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F1 populations are widely used in genetic mapping studies in agriculture, where known pedigrees enable rigorous quality control mea-
sures such as segregation distortion testing. However, conventional tests for segregation distortion are inadequate for polyploids, as
they fail to account for double reduction, preferential pairing, and genotype uncertainty, leading to inflated type | error rates. Prior
work developed a statistical framework to address these issues in tetraploids. Here, we extend these methods to higher even ploidy le-
vels and introduce additional strategies to mitigate the influence of outliers. Through extensive simulations, we demonstrate that our
tests maintain appropriate type | error control while retaining power to detect true segregation distortion. We further validate our ap-
proach using empirical data from a hexaploid mapping population. Our methods are implemented in the segtest R package, available
on the Comprehensive R Archive Network (https:/doi.org/10.32614/CRAN.package.segtest).
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Introduction

Polyploidy (whole genome duplication) is a common feature of
many plant genomes. In addition to being a major driver of evolu-
tion in plants (Adams and Wendel 2005; Soltis et al. 2009), many
important crops are polyploids (Udall and Wendel 2006).
Notable examples include staple and specialty crops such as
wheat (Matsuoka 2011), potatoes (Rosyara et al. 2016; Endelman
et al. 2018), sweetpotatoes (Shirasawa et al. 2017; Mollinari et al.
2020), and blueberries (Ferrao et al. 2021). Because these crops
are central to global food security and agricultural economies,
methods for studying and analyzing polyploid genomic data are
critical for understanding their biology, improving breeding pro-
grams, and supporting future crop development.

Such genomic methods must contend with the fact that mei-
osis in polyploids is rather complicated (Stift et al. 2008;
Voorrips and Maliepaard 2012; Soares et al. 2021). One complica-
tion, called “preferential pairing,” arises from hom(oe)ologous
chromosomal pairing patterns. After replication, hom(oe)ologous
chromosomes can form either bivalents (as in diploids) or multi-
valents. Under strict bivalent formation, if homologous chromo-
somes always pair and homoeologous chromosomes never pair,
resulting in disomic inheritance, this is considered allopolyploidy
(using the genetic, not taxonomic, definition Doyle and
Sherman-Broyles 2017). Conversely, if all chromosomes are hom-
ologous and bivalent pairing is nonpreferential, resulting in poly-
somic inheritance, this is considered autopolyploidy. A
continuum of partial preferential pairing is possible, giving rise
to intermediate forms called segmental allopolyploidy, among
other terms (Bourke et al. 2017). Although segregation patterns

at a locus vary with the degree of preferential pairing, many cur-
rent genomic methods assume strictly disomic or polysomic mod-
els, with limited capacity to handle partial preferential pairing
(Bourke et al. 2018; Mollinari et al. 2020).

Another complication of polyploid meiosis, called “double re-
duction,” is possible in the presence of multivalent formation. If
an odd number of crossovers occur between the centromere and
a locus, followed by the sister chromatid segments migrating to
the same pole in both the first and second meiotic divisions,
then the two sister chromatid segments may end up in the same
gamete (Stift et al. 2010). A visual illustration of this for a simplex
locusin a tetraploid is provided in Supplementary Fig. S1in File S1.
Consequently, for example, a parent with a simplex marker can
produce duplex gametes. More generally, segregation patterns
differ for loci where double reduction is possible. A clear treat-
ment of this phenomenon is presented in Huang et al. (2019).
However, most methods assume the absence of double reduction
(Bourke et al. 2018; Mollinari et al. 2020).

Polyploid data are also more susceptible to genotype uncer-
tainty than diploid data. This is because there are more possible
genotypes to distinguish in polyploids. Whereas diploid genotyp-
ing at a locus with alleles A and a must distinguish among AA,
Aa, and aa, tetraploid genotyping must distinguish among
AAAA, AAAa, AAaa, Aaaa, and aaaa. Differentiating among
more categories is inherently more difficult, and this challenge
is compounded by features of modern sequencing technologies
(Baird et al. 2008; Elshire et al. 2011), such as allele bias and
overdispersion (Gerard et al. 2018). Treating genotypes as known
without error, when in fact they are error-prone estimates, can
lead to biased inference. Consequently, researchers have been
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developing uncertainty-aware methods for many analyses
(L1 2011; Korneliussen et al. 2014; Gerard 2021a, 2021b).

Even in the face of these complications, the ubiquity of poly-
ploid crops has driven the use of experimental polyploid popula-
tions in agricultural research for tasks such as linkage mapping,
quantitative trait locus mapping, and genomic selection
(Shirasawa et al. 2017; Bourke et al. 2018; de C Lara et al. 2019;
Mollinari and Garcia 2019; da Silva Pereira et al. 2020; Gemenet
et al. 2020; Mollinari et al. 2020; Amadeu et al. 2021; Ferrdo et al.
2021; Lau et al. 2022). These sophisticated statistical methods
require high-quality genotype data to achieve optimal perform-
ance. Consequently, genotype data are routinely subjected to
rigorous quality control procedures (e.g. Bourke et al. 2015;
Cappal et al. 2020; Mollinari et al. 2020; Batista et al. 2021. Given
that experimental populations possess well-defined family pedi-
grees, a frequent check involves using a y’-test to compare
observed offspring genotype frequencies with those predicted by
Mendelian segregation (Mendel 1866), as is done by the mappoly
software (Mollinari et al. 2020). However, this method has
notable limitations: it fails to incorporate features specific to
polyploid meiosis, such as double reduction and partial preferen-
tial pairing as described above, and does not account for the
increased genotype uncertainty associated with modern sequen-
cing technologies.

Recent approaches to testing for segregation distortion by
Bourke et al. (2018) and Gerard et al. (2025) have been specifically
tailored to polyploid data. However, both methods exhibit certain
limitations. Bourke et al. (2018), through the checkF1 () function
of their polymapR software, implement a y?-test for all polysomic
and disomic segregation patterns in polyploids. Additionally, their
method permits a specified proportion of individuals to have “in-
valid” genotypes (e.g. offspring genotypes greater than or equal
to 2 are deemed invalid when the parent genotypes are 0 and 1).
Despite these features, the approach of Bourke et al. (2018) has
several shortcomings: (i) it does not account for partial preferen-
tial pairing or double reduction, (ii) it addresses genotype uncer-
tainty in an ad hoc manner, which results in elevated type I
error rates (Gerard et al. 2025), and (iii) it conducts separate tests
for invalid genotypes and segregation distortion, an approach dif-
ficult to generalize when accounting for genotype uncertainty. See
Gerard et al. (2025) for a detailed description of the checkF1 ()
function.

Gerard et al. (2025) addressed some of these limitations by de-
veloping tests that incorporate both double reduction and partial
preferential pairing, while systematically accounting for genotype
uncertainty through the use of genotype likelihoods. However, the
methods proposed by Gerard et al. (2025) are restricted to tetra-
ploids and do not accommodate a proportion of invalid genotypes.
Allowing for a certain degree of “wiggle room” in invalid genotypes
can beimportant, as a SNP may be otherwise valid except for a few
individuals with anomalous results. Discarding an entire SNP
based solely on the presence of a few outliers could result in un-
necessary data loss.

In this article, we extend the work of Gerard et al. (2025) to de-
velop tests for segregation distortion applicable to higher (even)
ploidies, accounting for partial preferential pairing, invalid gen-
otypes, and genotype uncertainty. Our approach integrates in-
valid genotypes into a single test for segregation distortion
using a mixture model of genotype frequencies. Genotype
uncertainty is addressed in a principled manner through the
implementation of likelihood ratio tests (LRTs), utilizing

genotype likelihoods. Our methods further account for the ef-
fects of double reduction through a novel result for their gamete
frequencies at simplex loci, and we demonstrate that our meth-
ods are robust to moderate levels of double reduction at non-
simplex loci.

Materials and methods

Models for genotype frequencies

In this section, we develop a null model for genotype frequencies
in an F1 population, defining segregation distortion as deviations
from these expected frequencies. The model includes a parameter
B to account for double reduction at simplex loci, a parameter y
to account for partial preferential pairing (which is only an im-
portant modeling consideration at nonsimplex loci), and a
parameter z that specifies the tolerated proportion of outliers
(i.e. “invalid genotypes”).

At a biallelic locus with alleles A and a, a K-ploid individual’s
genotype is their number of a alleles. The genotype frequencies
q=(q0, 91, ---, qx) of an F1 population, where gy is the probability
an offspring has genotype k, are given by the discrete linear con-
volution of parental gamete frequencies p; = (pjo, Pju, ---, Pjks2),
where pj, is the probability parent j's gamete has genotype k:

min (k,K/2)

Q= Z

i=max (0,k—K/2)

D1iP2 ki (1)

Different models for meiosis correspond to different models for
the py’s.

For nonsimplex loci, we account for (partial) preferential pair-
ing using the pairing configuration model of Gerard et al. (2018),
which is graphically represented in Fig. 1. During meiosis, a par-
ent’s K chromosome copies form K/2 pairs. Let m = (mog, m1, my)
be the pairing configuration, where m; is the number of pairs con-
tainingj copies of a. Given a pairing configuration, the gamete fre-

quencies are:
mq 1
pk:(k—mz)ﬁ' @

All possible values for the py,’s from (2) for ploidies 2 through 12 are
presented in Supplementary Table S1 in File S1. Since the pairing
configuration is unknown, let y; denote the probability of pairing
configuration i € {1, ..., bx.}, where bg, is the number of possible
configurations for a parent with ploidy K and genotype ¢ (Gerard
et al. 2018):

E_T&)+1 ife>K/2,
K[Ziz |—2-| 1 / (3)

|¢]+1  ife<kK/2

Marginalizing over pairing configurations, the gamete frequencies
become:

be
m; 1
=2on(, " ) @

=1

Model (4) generalizes the gamete frequencies of allopolyploids (di-
somic inheritance) and bivalent pairing autopolyploids (polyso-
mic inheritance) (Doyle and Egan 2010; Parisod et al. 2010). For
allopolyploids, y is a one-hot vector (only one pairing configuration
is possible). The value of y that corresponds to bivalent pairing
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Fig. 1. A graphical illustration of the pairing configuration model described in Models for genotype frequencies section. A K = 4 tetraploid parent with red and
black alleles, and thus a dosage of ¢ =2, is shown. Two pairing configurations are possible: m = (1, 0, 1), where the red alleles pair and the black alleles
pair, and m = (0, 2, 0), where each pairing consists of one red and one black allele. The configuration m = (0, 2, 0) occurs with probability y;, and m=
(1, 0, 1) occurs with probability y,. Configuration m= (1, 0, 1) produces only gametes with a dosage of k=1, while m = (0, 2, 0) produces gametes with
dosages k=0, 1, 2in a ratio of 1:2:1. The parent’s gamete frequencies are a mixture of the frequencies from each configuration, weighted by their
probabilities (lower left). The allopolyploid case occurs if only one pairing configuration is possible, whereas the autopolyploid case occursif y; =2/3 and

y,=1/3.

autopolyploids is given by Gerard et al. (2018). For example,
for autotetraploids where ¢ =2, the probability of configuration
my=(1,0,1) is 1/3 and the probability of configuration
m, = (0, 2,0) is 2/3, resulting in an autotetraploid segregation
pattern of

p./3+p,x2/3
_ _ ()
=(0,1,0)/3+(1/4,1/2, 1/4)x 2/3=(1, 4, 1)/6.
More generally, this model accommodates segmental allopoly-
ploids with arbitrary levels of partial preferential pairing.
Atsimplexloci, only one pairing configuration exists (and soy = 1).
This simplifies modeling of double reduction at theseloci. Theorem 1
states the gamete frequencies at simplex loci under arbitrary levels
of double reduction (proof in Supplementary Section S1 in File S1).
Upper bounds under two models for meiosis (Huang et al. 2019;
Gerard 2022) appear in Supplementary Table S2 in File S1.

Theorem 1

Let a; be the probability that there are i pairs of alleles in a gamete that
are identical by double reduction. Then the gamete frequencies at a sim-
plex locus are

Do —% +p,
p1=3-28,
(6)
p2 =B, and
p3=---=pgp=0
where
1 LK/4] )
/f=E 2 i )
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To incorporate invalid genotypes, we mix the genotype fre-
quencies with a discrete uniform distribution:

min (k,K/2)

Qe =(1-=) P1iPap-i +7/(K+1), 8)
i=max (0,k—K/2)

where z represents the proportion of offspring with anomalous
genotypes. By default, we set = < 0.03, but this is user-adjustable.
This enables integrated modeling of genotype frequencies and
outliers, unlike the two-step approach in polymapR (Bourke
et al. 2018). This makes it possible to model outliers in the pres-
ence of genotype uncertainty in Likelihood ratio tests for segregation
distortion section.

In summary, we model the genotype frequencies as a mixture
of the discrete uniform distribution and the convolution of gamete
frequencies (8). The gamete frequencies can be specified by the
user to correspond to full autopolyploidy, full allopolyploidy, or
segmental allopolyploidy through different constraints on y in
(4). This model offers several advantages over polymapR (Bourke
etal. 2018), including support for segmental allopolyploidy (which
polymapR does not accommodate) and the direct incorporation of
invalid genotypes into the model, rather than addressing them
through a two-step procedure. Additionally, this approach ex-
tends the methods of Gerard et al. (2025) to higher ploidy levels
while incorporating the ability to handle invalid genotypes. We ac-
count for double reduction at simplex markers, where the effects
of partial preferential pairing are absent. For clarity, in
Supplementary Section S2 in File S1 we explicitly write out our
model for the gamete frequencies for even ploidies 2 through 12.

Likelihood ratio tests for segregation distortion

In this section, we construct LRTs under the null hypothesis that
the genotype frequencies correspond to one of the models of
Models for genotype frequencies section. We will construct these tests
either using known genotypes or by accounting for genotype un-
certainty through genotype likelihoods.

The likelihood for the model depends on whether genotypes are
known or unknown. In the known genotype case, we let x;, be the
count of individuals with genotype k € {0, 1, ..., K}, which we or-
ganize into the vector x= (xo, X1, ..., Xk), with total sample size
n=Y% ,%.Given genotype frequencies q, x follows a multinomial
distribution, with the following likelihood

K

9
flxlq)= l_[kokl_lo ©)

In the unknown genotype case, we represent genotype uncer-
tainty through genotype likelihoods (Li 2011). Let gy denote the
genotype likelihood for individual i=1,2, ...,n and genotype
k=0,1, ..., K. Specifically, gy is the probability of the observed
data (e.g. sequencing or microarray) for individual i, assuming
their genotype is k. Given these genotype likelihoods, the likeli-
hood function is

n

K
fGla) =12 g (10)

i=1 k=0

In the known genotype case (9), the maximum likelihood estimate
of q under the alternative hypothesis is g, = x/n. In the unknown
genotype case (10), 4, can be calculated via the expectation-maxi-
mization (EM) algorithm of Li (2011). By maximizing either (9) or

(10) over the null parameter space, we obtain ¢,. Using this, we
calculate the likelihood ratio statistic (2 times the difference of
the maximized log-likelihoods under the null and alternative),
and we compare it to an appropriate x* distribution to compute
a P-value.

Our strategy to maximize over the null parameter space depends
on the null hypothesis under consideration. If the null hypothesis
corresponds to a true autopolyploid, the only unknown parameter
is the invalid mixing proportion z in (8), which we maximize over
using Brent’s method (Brent 2013). If the null hypothesis corre-
sponds to a true allopolyploid (2), the two unknowns are the latent
pairing configuration and the invalid mixing proportion z in (8). We
iterate over each of the b, possible pairing configurations, optimiz-
ing over z via Brent’s method for each configuration, to identify the
pairing configuration and = that maximize the likelihood. If the
null hypothesis corresponds to a segmental allopolyploid (4), the un-
knowns include the mixing proportions for pairing configurations in
both parents, y, and y,, as well as the invalid genotype mixing pro-
portion z. This optimization is performed using the method of
Powell (2009), with initial values obtained via the global optimization
method of Kucherenko and Sytsko (2005). The simplex constraints
on the mixing proportions for pairing configurations are incorpo-
rated using the parameterization of Betancourt (2012).

The number of degrees of freedom for the null 42 distribution is
the difference between the number of parameters under the alter-
native and under the null. The number of parameters under the
alternative is just the ploidy of the offspring. Though, we can im-
prove the power of the LRT if we subtract off the number of do-
sages whose frequencies are estimated to be 0 both under the
null and under the alternative (Gerard et al. 2025).

Calculating the number of parameters under the null is tricky
for two reasons: (i) some null parameters may lie on or near the
boundary of the null parameter space, requiring extra consider-
ation (Self and Liang 1987; Mitchell et al. 2019; Leung and
Sturma 2024) and (ii) the null parameter space is weakly identi-
fied. To address the boundary problem (i), we adapt the data-
dependent degrees of freedom strategy of Susko (2013).
Specifically, the number of parameters under the null is estimated
to be at most the number of parameters in @ that lie in the interior
of the null parameter space.

For (i), to define weak identification, let 8 be a vector containing
thenull parameters (they’s, f’s, and z), then the Jacobian of the func-
tion @ — q is approximately low rank for some values of 8, which re-
sultsinissues for the asymptotic performance of the LRT (Kleibergen
2005; Han and McCloskey 2019). To address this weak identifiability
problem, we calculate the Jacobian matrix for the internal para-
meters at the MLE of the function § — q. The numeric rank of this
Jacobian matrix is used as the number of free parameters under
the null. By default, the numeric rank we used is the number of sin-
gular values that are at least one-thousandth as large as the largest
singular value. This heuristic is based on the literature that shows
that the number of parameters in an exactly nonidentified param-
eter space is the exact rank of the Jacobian (Catchpole and Morgan
1997; Viallefont et al. 1998; Schmittmann et al. 2010). Thus, we use
the approximate rank of the Jacobian to approximate the number
of parameters in an weakly identified parameter space. This heuris-
tic works well in practice (Results section), though we have not seen
its use in prior literature.

The above scenarios assume the parental genotypes are
known. In the case that parental genotypes are not known, we first
maximize the likelihood jointly over the parental genotypes and
the unknown null parameters (they’s, #’s, and z). We then proceed
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with the LRT using the MLEs of the parent genotypes as if they
were the true parent genotypes.

Implementation features

All methods described in this manuscript are implemented in the
user-friendly segtest R package on the Comprehensive R Archive
Network (https:/doi.org/10.32614/CRAN.package.segtest). The
package includes additional features that may be useful for ap-
plied researchers:

1) Bayesian Information Criterion (BIC): segtest computes the
BIC (Schwarz 1978) of the fitted null model using the esti-
mated number of parameters under the null. Researchers
can visualize BIC distributions across loci to assess model
suitability, particularly when segregation patterns are un-
known (e.g. to determine whether partial preferential pair-
ing is present). The model with lower BIC values is
generally preferred.

Outlier Detection: For each individual, segtest calculates
the posterior probability of having an anomalous genotype
at a given locus, allowing researchers to treat such geno-
types as missing in downstream analyses. This follows a
standard mixture model approach. For a K-ploid individual,
let qo, ..., qx be genotype likelihoods under the assumption
of no outliers, computed via (1). The likelihoods for an indi-
vidual as a nonoutlier (f1) and as an outlier (fo) are defined as
f1 =qr and fo = & when the genotype k € {0, ..
In the unknown genotype case, given individual genotype

N
—

., K}isknown.

likelihoods go, ..., gk, these become fi =Y s grqx and

fo =g Yko 9. For a given outlier proportion z, the posterior
probability that an individual is an outlier is then

af
v = a1

3) Integration with updog: segtest includes helper functions
to format output from updog (Gerard et al. 2018; Gerard
and Ferrao 2019) for direct input.

Parallelization Support: The package supports parallel exe-
cution via the future package (Bengtsson 2021), with add-
itional compatibility for high-performance computing
through future.batchtools.

=3

Copy editing
GPT-4o (https:/chatgpt.com/) was used in this manuscript for
light copy editing.

Results

Null simulations

We assessed the type I error control of our new LRT and
the polymapR test through simulations under the null hypoth-
esis of no segregation distortion. The following parameters
were varied:

e Ploidy: K € {4, 6, 8}

e Parent genotypes: ¢1 € {0, ..
¢ Sample size: n € {20, 200}
Read depth: 10 (unknown genotype case) or infinity (known
genotype case)

Outlier proportion: = € {0, 0.015, 0.03}

Mixing proportions for the pairing configuration (for non-
nulliplex and nosimplex loci):

L Kland &, € {¢4, ..., K}

e If the number of mixture

(1, 72) €{(1, 0), (0.5, 0.5), (0, 1)}
e For K=8and ¢ = 4, where three mixture components exist:

components is  2:

(r.,72.73) €{(1,0,0), (0, 1,0), (0,0, 1), (1,1, 0)/2,
(1,0,1)/2, (0,1, 1)/2, (1, 1, 1)/3}

Double reduction adjustment for simplex loci: g € {0, a/2, a},
where ais the maximum value under the complete equation-
al segregation (CES) model in Supplementary Table S2 in
File S1.

This yielded a total of 7,920 distinct simulation scenarios to
evaluate the null performance of our methods. For each scenario,
genotype frequencies q, were determined. In the known geno-
type case, genotype counts were drawn from a multinomial dis-
tribution (9). In the unknown genotype case, these simulated
counts were further processed to generate individual sequencing
read counts according to the model of Gerard et al. (2018), assum-
ing no allele bias, a sequencing error rate of 0.01, and an overdis-
persion parameter of 0.01. Genotype likelihoods were then
obtained using the method of Gerard et al. (2018). Each replica-
tion involved fitting either our LRT or the polymapR test
(Bourke et al. 2018). A total of 200 replications were performed
per simulation scenario.

Figure 2 presents histograms of the type I error rates across the
7,920 simulation scenarios at a nominal significance level of 0.05.
Since the expected type I error rate should not exceed 0.05, any ob-
served values above this threshold should only be attributable to
the finite number of simulations. Specifically, the distribution of
type I errors should be stochastically bounded by X /200, where X fol-
lows a binomial distribution with size 200 and success probability
0.05. For reference, Fig. 2 includes the 99th percentile of this distribu-
tionasabluedottedline. Theresultsindicatethat segtest adequate-
ly controls type I error for large sample sizes (n = 200) and for nearly
all scenarios with small sample sizes (n = 20). In some small-sample
scenarios, slight anticonservatism is observed, which is expected gi-
ven that the LRT only asymptotically controls type I error.

In contrast, polymapr fails to control type I error in many scen-
arios, particularly for large sample sizes when genotypes are un-
known. To illustrate this issue, Fig. 3 presents results from select
simulation scenarios. These simulations were conducted with a
sample size of n =200 octoploid (K = 8) offspring, where one parent
had a genotype of 0 and the other had a genotype of 6. The figure
contains quantile-quantile (Q-Q) plots of P-values against the uni-
form distribution, stratified by method (segtest or polymapR),
read depth (10 or infinity), and pairing configuration mixing propor-
tions for the second parent ((0.5, 0.5) or (1, 0)). Under the null hy-
pothesis, the Q-Q plots should lie entirely at or above the y=x
line (black), indicating appropriate type I error control.

Segtest satisfies this criterion in all scenarios, demonstrating
proper type I error control at any significance level. In contrast,
polymapRr fails to control type I error in three cases. The method
does not account for nonabsolute preferential pairing, meaning
that y=(0.5, 0.5) represents an alternative scenario under its
test, explaining its failure to control type I error at any read depth
in this case. Additionally, polymapr fails to control type I error at
low read depths even when absolute preferential pairing (y = (1, 0))
is assumed, a scenario that should fall within its null model. This
failure arises because polymapR first estimates genotype counts
before applying its known-genotype test, and this estimation pro-
cess is biased (Gerard et al. 2025).
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Fig. 2. Histograms of type I error rates (on the square root scale) from the simulations in Null simulations section. Tests were conducted at a nominal significance
level of 0.05. Results are stratified by sample size (n = 20 or 200) and read depth (10 or infinity) in the rows, and by method (segtest or polymapR)in the columns.
Since thenull hypothesisis true, the typelerrorrate should not exceed 0.05 (red dashed line), though small deviations are expected due tofinite simulations. The
blue dotted line marks the 99th percentile of expected variation under proper type I error control, based on binomial quantiles. Segtest controls type I error in
all scenarios forlarge n = 200 and most for smalln = 20, as expected given its asymptotic guarantees. In contrast, polymapR fails to control type [ error atlow read
depths and for large sample sizes. It appears to control type I error at high read depths with small n, likely due to low power for small n.

Robustness to double reduction « Ploidy: K € {4, 6, 8)

Since our method does not explicitly account for double reduction e Parent genotypes: ¢1 € {0, ..., K}and ¢, € {2, ..., K- 2}

at nonsimplex loci, we conducted simulations under the autopo- e Sample size: n € {20, 200}

lyploid model of Huang et al. (2019), which allows for arbitrary le- * Double reduction rate: @ € {0, am/2, an}, where ay, is the max-
vels of double reduction, though no preferential pairing. We imum double reduction rate(s) under the CES model (Huang

varied the following parameters: et al. 2019)
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Fig. 3. Example results from the null simulations in Null simulations section. Q-Q plots compare P-values from segtest (blue) and polymapR (orange)
against the uniform distribution. Plots are stratified by read depth (columns) and pairing configuration (y,, rows). This scenario assumes a ploidy of K =8,
parent genotypes £1 = 0 and ¢, = 6, and a sample size of n = 200. Under the null, tests that properly control type I error should lie at or above the y = x line
(black). PolymapR satisfies this condition only when y, = (1, 0) (bottom row) and genotypes are fully known (infinite read depth). However, it fails to
control type I error when preferential pairing is not absolute (top row) or when genotypes are uncertain (left column), even under its assumed null
scenario. This is due to its ad hoc genotype uncertainty adjustment. In contrast, segtest consistently controls type I error across all scenarios.

e Read depth: 10 (unknown genotype case) or infinity (known
genotype case)

The outlier proportion was fixed at 0 (no outliers), resulting in 852
distinct simulation scenarios. Data were simulated as described in
Null simulations section. For each replication, we applied the LRT
assuming no outliers, the LRT allowing for outliers, and the
polymapR test (Bourke et al. 2018), conducting 200 replications
per scenario.

Figure 4 presents histograms of type [ error rates at a nominal
level of 0.05 across the simulated scenarios. When double reduc-
tion was absent, segtest, regardless of whether it accounted for
outliers, maintained appropriate type I error control. In contrast,
polymapR failed to control type I error at low read depths, consist-
ent with the findings in Null simulations section.

Atmoderate levels of double reduction, only segtest with out-
lier accommodation remained relatively robust. There were eight
simulation scenarios where segtest exhibited poor type I error
control (above the 99th percentile of the Binomial(200, 0.05) distri-
bution). These cases exclusively involved nulliplex-by-duplex
parental genotypes at ploidies 6 and 8, with large sample sizes
(n=200) and known genotypes (Supplementary Table S3 in File
S1). Notably, genotype uncertainty appeared to render the test
conservative enough (see Null simulations section) to maintain ad-
equate type I error control in the presence of moderate double re-
duction. Genotype uncertainty is the most common scenario in
applied work (Gerard et al. 2018; Gerard and Ferrdo 2019).

At extreme levels of double reduction, only segtest with out-
lier handling performed reasonably well, though 30 of the 852
scenarios still exhibited poor type I error control. In such cases,
type I error inflation was more pronounced. Though, extremely

high double reduction rates are believed to be rare (Stift et al.
2008; Bomblies et al. 2016). And in practice, such deviations would
likely be identified by researchers in applied settings.

Power analysis

In this section, we evaluate the power of our methods under seg-
regation distortion. We simulated genotype frequencies for ploi-
dies K € {4, 6, 8} under two alternative scenarios:

e Easy scenario: The genotype frequency vector q was drawn
uniformly from the K-dimensional unit simplex.

e Hard scenario: Gamete frequency vectors p, and p, were first
drawn independently and uniformly from the K/2-
dimensional unit simplex and then convolved (1) to obtain q.

The hard scenario generates alternative cases that more closely
resemble the null, as the genotype frequencies are obtained by
convolving randomly generated gamete frequencies, mirroring
the null model structure. We further varied sample size
(n € {20, 200}) and read depth (10 or infinite). For each of 1,000 re-
plications, we simulated q, generated data as described in Null si-
mulations section, and applied both the LRT from segtest and the
polymapR test.

Figure 5 presents the power of segtest and polymapR at a
nominal significance level of 0.05. Because segtest properly con-
trols type I error while polymapR does not, some reduction in
power for segtest is expected. However, we find that segtest
typically exhibits only a modest decrease in power, particularly
for large samples (n = 200), where both methods perform well. In
some hard scenarios with small n, segtest shows a more pro-
nounced power reduction. Nonetheless, hypothesis testing re-
quires valid type I error control, which segtest ensures,
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Fig. 4. Robustness to double reduction results from Robustness to double reduction section. Histograms of type [ error rates (square root scale) at a nominal
significance level of 0.05 (red dashed line). The blue dotted line indicates the 99th percentile of expected variation under proper type I error control, based
on binomial quantiles. Results are stratified by the level of double reduction (none, medium, or high) along the columns and by method (polymapg,
segtest assuming no outliers, and segtest allowing for outliers) along the rows. Ploidy is color-coded. Among the tested methods, only segtest with
outlier accommodation remains relatively robust to the effects of double reduction, particularly at moderate levels.

whereas polymapR does not. For sufficiently large sample sizes,
segtest remains consistent and maintains power against all
tested scenarios.

A hexaploid F1 population

To validate our methods, we analyzed the hexaploid sweetpotato
(Ipomoea batatas, 2n = 6x = 90) mapping population from Mollinari
et al. (2020), which consists of next-generation sequencing data
from 315 full-sib individuals derived from a cross between the
Beauregard and Tanzania varieties. These data include all SNPs
from chromosome 8 (52,125 SNPs). After filtering out multiallelic
loci (51,988 SNPs remaining), we performed genotyping using
the method of Gerard et al. (2018) and Gerard and Ferrdo (2019)
with the “f1” model.

We tested for segregation distortion in these data using three
different procedures. The first method emulated the default be-
havior of mappoly (Mollinari et al. 2020), following this procedure:

Filtered out SNPs estimated to be nulliplex in both parents
(46,434 SNPs remaining).

For each SNP, filtered out individuals with a maximum geno-
type posterior probability below 0.95 (the default behavior of
mappoly).

Filtered out SNPs with an average read depth less than 20
(16,976 SNPs remaining), as done in Mollinari et al. (2020).
Filtered out SNPs with at least 25% missing individuals (3,448
SNPs remaining), as done in Mollinari et al. (2020).

For the remaining SNPs, we used the posterior mode genotype as
the “known” genotype and ran chi-squared tests for segregation
distortion, assuming polysomic inheritance with bivalent pairing.

The second method used the checkF1() function from
polymapR (Bourke et al. 2018). Because this function accounts
for genotype uncertainty, we only applied two filters: filtering
out SNPs estimated to be nulliplex in both parents (46,434 SNPs re-
maining) and SNPs with an average read depth below 20 (16,105
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Fig. 5. Results of the alternative simulations from Power analysis section. The figure plots the power (y-axis) of segtest and polymapR (color) under
scenarios where segregation distortion is present. Tests were performed at a nominal significance level of 0.05 across varying sample sizes (n € {20, 200})
(row facets), ploidies (K € {4, 6, 8}) (column facets), read depths (10 or infinite) (line type), and alternative scenarios (easy or hard) (x-axis). segtest
exhibits strong power for large n and maintains reasonable power in most small n scenarios. While segtest has slightly lower power than polymapRin
most settings, this reduction is expected due to its ability to control type I error, which polymapR does not.

SNPs remaining). We then applied the polymapR test using geno-
type posterior probabilities.

The third method applied our new approach based on genotype
likelihoods, implemented in the segtest software. We applied
the same prefilters as in polymapRr, analyzing 16,105 SNPs. We
ran our new likelihood ratio test (Likelihood ratio tests for segregation
distortion section) using three null models: our general model
Models for genotype frequencies section), a polysomic inheritance
model that allows for double reduction (Huang et al. 2019), and
a polysomic inheritance model without double reduction
(Serang et al. 2012). For each locus, we computed the BIC of the
null model (Implementation features section). We compared BICs
pairwise at loci where the more complex null model had a
P-value greater than 0.1. The polysomic model had a lower BIC
than the general model 59.74% of the time (95% CI: 58.70% to
60.77%), the double reduction model had a lower BIC than the gen-
eral model 55.85% of the time (95% CI: 54.80% to 56.90%), and the
double reduction model had a lower BIC than the simpler polyso-
mic model 51.66% of the time (95% CI: 50.57% to 52.75%). These re-
sults suggest that the polysomic inheritance model allowing for
double reduction best fits these data, and thus tests from
segtest based on this model are used in the comparisons that
follow.

Histograms of the P-values from the three methods are
shown in Fig. 6. The P-value density for polymapR exhibits a
mode at 1, which is generally not expected for unbiased P-values
(Storey and Tibshirani 2003). In contrast, both mappoly and
segtest display the more typical monotonically decreasing
P-value densities. When controlling the false discovery rate at le-
vel 0.05, mappoly identifies far fewer SNPs (2,859 SNPs) not in seg-
regation distortion than polymapR (13,796 SNPs) or segtest
(10,058 SNPs). This suggests that mappoly’s filtering procedure,
which does not account for genotype uncertainty, may be overly

conservative, potentially discarding informative SNPs and leading
to unnecessary data loss. Among SNPs in common after prefilter-
ing, the P-values from segtest and mappoly are correlated at
0.6996, those from segtest and polymapR at 0.4311, and those
from polymapR and mappoly at 0.8169.

Itis informative to examine cases where the methods disagree.
Supplementary Fig. S2 in File S1 shows genotype plots (Gerard et al.
2018) for four SNPs where mappoly produces P-values less than
0.05 while segtest produces P-values greater than 0.1, and four
SNPs with the opposite pattern. The P-values for these SNPs are
listed in Supplementary Table S4 in File S1. Because mappoly filters
out individuals with low genotype posterior probabilities before
testing for segregation distortion, this alters the observed genotype
frequencies and may lead to anticonservative results. For example,
if we include those individuals in the mappoly test, the P-value be-
comes nonsignificant (Supplementary Table S4 in File S1).
Conversely, segtest often yields small P-values for SNPs with
many outlier genotypes, which mappoly has prefiltered as “in-
valid.” These outlier individuals typically have low (or no) reference
reads and may reflect null alleles (Gautier et al. 2013). When we re-
move individuals with fewer than 30 reference reads, segtest pro-
duces larger P-values (Supplementary Table S4 in File S1). Whether
such SNPs should be flagged is debatable, but in cases like SNP
S8_2212186, where 21 of 315 individuals (x6.7%) have “invalid” gen-
otypes, flagging seems appropriate. Alternatively, if a researcher
does not wish to flag such SNPs, instead of mixing the genotype fre-
quencies with a discrete uniform in (8), we can mix them with an
outlier distribution that one would expect in the presence of null
alleles (a pointmass at a genotype of 0). When doing so, we again
obtain much larger P-values (Supplementary Table S4 in File S1).

We conducted a similar comparison between polymapR and
segtest. Supplementary Fig. S3 in File S1 displays four SNPs
where polymapR indicates segregation distortion (P-value < 0.05)
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Fig. 6. Sweetpotato P-values. Histograms of the P-values from the segregation distortion tests performed by mappoly, polymapR, and segtest on the
sweetpotato data described in A hexaploid F1 population section. Note that the y-axes differ between facets.

but segtest does not (P-value > 0.1), and four SNPs where the re-
verse is true. The P-values from both methods are reported in
Supplementary Table S5 in File S1. Like mappoly, polymapR re-
moves “invalid” genotypes prior to testing. Thus, we again find
that outliers explain the SNPs flagged by segtest but not by
polymapR. When individuals with low reference reads are excluded,
segtest returns much larger P-values (Supplementary Table S5 in
File S1). segtest also produces much larger P-values when the
outlier distribution is a pointmass at a genotype of 0, thereby ac-
counting for null alleles (Supplementary Table S5 in File S1). To
understand cases where polymapR produces low P-values but
segtest does not, we refer to Supplementary Table S6 in File S1,
which shows the null and alternative genotype frequencies com-
pared by each method. Both use the same alternative model, so
the alternative frequencies are similar, differing only slightly due
to polymapR’s ad hoc estimation versus segtest’s maximum like-
lihood approach (Li 2011). The key difference lies in the null fre-
quencies. Segtest can model double reduction, allowing its null
frequencies to better match the alternative frequencies than those
used by polymapR. In these cases, the ability to account for double
reduction appears to explain why segtest does not detect segrega-
tion distortion, while polymapR does.

Discussion

In this study, we developed statistical tests for segregation distor-
tion in F1 populations of arbitrary (even) ploidy. Our methods ac-
count for varying levels of partial preferential pairing, double
reduction at simplex loci, and a proportion of outliers. Effective
modeling of outliers enhances robustness to moderate levels of
double reduction at nonsimplex loci. Additionally, our approach
accommodates genotype uncertainty through genotype likeli-
hoods. While our methods have only asymptotic guarantees for
controlling type I error, we improve finite-sample performance
by adaptively estimating the degrees of freedom, by counting
boundary parameters and approximating the rank of a particular

Jacobian. As a result, our LRT controls type I error reasonably well
for sample sizes as small as 20 and performs robustly for samples
of size 200.

For tetraploids, our methods fully and jointly account for double
reduction and (partial) preferential pairing, as they generalize the
approach of Gerard et al. (2025). That is, due to the unidentifiability
of the double reduction rate and the preferential pairing parameters
for tetraploids, as described in Gerard et al. (2025), one can without
loss of generality set the double reduction rate to 0 (at duplex loci),
which is essentially what our method does for tetraploids in this
manuscript. However, for ploidies greater than four, our model
does not explicitly account for double reduction at nonsimplex
loci. For example, in hexaploids (K = 6), double reduction could the-
oretically produce gamete genotypes of three at a duplex locus, but
our model does not allow for this possibility (Supplementary Section
S2 in File S1). Nonetheless, by incorporating a small proportion of
outliers, our approach demonstrates robustness to moderate levels
of double reduction (Robustness to double reduction section).
Increasing the maximum outlier proportion may further enhance
type 1 error control in cases of extreme double reduction, though
this would likely come at the cost of reduced power.

Our results here focus on scenarios that permit arbitrary levels
of preferential pairing while explicitly modeling double reduction
at simplex loci and allowing for a small fraction of outliers.
However, our segtest package offers greater flexibility, enabling
segregation distortion testing under additional assumptions:

1) True autopolyploidy, assuming either complete bivalent
pairing (no double reduction) or arbitrary levels of double re-
duction, modeled as in Huang et al. (2019).

2) True allopolyploidy with complete preferential pairing.

3) An unknown ploidy structure, where the data could corres-
pond to either a true allopolyploid or a bivalent-pairing au-
topolyploid. This is the assumption used by polymapR.

Additionally, segtest allows for testing without permitting outliers,
modeling segregation distortion when any individual exhibits an

GZ0Z J9qWIBAON Z UO 1SN dSN-Sev9)ol(qig op opeiBaju| ewalsiS Aq 229vGze/zLzyedl/L L/G L/aloie/euInolg6/woo-dno-olwepeoe//:sdiy oy papeojumoq


http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf212#supplementary-data

F1 Segregation Distortion Tests | 11

“impossible” genotype. Each of these scenarios represents a special
case of the general model studied here. If researchers have prior
knowledge about the expected segregation patterns in their organ-
ism, they should specify the most appropriate null model.

In this manuscript, we focused on applying these tests as a
quality control procedure for methods that use experimental popu-
lations, such as linkage or quantitative trait locus mapping.
However, our methods may have broader applications. Because
we implemented multiple models of meiosis and can calculate
the BIC (Schwarz 1978) for each (Implementation features section),
our approach could also be used to estimate the meiotic behavior
in polyploids. We demonstrated this in A hexaploid F1 population sec-
tion, where we found that a polysomic inheritance model with dou-
ble reduction best fit the sweetpotato data. This result aligns with
the findings of Mollinari et al. (2020), who reported no evidence of
preferential pairing on Chromosome 8 (the chromosome we ana-
lyzed here) yet found some evidence of multivalent pairing, a pre-
requisite for double reduction (Stift et al. 2010). Further study is
needed to assess whether our approach is broadly applicable for dis-
tinguishing meiotic models (allo-, auto-, or segmental polyploid).

We sought to improve the finite sample performance of the like-
lihood ratio test by adaptively estimating its degrees of freedom. An
alternative approach would have been to use the bootstrap (Efron
1979), which is known to provide highly accurate finite-sample re-
sults across many model classes (Efron 1987). However, we did
not pursue this approach primarily due to computational con-
straints. Our tests are designed for genomic applications, where
they may be applied thousands or even millions of times within a
single study. Any method requiring more than approximately one
second per test imposes an undue burden on applied researchers.
Nonetheless, as computational power continues to increase, the
bootstrap remains a promising avenue for future exploration.

Mappoly assumes genotypes are known when performing gen-
etic mapping, and soitis natural that it filters out individuals with
high genotype uncertainty. However, our results in A hexaploid F1
population section suggest that filtering individuals prior to testing
for segregation distortion can lead to biased tests and unneces-
sary data loss. We recommend reversing the order of operations:
rather than filtering out uncertain genotypes before testing, re-
searchers should first apply a test that accounts for genotype un-
certainty (e.g. our approach), and then filter out individuals with
high uncertainty. Understanding how different data quality con-
trol steps influence downstream applications such as genetic
mapping is an important question for future study.

Data availability

All methods described in this article are implemented in the
segtest R package on the Comprehensive R Archive Network under
a GNU General Public License v3.0 or later: https://doi.org/10.32614/
CRAN.package.segtest. All analysis scripts to reproduce the results
of this article are available on Zenodo under a GNU General Public
License v3.0 or later: https:/doi.org/10.5281/zenodo.15784734 and
https://doi.org/10.5281/zenodo.15784738. The data used in this
manuscript is from Mollinari et al. (2020) and is available on
Figshare under a Creative Commons BY 4.0 license (Mollinari et al.
2019): https://doi.org/10.25387/g3.10255844.
Supplemental material available at G3 online.
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