within its null model. This 
failure arises because polymapR first estimates genotype counts 
before applying its known-genotype test, and this estimation pro
cess is biased (Gerard et al. 2025).
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Robustness to double reduction
Since our method does not explicitly account for double reduction 
at nonsimplex loci, we conducted simulations under the autopo
lyploid model of Huang et al. (2019), which allows for arbitrary le
vels of double reduction, though no preferential pairing. We 
varied the following parameters: 

• Ploidy: K ∈ {4, 6, 8}
• Parent genotypes: ℓ1 ∈ {0, . . . , K} and ℓ2 ∈ {2, . . . , K − 2}
• Sample size: n ∈ {20, 200}
• Double reduction rate: α ∈ {0, αm/2, αm}, where αm is the max

imum double reduction rate(s) under the CES model (Huang 
et al. 2019)

Fig. 2. Histograms of type I error rates (on the square root scale) from the simulations in Null simulations section. Tests were conducted at a nominal significance 
level of 0.05. Results are stratified by sample size (n = 20 or 200) and read depth (10 or infinity) in the rows, and by method (segtest or polymapR) in the columns. 
Since the null hypothesis is true, the type I error rate should not exceed 0.05 (red dashed line), though small deviations are expected due to finite simulations. The 
blue dotted line marks the 99th percentile of expected variation under proper type I error control, based on binomial quantiles. Segtest controls type I error in 
all scenarios for large n = 200 and most for small n = 20, as expected given its asymptotic guarantees. In contrast, polymapR fails to control type I error at low read 
depths and for large sample sizes. It appears to control type I error at high read depths with small n, likely due to low power for small n.
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• Read depth: 10 (unknown genotype case) or infinity (known 
genotype case)

The outlier proportion was fixed at 0 (no outliers), resulting in 852 
distinct simulation scenarios. Data were simulated as described in 
Null simulations section. For each replication, we applied the LRT 
assuming no outliers, the LRT allowing for outliers, and the 
polymapR test (Bourke et al. 2018), conducting 200 replications 
per scenario.

Figure 4 presents histograms of type I error rates at a nominal 
level of 0.05 across the simulated scenarios. When double reduc
tion was absent, segtest, regardless of whether it accounted for 
outliers, maintained appropriate type I error control. In contrast, 
polymapR failed to control type I error at low read depths, consist
ent with the findings in Null simulations section.

At moderate levels of double reduction, only segtest with out
lier accommodation remained relatively robust. There were eight 
simulation scenarios where segtest exhibited poor type I error 
control (above the 99th percentile of the Binomial(200, 0.05) distri
bution). These cases exclusively involved nulliplex-by-duplex 
parental genotypes at ploidies 6 and 8, with large sample sizes 
(n = 200) and known genotypes (Supplementary Table S3 in File 
S1). Notably, genotype uncertainty appeared to render the test 
conservative enough (see Null simulations section) to maintain ad
equate type I error control in the presence of moderate double re
duction. Genotype uncertainty is the most common scenario in 
applied work (Gerard et al. 2018; Gerard and Ferrão 2019).

At extreme levels of double reduction, only segtest with out
lier handling performed reasonably well, though 30 of the 852 
scenarios still exhibited poor type I error control. In such cases, 
type I error inflation was more pronounced. Though, extremely 

high double reduction rates are believed to be rare (Stift et al. 
2008; Bomblies et al. 2016). And in practice, such deviations would 
likely be identified by researchers in applied settings.

Power analysis
In this section, we evaluate the power of our methods under seg
regation distortion. We simulated genotype frequencies for ploi
dies K ∈ {4, 6, 8} under two alternative scenarios: 

• Easy scenario: The genotype frequency vector q was drawn 
uniformly from the K-dimensional unit simplex.

• Hard scenario: Gamete frequency vectors p1 and p2 were first 
drawn independently and uniformly from the K/2- 
dimensional unit simplex and then convolved (1) to obtain q.

The hard scenario generates alternative cases that more closely 
resemble the null, as the genotype frequencies are obtained by 
convolving randomly generated gamete frequencies, mirroring 
the null model structure. We further varied sample size 
(n ∈ {20, 200}) and read depth (10 or infinite). For each of 1,000 re
plications, we simulated q, generated data as described in Null si
mulations section, and applied both the LRT from segtest and the 
polymapR test.

Figure 5 presents the power of segtest and polymapR at a 
nominal significance level of 0.05. Because segtest properly con
trols type I error while polymapR does not, some reduction in 
power for segtest is expected. However, we find that segtest 
typically exhibits only a modest decrease in power, particularly 
for large samples (n = 200), where both methods perform well. In 
some hard scenarios with small n, segtest shows a more pro
nounced power reduction. Nonetheless, hypothesis testing re
quires valid type I error control, which segtest ensures, 

Fig. 3. Example results from the null simulations in Null simulations section. Q–Q plots compare P-values from segtest (blue) and polymapR (orange) 
against the uniform distribution. Plots are stratified by read depth (columns) and pairing configuration (γ2, rows). This scenario assumes a ploidy of K = 8, 
parent genotypes ℓ1 = 0 and ℓ2 = 6, and a sample size of n = 200. Under the null, tests that properly control type I error should lie at or above the y = x line 
(black). PolymapR satisfies this condition only when γ2 = (1, 0) (bottom row) and genotypes are fully known (infinite read depth). However, it fails to 
control type I error when preferential pairing is not absolute (top row) or when genotypes are uncertain (left column), even under its assumed null 
scenario. This is due to its ad hoc genotype uncertainty adjustment. In contrast, segtest consistently controls type I error across all scenarios.

F1 Segregation Distortion Tests | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/15/11/jkaf212/8254622 by Sistem
a Integrado de Bibliotecas-U

SP user on 24 N
ovem

ber 2025

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data


whereas polymapR does not. For sufficiently large sample sizes, 
segtest remains consistent and maintains power against all 
tested scenarios.

A hexaploid F1 population
To validate our methods, we analyzed the hexaploid sweetpotato 
(Ipomoea batatas, 2n = 6x = 90) mapping population from Mollinari 
et al. (2020), which consists of next-generation sequencing data 
from 315 full-sib individuals derived from a cross between the 
Beauregard and Tanzania varieties. These data include all SNPs 
from chromosome 8 (52,125 SNPs). After filtering out multiallelic 
loci (51,988 SNPs remaining), we performed genotyping using 
the method of Gerard et al. (2018) and Gerard and Ferrão (2019)
with the “f1” model.

We tested for segregation distortion in these data using three 
different procedures. The first method emulated the default be
havior of mappoly (Mollinari et al. 2020), following this procedure: 

• Filtered out SNPs estimated to be nulliplex in both parents 
(46,434 SNPs remaining).

• For each SNP, filtered out individuals with a maximum geno
type posterior probability below 0.95 (the default behavior of 
mappoly).

• Filtered out SNPs with an average read depth less than 20 
(16,976 SNPs remaining), as done in Mollinari et al. (2020).

• Filtered out SNPs with at least 25% missing individuals (3,448 
SNPs remaining), as done in Mollinari et al. (2020).

For the remaining SNPs, we used the posterior mode genotype as 
the “known” genotype and ran chi-squared tests for segregation 
distortion, assuming polysomic inheritance with bivalent pairing.

The second method used the checkF1() function from 
polymapR (Bourke et al. 2018). Because this function accounts 
for genotype uncertainty, we only applied two filters: filtering 
out SNPs estimated to be nulliplex in both parents (46,434 SNPs re
maining) and SNPs with an average read depth below 20 (16,105 

Fig. 4. Robustness to double reduction results from Robustness to double reduction section. Histograms of type I error rates (square root scale) at a nominal 
significance level of 0.05 (red dashed line). The blue dotted line indicates the 99th percentile of expected variation under proper type I error control, based 
on binomial quantiles. Results are stratified by the level of double reduction (none, medium, or high) along the columns and by method (polymapR, 
segtest assuming no outliers, and segtest allowing for outliers) along the rows. Ploidy is color-coded. Among the tested methods, only segtest with 
outlier accommodation remains relatively robust to the effects of double reduction, particularly at moderate levels.
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SNPs remaining). We then applied the polymapR test using geno
type posterior probabilities.

The third method applied our new approach based on genotype 
likelihoods, implemented in the segtest software. We applied 
the same prefilters as in polymapR, analyzing 16,105 SNPs. We 
ran our new likelihood ratio test (Likelihood ratio tests for segregation 
distortion section) using three null models: our general model 
Models for genotype frequencies section), a polysomic inheritance 
model that allows for double reduction (Huang et al. 2019), and 
a polysomic inheritance model without double reduction 
(Serang et al. 2012). For each locus, we computed the BIC of the 
null model (Implementation features section). We compared BICs 
pairwise at loci where the more complex null model had a 
P-value greater than 0.1. The polysomic model had a lower BIC 
than the general model 59.74% of the time (95% CI: 58.70% to 
60.77%), the double reduction model had a lower BIC than the gen
eral model 55.85% of the time (95% CI: 54.80% to 56.90%), and the 
double reduction model had a lower BIC than the simpler polyso
mic model 51.66% of the time (95% CI: 50.57% to 52.75%). These re
sults suggest that the polysomic inheritance model allowing for 
double reduction best fits these data, and thus tests from 
segtest based on this model are used in the comparisons that 
follow.

Histograms of the P-values from the three methods are 
shown in Fig. 6. The P-value density for polymapR exhibits a 
mode at 1, which is generally not expected for unbiased P-values 
(Storey and Tibshirani 2003). In contrast, both mappoly and 
segtest display the more typical monotonically decreasing 
P-value densities. When controlling the false discovery rate at le
vel 0.05, mappoly identifies far fewer SNPs (2,859 SNPs) not in seg
regation distortion than polymapR (13,796 SNPs) or segtest 
(10,058 SNPs). This suggests that mappoly’s filtering procedure, 
which does not account for genotype uncertainty, may be overly 

conservative, potentially discarding informative SNPs and leading 
to unnecessary data loss. Among SNPs in common after prefilter
ing, the P-values from segtest and mappoly are correlated at 
0.6996, those from segtest and polymapR at 0.4311, and those 
from polymapR and mappoly at 0.8169.

It is informative to examine cases where the methods disagree. 
Supplementary Fig. S2 in File S1 shows genotype plots (Gerard et al. 
2018) for four SNPs where mappoly produces P-values less than 
0.05 while segtest produces P-values greater than 0.1, and four 
SNPs with the opposite pattern. The P-values for these SNPs are 
listed in Supplementary Table S4 in File S1. Because mappoly filters 
out individuals with low genotype posterior probabilities before 
testing for segregation distortion, this alters the observed genotype 
frequencies and may lead to anticonservative results. For example, 
if we include those individuals in the mappoly test, the P-value be
comes nonsignificant (Supplementary Table S4 in File S1). 
Conversely, segtest often yields small P-values for SNPs with 
many outlier genotypes, which mappoly has prefiltered as “in
valid.” These outlier individuals typically have low (or no) reference 
reads and may reflect null alleles (Gautier et al. 2013). When we re
move individuals with fewer than 30 reference reads, segtest pro
duces larger P-values (Supplementary Table S4 in File S1). Whether 
such SNPs should be flagged is debatable, but in cases like SNP 
S8_2212186, where 21 of 315 individuals (≈6.7%) have “invalid” gen
otypes, flagging seems appropriate. Alternatively, if a researcher 
does not wish to flag such SNPs, instead of mixing the genotype fre
quencies with a discrete uniform in (8), we can mix them with an 
outlier distribution that one would expect in the presence of null 
alleles (a pointmass at a genotype of 0). When doing so, we again 
obtain much larger P-values (Supplementary Table S4 in File S1).

We conducted a similar comparison between polymapR and 
segtest. Supplementary Fig. S3 in File S1 displays four SNPs 
where polymapR indicates segregation distortion (P-value < 0.05) 

Fig. 5. Results of the alternative simulations from Power analysis section. The figure plots the power (y-axis) of segtest and polymapR (color) under 
scenarios where segregation distortion is present. Tests were performed at a nominal significance level of 0.05 across varying sample sizes (n ∈ {20, 200}) 
(row facets), ploidies (K ∈ {4, 6, 8}) (column facets), read depths (10 or infinite) (line type), and alternative scenarios (easy or hard) (x-axis). segtest 
exhibits strong power for large n and maintains reasonable power in most small n scenarios. While segtest has slightly lower power than polymapR in 
most settings, this reduction is expected due to its ability to control type I error, which polymapR does not.
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but segtest does not (P-value > 0.1 ), and four SNPs where the re
verse is true. The P-values from both methods are reported in 
Supplementary Table S5 in File S1. Like mappoly, polymapR re
moves “invalid” genotypes prior to testing. Thus, we again find 
that outliers explain the SNPs flagged by segtest but not by 
polymapR. When individuals with low reference reads are excluded, 
segtest returns much larger P-values (Supplementary Table S5 in 
File S1). Segtest also produces much larger P-values when the 
outlier distribution is a pointmass at a genotype of 0, thereby ac
counting for null alleles (Supplementary Table S5 in File S1). To 
understand cases where polymapR produces low P-values but 
segtest does not, we refer to Supplementary Table S6 in File S1, 
which shows the null and alternative genotype frequencies com
pared by each method. Both use the same alternative model, so 
the alternative frequencies are similar, differing only slightly due 
to polymapR’s ad hoc estimation versus segtest’s maximum like
lihood approach (Li 2011). The key difference lies in the null fre
quencies. Segtest can model double reduction, allowing its null 
frequencies to better match the alternative frequencies than those 
used by polymapR. In these cases, the ability to account for double 
reduction appears to explain why segtest does not detect segrega
tion distortion, while polymapR does.

Discussion
In this study, we developed statistical tests for segregation distor
tion in F1 populations of arbitrary (even) ploidy. Our methods ac
count for varying levels of partial preferential pairing, double 
reduction at simplex loci, and a proportion of outliers. Effective 
modeling of outliers enhances robustness to moderate levels of 
double reduction at nonsimplex loci. Additionally, our approach 
accommodates genotype uncertainty through genotype likeli
hoods. While our methods have only asymptotic guarantees for 
controlling type I error, we improve finite-sample performance 
by adaptively estimating the degrees of freedom, by counting 
boundary parameters and approximating the rank of a particular 

Jacobian. As a result, our LRT controls type I error reasonably well 
for sample sizes as small as 20 and performs robustly for samples 
of size 200.

For tetraploids, our methods fully and jointly account for double 
reduction and (partial) preferential pairing, as they generalize the 
approach of Gerard et al. (2025). That is, due to the unidentifiability 
of the double reduction rate and the preferential pairing parameters 
for tetraploids, as described in Gerard et al. (2025), one can without 
loss of generality set the double reduction rate to 0 (at duplex loci), 
which is essentially what our method does for tetraploids in this 
manuscript. However, for ploidies greater than four, our model 
does not explicitly account for double reduction at nonsimplex 
loci. For example, in hexaploids (K = 6), double reduction could the
oretically produce gamete genotypes of three at a duplex locus, but 
our model does not allow for this possibility (Supplementary Section 
S2 in File S1). Nonetheless, by incorporating a small proportion of 
outliers, our approach demonstrates robustness to moderate levels 
of double reduction (Robustness to double reduction section). 
Increasing the maximum outlier proportion may further enhance 
type I error control in cases of extreme double reduction, though 
this would likely come at the cost of reduced power.

Our results here focus on scenarios that permit arbitrary levels 
of preferential pairing while explicitly modeling double reduction 
at simplex loci and allowing for a small fraction of outliers. 
However, our segtest package offers greater flexibility, enabling 
segregation distortion testing under additional assumptions: 

1) True autopolyploidy, assuming either complete bivalent 
pairing (no double reduction) or arbitrary levels of double re
duction, modeled as in Huang et al. (2019).

2) True allopolyploidy with complete preferential pairing.
3) An unknown ploidy structure, where the data could corres

pond to either a true allopolyploid or a bivalent-pairing au
topolyploid. This is the assumption used by polymapR.

Additionally, segtest allows for testing without permitting outliers, 
modeling segregation distortion when any individual exhibits an 

Fig. 6. Sweetpotato P-values. Histograms of the P-values from the segregation distortion tests performed by mappoly, polymapR, and segtest on the 
sweetpotato data described in A hexaploid F1 population section. Note that the y-axes differ between facets.
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“impossible” genotype. Each of these scenarios represents a special 
case of the general model studied here. If researchers have prior 
knowledge about the expected segregation patterns in their organ
ism, they should specify the most appropriate null model.

In this manuscript, we focused on applying these tests as a 
quality control procedure for methods that use experimental popu
lations, such as linkage or quantitative trait locus mapping. 
However, our methods may have broader applications. Because 
we implemented multiple models of meiosis and can calculate 
the BIC (Schwarz 1978) for each (Implementation features section), 
our approach could also be used to estimate the meiotic behavior 
in polyploids. We demonstrated this in A hexaploid F1 population sec
tion, where we found that a polysomic inheritance model with dou
ble reduction best fit the sweetpotato data. This result aligns with 
the findings of Mollinari et al. (2020), who reported no evidence of 
preferential pairing on Chromosome 8 (the chromosome we ana
lyzed here) yet found some evidence of multivalent pairing, a pre
requisite for double reduction (Stift et al. 2010). Further study is 
needed to assess whether our approach is broadly applicable for dis
tinguishing meiotic models (allo-, auto-, or segmental polyploid).

We sought to improve the finite sample performance of the like
lihood ratio test by adaptively estimating its degrees of freedom. An 
alternative approach would have been to use the bootstrap (Efron 
1979), which is known to provide highly accurate finite-sample re
sults across many model classes (Efron 1987). However, we did 
not pursue this approach primarily due to computational con
straints. Our tests are designed for genomic applications, where 
they may be applied thousands or even millions of times within a 
single study. Any method requiring more than approximately one 
second per test imposes an undue burden on applied researchers. 
Nonetheless, as computational power continues to increase, the 
bootstrap remains a promising avenue for future exploration.

Mappoly assumes genotypes are known when performing gen
etic mapping, and so it is natural that it filters out individuals with 
high genotype uncertainty. However, our results in A hexaploid F1 
population section suggest that filtering individuals prior to testing 
for segregation distortion can lead to biased tests and unneces
sary data loss. We recommend reversing the order of operations: 
rather than filtering out uncertain genotypes before testing, re
searchers should first apply a test that accounts for genotype un
certainty (e.g. our approach), and then filter out individuals with 
high uncertainty. Understanding how different data quality con
trol steps influence downstream applications such as genetic 
mapping is an important question for future study.

Data availability
All methods described in this article are implemented in the 
segtest R package on the Comprehensive R Archive Network under 
a GNU General Public License v3.0 or later: https://doi.org/10.32614/ 
CRAN.package.segtest. All analysis scripts to reproduce the results 
of this article are available on Zenodo under a GNU General Public 
License v3.0 or later: https://doi.org/10.5281/zenodo.15784734 and 
https://doi.org/10.5281/zenodo.15784738. The data used in this 
manuscript is from Mollinari et al. (2020) and is available on 
Figshare under a Creative Commons BY 4.0 license (Mollinari et al. 
2019): https://doi.org/10.25387/g3.10255844.

Supplemental material available at G3 online.
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