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ABSTRACT

In the context of sustainable energy use, multiple criteria are involved in the decision to select the best
energy generation projects, as well as its installation location. However, despite the widespread use of
decision-making techniques, there is a noticeable gap due to the lack of a systematic process for selecting
the best projects for energy transition. This paper evaluates alternatives of photovoltaic panels for energy
generation in floating systems and proposes a procedure to select the best project using a multiple-
criteria decision analysis. The Entropy method was used to determine the weight of eight criteria,
including cost, number of cells, efficiency, area, panel weight, and power characteristics, and the
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to make the selection.
A sensitivity analysis was conducted considering different weighing methods. Among the 20 photo-
voltaic panels analysed, the method proved to be effective in determining the most successful one for
installation in floating systems. The chosen panel maintained the best performance in all scenarios tested.
This paper provides a systematic approach for selecting the most suitable photovoltaic panel for floating
energy systems, contributing to researchers to refine decision-making methodologies and practitioners
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to optimise project implementation in sustainable energy initiatives.

1. Introduction

A variety of solar panels are available on the market, and this
diversity extends to the type of project proposed for each panel
arrangement, whether in onshore (land-based) or offshore
(marine-based) systems. Therefore, it is crucial to include
analyses of cost, panel efficiency - considering the local instal-
lation conditions - as well as the area occupied by the panels,
weight, and other characteristics linked to the performance
and efficiency of the photovoltaic system.

Although the cost of photovoltaic energy has been decreas-
ing, it remains higher than that of electricity from fossil
sources. As such, improvements in the design and manufac-
turing of solar cells are essential to increase efficiency and
reduce costs. New technologies that use tracking systems,
both terrestrial and floating, can significantly boost energy
production, with gains ranging from 22% to 56%. However,
these systems face technical challenges, particularly in floating
setups (Tina and Scavo 2022).

Floating photovoltaic energy promotes the installation of
panels on water surfaces, such as reservoirs and canals, offering
advantages over onshore systems, including the lack of need
for large occupied areas, higher energy yields due to the cool-
ing effect of water, and synergies with existing infrastructure,
such as hydroelectric power plants (Silalahi and Blakers 2023).

Floating photovoltaic systems, also known as offshore
photovoltaic systems, have shown significant growth over the
years, with the first installation in Japan in 2007, followed by
the first commercial plant in the U.S. in the same year.
Although they represented less than 1% of solar panels in
2022, the installed capacity of floating panels has grown by
more than 2000% in the last decade, with large installations in
bodies of water, such as coal mines and hydroelectric lakes, the
majority of which located in China (Essak and Ghosh 2022).

Therefore, it is essential to consider a range of factors before
choosing the most suitable option for the specific needs of each
project. The use of increasingly sophisticated decision-making
methods has grown significantly, with special emphasis on the
TOPSIS (Technique for Order Preference by Similarity to Ideal
Solution) method, which provides an objective ranking by
evaluating each alternative’s performance based on specific
criteria (G. Sun et al. 2018). To ensure that these criteria are
accurately weighted in the analysis, complementary methods
can be applied to address potential biases and enhance the
robustness of the results.

The Entropy Weighted Method (EWM) helps determine
criteria weights objectively, avoiding human bias and enhan-
cing the reliability of the evaluation results (Sahoo et al. 2017).
Similarly, the CRITIC (Criteria Importance Through
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Intercriteria Correlation) method has gained prominence by
factoring in both the conflict between criteria and the variation
in information provided by each criterion, ensuring a balanced
approach to weighting (Krishnan 2024).

Thus, considering the context of sustainable energy use, in
which multiple criteria are involved in the decision to select the
best energy generation projects, it is crucial to rely on capable
of integrating multiple factors in the decision process. In this
sense, this paper evaluates alternatives of photovoltaic panels
for energy generation in a floating system and proposes
a procedure to select the best project using multiple-criteria
decision making (MCDM) methods. The TOPSIS technique
weighted by Entropy and CRITIC was used to account for the
different characteristics of each panel, as well as the economic
and structural criteria selected for the analysis. This research
provides a systematic approach for selecting the most suitable
photovoltaic panel for floating energy systems, contributing to
researchers to refine decision-making methodologies and
practitioners to optimise project implementation in sustain-
able energy initiatives.

While selection models are commonly applied in various
engineering fields, this study presents a novel integration of the
TOPSIS method with Entropy and CRITIC weighting techni-
ques tailored for floating photovoltaic (FPV) systems. Unlike
traditional selection models, which may not account for the
specific environmental and structural constraints associated
with water-based installations, this approach systematically
evaluates each criterion’s relevance within the unique context
of FPV. The dual weighting process ensures a balanced empha-
sis on both economic and structural factors, addressing prac-
tical challenges such as panel stability, maintenance in aquatic
environments, and performance optimisation. This methodo-
logical combination provides practitioners with a more precise
tool for selecting photovoltaic panels in sustainable energy
projects, contributing unique insights into decision-making
frameworks for FPV applications.

This paper is organised as follows: section two presents the
theoretical foundation of this study, section three outlines the
research methodology used and section four presents the
results.

2. Theoretical background

Jin et al. (2023) report that the growing global energy demand
and the need for decarbonisation in electricity generation have
driven the search for renewable energy sources, with solar
photovoltaic energy emerging as a prominent alternative.
Among the various configurations of solar photovoltaic gen-
eration, floating photovoltaic systems (FPV) installed in reser-
voirs offer advantages over conventional ground-mounted
solar systems in several aspects, such as land conservation,
increased efficiency, and reduced water loss.

Kumar, Niyaz, and Gupta (2021) highlight the various
benefits of implementing floating photovoltaic projects.
Among them is the fact that there is no need to use land
surfaces, as the arrays utilise the surfaces of lakes and hydro-
electric reservoirs (UHE). Additionally, they help reduce eva-
poration from these reservoirs and improve energy output, as
the presence of water beneath the panels provides a cooling

effect, enhancing efficiency. According to the same authors,
other benefits of floating projects include synergy with existing
systems, forming a hybrid system where hydroelectric plants
are integrated with floating photovoltaic systems. This integra-
tion reduces investment costs and facilitates the connection of
this system to integrated energy systems.

Regarding the topic of hybrid systems, Murphy, Schleifer,
and Newman (2021) report that these systems are charac-
terised by their economic viability due to the resulting cou-
pling of multiple generation technologies, such as in this case
hydroelectric and photovoltaic solar. They are classified into
three hybridisation configurations, with selected criteria being:
cost improvement, performance, and in some cases, both cost
and performance. Padilha et al. (2022) estimate that Brazil has
200 artificial water bodies of the UHE type suitable for the
installation of FPV projects, considering only 1% of the reser-
voir surface. This represents 33,140 km” of area, with an instal-
lation capacity of 31,520 MWp and 57,384 GWh/year,
equivalent to 82.1% of the generation of the Itaipu
Hydroelectric Plant.

The challenges of implementing floating photovoltaic systems
can be exemplified in several points. Cazzaniga et al. (2020)
mention the impact of humidity on panel structures, which can
affect their longevity. They also highlight the effects of water
quality in reservoirs, with possible changes in the chemical and
biological parameters of water bodies. Essak and Ghosh (2022)
discuss the need for specific mooring systems, which may use
anchors on the ground or at the bottom of reservoirs, allowing the
arrays to remain in their established positions and withstand
changes in wind regimes and water movement.

Another important aspect for the success of floating instal-
lations is the selection of the appropriate photovoltaic (PV)
solar panel which is crucial to ensure that the photovoltaic
system operates efficiently and reliably. Particularly for the
development of offshore projects, this panel selection process
is essential, requiring consideration of various criteria and
a thorough analysis of parameters. The literature offers several
examples of the application of MCDM (multiple-criteria deci-
sion making) methods for selecting solar panels.

Alao et al. (2020) describe the TOPSIS method as a tool
used to rank alternatives in decision-making problems with
multiple criteria. Decision-makers categorise criteria into cost
and benefit categories, with the best alternative being the one
closest to the Positive Ideal Solution (PIS) and farthest from
the Negative Ideal Solution (NIS), using the Euclidean distance
principle.

Kaur, Gupta, and Dhingra (2023) used the Entropy and
TOPSIS methodologies for rural electrification. Kozlov and
Satabun (2021) applied MCDM methods, using the COMET
and TOPSIS methodologies, to evaluate solar panels. Ziemba
(2023) conducted the selection of photovoltaic panels for use
in the Polish market, based on balanced weight ranges and
evaluation criteria, employing the PROSA methodology, sup-
ported by a stochastic approach based on the Monte Carlo
method. Seker and Kahraman (2021) performed
a socioeconomic evaluation for selecting photovoltaic panels
in a case study in Turkey. Zhang (2015) evaluated energy
company suppliers using the TOPSIS and Entropy
methodologies.



Table 1. Application of entropy and TOPSIS in the energy sector.

INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING . 1175

Authors

Method

Applications

Alao et al. (2020)
Fahmi et al. (2024)

S. Zhu et al. (2024)

J. Li et al. (2024)

W. Zhu et al. (2024)
Banadkouki (2023)
Wang et al. (2024)

H. Li et al. (2021)

F. Sun and Yu (2021)
Seker and Aydin (2020)

Entropy, TOPSIS

Entropy, Fuzzy, TOPSIS
AHP, Entropy, TOPSIS
Entropy, TOPSIS

Entropy, TOPSIS

Entropy, Fuzzy, TOPSIS
AHP, Entropy, TOPSIS
Entropy, TOPSIS

Entropy, TOPSIS, K-means
Entropy, TOPSIS

Waste-to-energy

Natural gas

Hydropower optimisation

Rural heating systems

Hydrogen storage

Industrial energy efficiency

Energy storage

Climate data generation

Energy performance of commercial buildings
Hydrogen production

Agar et al. (2023)

Kaur, Gupta, and Dhingra (2023)
Ma et al. (2023)

Alamri, Saeed, and Saeed (2024)
Dhiman and Deb (2020)
Dwivedi and Sharma (2023)

Entropy, TOPSIS

G1-EW-TOPSIS

TOPSIS, VIKOR, and MultiMOORA
Fuzzy, TOPSIS

Entropy, TOPSIS

DIRECT, SMART, SWING, AHP, PAPRIKA, Entropy, and TOPSIS

Biomass pellet classification

PV panel selection

Carbon neutrality optimisation
Hydrogen generation

Hybrid wind farms

Electric vehicle battery optimisation

Source: Authors’ own creation.

Table 1 presents additional examples of studies that have
applied the TOPSIS method combined with methods for
weighting criteria in several areas of application in energy use.

Several studies are representative of recent advances in
floating PV systems. X. Sun (2024), for instance, utilised
a novel multicriteria risk assessment model to evaluate floating
PV projects in China. This study contributes a fuzzy decision-
making environment tailored to the risk management needs of
floating PV systems, particularly in complex and variable
climates.

Sarkodie, Ofosu, and Ampimah (2022) applied TOPSIS and
entropy to evaluate renewable energy resources for a 5 MWp
floating solar PV installation in Ghana. Their findings under-
score the effectiveness of these decision-making tools in opti-
mising criteria tailored to such installations, such as energy
yield, environmental impact, and cost-effectiveness. Di Grazia
and Tina (2024) also propose an optimal site selection for
floating photovoltaic systems based on Geographic
Information Systems (GIS) and multicriteria decision making
using AHP and TOPSIS.

Guo et al. (2021) propose a locations appraisal framework for
floating photovoltaic power plants based on relative-entropy mea-
sure and improved hesitant fuzzy linguistic DEMATEL-
PROMETHEE method. Melek et al. (2024) propose a fuzzy
Einstein-based decision-making model for the evaluation of site
selection criteria of floating photovoltaic system.

Deveci, Pamucar, and Oguz (2022) propose a floating photo-
voltaic site selection approach using fuzzy rough numbers based
LAAW and RAFSI model. Gokmener et al. (2023) conduct site
selection for floating photovoltaic system on dam reservoirs using
sine trigonometric decision making model. Finally, Velaz-Acera
etal. (2024) brings a semi-automatic selection of optimal locations
for FPV installations using MCDM-GIS.

3. Methods

Based on the extensive applicability of the TOPSIS methodology
as a decision-making method in energy projects, as well as the
growth of photovoltaic systems as an energy source, this work
utilised this method along with the Entropy and CRITIC methods
for weighting, in addition to sensitivity analysis in different

scenarios, to validate the reliability of the results for selecting
photovoltaic panels for electricity generation in floating systems.

Data from 20 commercially available panels were used in
this study, including major suppliers in the European market,
such as AE Solar; the North American market, represented by
Canadian Solar; and the Asian market, such as Login Solar.
The criteria adopted are based on certain premises found in
various studies, such as Ziemba (2023), who included in his
analysis the cost per watt (€/watt), the panel’s maximum power
(Pmax - W), short-circuit current (I - A), panel efficiency (%),
maximum power current (I, - A), and panel area (m?).
Additionally, for the analysis of the floating case proposed in
this work, weight (kg) and the number of cells per panel were
included. The selection of all these criteria allows for an under-
standing of different aspects of panel performance and suit-
ability for the adaptation needs of the floating systems
analysed.

This study focuses on developing a multi-criteria decision-
making framework to select photovoltaic panels suited for
floating installations on lake surfaces, particularly in hydro-
electric reservoirs. Our methodology is designed to be adap-
table across various lake environments, without specifying
a particular location or gathering site-specific radiation data.
Unlike terrestrial-focused studies, which evaluate panel per-
formance based on precise geographical conditions, our
approach generalises the panel selection process for aquatic
environments. This allows for broader applicability of the
proposal, enabling stakeholders to tailor the selection process
to individual reservoir conditions as needed.

Table 2 presents the information collected for the 20 panels,
used as decision-making criteria. The criteria were categorised
as follows: cost per watt (C1), panel maximum power (C2),
maximum power current (C3), short-circuit current (C4),
panel efficiency (C5), number of cells per panel (C6), panel
area (C7), and weight (C8). Among these criteria, C1, C6, and
C8 are considered non-beneficial, while C2, C3, C4, C5, and
C7 are considered beneficial.

The criteria selected for this study were based on their
relevance to both floating and land-based photovoltaic sys-
tems, as identified in various studies on solar energy genera-
tion projects. Below is a more detailed justification for the
selection of each criterion:
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Table 2. Criteria of the photovoltaic panels analysed.

Cost ls Efficiency Area per Wp
Panel (€/watt) [C1]  Prax (W) [C2] 1 (A) [C3]  (A) [C4] (%) [C5]  Number of cells [C6] (mz/Wp) [C7] Weight per Wp (kg/Wp) [C8]
PV1 0.101 535 13.05 13.81 20.70 144 0.004809 0.054206
PV2 0.097 530 12.83 13.72 20.51 144 0.004855 0.053962
PV3 0.095 530 12.71 13.47 20.53 144 0.004855 0.05
PV4 0.141 530 13.00 13.76 20.40 144 0.004894 0.054717
PV5 0.140 550 13.12 13.93 21.30 144 0.004613 0.050909
PV6 0.100 530 12.96 13.80 20.50 144 0.004874 0.060943
PV7 0.145 545 13.04 13.92 21.10 144 0.004739 0.050459
PV8 0.122 640 17.07 18.31 20.60 132 0.004853 0.059063
PV9 0.108 585 17.21 18.26 20.70 120 0.004838 0.059658
PV10 0.101 640 17.20 18.06 20.60 132 0.004853 0.053125
PV11 0.135 435 9.99 10.64 21.80 144 0.004593 0.048276
PV12 0.150 455 13.17 13.95 21.10 132 0.004743 0.053187
PV13 0.130 400 17.30 18.36 20.82 80 0.004805 0.0525
PV14 0.150 400 12.83 13.73 20.50 108 0.004888 0.055
PV15 0.160 400 12.83 13.73 20.48 108 0.004883 0.065
PV16 0.135 560 13.16 13.93 21.70 144 0.005518 0.057679
PV17 0.120 535 12.90 13.78 20.71 144 0.004742 0.053458
PV18 0.108 525 12.76 13.65 20.30 144 0.00492 0.060571
PV19 0.113 670 17.50 18.51 21.57 132 0.004636 0.051493
PV20 0.103 530 13.07 13.71 20.55 144 0.004874 0.050943

Source: Authors’ own creation.

e Cost per watt (C1): This criterion is crucial in any photo-
voltaic project, as cost directly impacts the feasibility of
large-scale implementation. For floating systems, this is
even more significant, given the additional infrastructure
required for installation on water surfaces.

e Panel maximum power (C2): The maximum power out-
put (P,.,) determines the energy generation capacity of
a panel under standard conditions. Floating systems,
benefiting from the cooling effect of water, can further
enhance panel performance, making this a key criterion.

e Maximum power current (C3) and short-circuit current
(C4): These electrical performance indicators are essen-
tial to ensure that the panels can efficiently generate
electricity in floating conditions, where temperature and
humidity levels may vary from land-based systems.

e Panel efficiency (C5): Although panel efficiency is typi-
cally a significant factor in solar panel selection, the
differences between the panels analysed in this study
were relatively small. Nonetheless, efficiency remains
important, as higher efficiency reduces the space needed
for installation, which can be advantageous even in float-
ing systems.

e Number of cells per panel (C6): The number of cells
affects the overall panel efficiency and durability. While
the number of cells does not vary significantly between
land-based and floating systems, it can influence the
structural integrity of the panel. Floating systems may
require reinforced structures to account for environmen-
tal conditions, which justifies the inclusion of this criter-
ion in the analysis.

e Panel area (C7): This criterion determines the amount of
surface area required for panel installation. In floating
systems, larger panel areas might be feasible due to the
available water surface, but the added size must be
balanced against the capacity of the floating platform.

e Panel weight (C8): The weight of the panel is particularly
important for floating systems, as heavier panels require
more robust floating structures and mooring solutions.

This criterion was therefore included to ensure that the
panels selected are structurally suitable for floating
installations.

The criteria selected in Table 2 represent key performance indi-
cators for photovoltaic panel suitability in floating systems. The
values in the table include both beneficial criteria, which positively
impact performance (such as panel efficiency and maximum
power), and non-beneficial criteria, which may impose limitations
(such as panel weight and cost per watt). For instance, lower values
for cost per watt (Cl) indicate better economic efficiency, while
higher values for panel efficiency (C5) and maximum power (C2)
suggest greater energy output potential.

The cost per watt determines the price of the panel relative to
its maximum power. A lower cost per watt ratio means better
value for the consumer. Another important criterion is the panel’s
maximum power (Py,.,), which determines the amount of energy
a panel can generate under Standard Testing Conditions (STC),
which include an irradiance of 1000 W/m” and a cell temperature
of 25°C (Kaur, Gupta, and Dhingra 2023).

The maximum power current (Imp) and short-circuit cur-
rent (Isc) help determine the electrical performance of the panel.
Panel efficiency indicates the proportion of energy that the panel
can convert into electricity; the higher the panel’s efficiency, the
more energy will be generated from the available sunlight.

The inclusion of the panel’s area, as well as the number of
cells, should be considered, as it determines the land allocation
required for installation. Smaller panels have an advantage in
these cases (Kaur, Gupta, and Dhingra 2023). However, in the
case presented in this work, a larger occupied area is not an
issue due to the utilisation of surfaces on the lakes of UHE.

Another criterion highlighted in this study is the panel’s
weight, which becomes relevant in determining the type of struc-
ture to be used, as well as the other materials required for the
installation of the project on a UHE reservoir, among other off-
shore examples. Figure 1 shows a FPV located in the Southeast of
Brazil. In this figure the floating system beneath the panels can be
seen. These structures are responsible for supporting the panels’



Figure 1. Floating photovoltaic system example at a Brazilian solar plant. Source:
Authors.

weight. As such, materials are selected to meet this requirement,
allowing thus for electricity generation.

In this study, several variables and indices are used to
define the mathematical model and equations. Here, X,,,,
represents the value associated with criterion m for photo-
voltaic panel n, where m and n are indices corresponding
to specific criteria and panels, respectively. The indices
i and j are used for summation or iterative operations,
generalising calculations across criteria and alternatives.
The term rj, represents the amount of information gener-
ated by each criterion, where j and j indicate specific
relationships or interactions between criteria in the model.

3.1. Entropy method

The entropy weighting approach, presented by Shannon (1948),
is a weighting mechanism used to evaluate the distribution of
value in decision-making. This approach employs probability
theory, providing the methodologies and equations necessary to
calculate entropy weights and conduct the evaluation of criteria.
The descriptions of the equations will be presented below.

Initially, the decision matrix (Equation 1) includes the
criteria and alternatives previously described.

X11X12 ** * X1n
X21X22 ** * Xop

............ (1)
Xm1Xm2 ** * Xmn
Next, the matrix is normalised using Equation 2.
Xij
Pij = <=n (2)
> i1 Xij

Subsequently, the entropy value, e, is calculated using
Equation 3. This factor can be used to quantify the information
about the choice contained in the normalised matrix, in this
case, the established value of a criterion in the study.

- 1
~lum

S rln(r)i€[lnljelm ()

i
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The degree of diversification, dj (Equation 4), of the deci-
sion matrix with the panel options and #» criteria, are the
weights based on the satisfying of the established
requirements.

dj:I—ej,j€[1~~n] (4)

Finally, the value of the criteria weights (W;) is obtained
using Equation 5.
d:
Wi=—g —,j€ll-n] )
Zj:l dj
The weight values found will be used in TOPSIS to calculate

the performance of the alternatives, using entropy or uncertain
information calculated based on probability theory.

3.2. CRITIC method

The CRITIC method uses an objective weighting approach
based on the criteria data. This methodology considers not
only the amount of information contained in the criteria, but
also the divergence between the different schemes and the
conflict between the criteria, resulting in more objective calcu-
lations (Diakoulaki, Mavrotas, and Papayannakis 1995).

The steps the calculation by the CRITIC method will be
presented using the data decision matrix (Equation 1) which is
then normalised using the membership function (Equation 6). It
indicates how much the alternative a; is located between the best
performing values ( jb“t) and worst performing values (£""").

ﬁ(ai) _fiworst
Xij = pest _ fworst
f;‘ es _j;wars

The relative score matrix x;;, means the value of alternative i
and criterion j. Then, the standard deviation (o) and the
correlation coefficient (p;), are calculated, presented by
Equation 7 and Equation 8, respectively.

1 —2,
N S s SRR

pij = cov(X;, X;)/(05,07) i,j=1,2,--,n (8)

Where x; means that the mean value of alternative
i, cov (X,-, XJ) refers to the covariance between row i and row j
of the decision matrix X.

With the data obtained, a symmetric matrix (N x N) is
structured, in which the elements represent the correlation
between the parameters studied.

Then, the amount of information generated by each criter-
ion (rj), is determined, subtracting 1 from each element of the
symmetric linear correlation matrix (N x N) and the sum is
calculated for each row, as shown in Equation 9.

> (1) ©)

m
k=1

(6)

Then, the value obtained is multiplied by the standard devia-
tion (0;) of each practice, previously calculated, to provide the
amount of information of the criterion (Equation 10).
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m
Cj = O'j X Z(l — rjk)

k=1

(10)

To calculate the weight of each criterion, (Equation 11) is used.
__ G
kazl Ck

It is possible to observe that CRITIC is an objective weighting
method that determines the weights of criteria based on the
conflict between criteria and the amount of information they
provide. This method contrasts with several other popular
weighting approaches, such as Entropy, the Analytic
Hierarchy Process (AHP) and Equal Weights methods.

Both CRITIC and the Entropy method are objective weight-
ing techniques that rely on the distribution of information
within the dataset. However, while Entropy focuses solely on
the variation of values within each criterion to assign weights,
CRITIC also considers the conflict between criteria, making it
more robust in scenarios where criteria may have interdepen-
dencies or correlations. This allows CRITIC to capture more
nuances in the data, especially when evaluating criteria with
varying degrees of importance.

Unlike CRITIC, AHP is a subjective weighting method that
depends on the decision-maker’s judgement to assign relative
importance to criteria through pairwise comparisons. AHP is
beneficial in scenarios that require the incorporation of sub-
jective preferences, but it can introduce bias into the decision-
making process. CRITIC, being fully data-driven, avoids such
biases, which is why it was selected as one of the weighting
methods in this study. AHP, also, has the ranking reversal
issue, which can represent a methodological challenge
(Junior, Osiro, and Carpinetti 2014).

Assigning equal weights to all criteria is a simple approach
that assumes all criteria have the same importance. This
method is often used in scenarios where there is insufficient
information to differentiate the importance of criteria.
However, the equal weights method lacks the sensitivity to
data variations that CRITIC provides, which limits its effec-
tiveness in more complex decision-making contexts where
criteria have different levels of influence.

By comparing CRITIC with these methods, we see that
CRITIC’s ability to account for both the amount of infor-
mation and the conflict between criteria makes it particu-
larly suitable for applications where a deeper understanding
of the relationships between criteria is required, as in the
case of photovoltaic panel selection for floating systems.
This is why CRITIC was used in conjunction with Entropy
and TOPSIS to ensure a comprehensive and objective
analysis.

(11)

Wi

3.3. TOPSIS method

X. Li et al. (2011) describe the steps for processing decision
matrix data. Initially, the decision matrix is normalised using
Equation 12, obtaining the matrix Mj;, described below. This
procedure ensures that all attributes are equivalent and have
the same format.

4
n 2
2in Xij

Then the weighted decision matrix is obtained, in which the
normalised decision matrix is multiplied by the respective
weights obtained using the Entropy method, as seen in
Equation 13.

M; = gdel---n),jel- m) (12)

To obtain the ideal solution, which is composed of the positive
ideal solution and the negative ideal solution, the former is
obtained by the highest value of the weighted decision matrix,
as seen in Equation 14, and the latter is obtained by the lowest
value of each attribute in the weighted decision matrix, as
illustrated in Equation 15.

Z+:{ZT72;Z]+ZZ;} (14)

zm={z02; 2 2} (15)
We know that the positive ideal value and the negative ideal
value are determined by Equation 16 and Equation 17,
respectively,

ZJ+ = {best(WZ;),_, (16)

ZJT = {worst(WZ,-jf):;l (17)
The Euclidean distance was used to calculate the separation
measures of each alternative from the positive ideal solution
(Sep;"), for beneficial qualities, and from the negative ideal
solution (Sep; ), for non-beneficial qualities. Thus, the mea-
sures are obtained through Equation 18 and Equation 19,
respectively.

(18)

2) 0.5

! = {37, (%)}
" (205

Sep; = {Zj,_l (zi-2) }

Finally, the relative degree of approximation Ci* is determined
by Equation 20.

(19)

o Sep;”

b Sep; + Sep; (20)

The ranking of the evaluation object is based on the value of
the relative degree of approximation. The higher the value, the
better the evaluation object.

In addition to TOPSIS, other MCDM methods such as AHP
and VIKOR are commonly used in decision-making scenarios.
Each of these methods has distinct advantages and limitations,
which make them suitable for different types of decision
problems.

TOPSIS was selected for our study because it evaluates
alternatives based on their distance from an ideal solution,
considering both beneficial and non-beneficial criteria.
TOPSIS is well-suited for cases where precise criteria



performance values are available, and the decision-making
process needs to consider trade-offs between different criteria.
A notable strength of TOPSIS is its ability to handle large
datasets and provide a clear ranking of alternatives, making it
particularly effective in engineering applications such as
photovoltaic panel selection. However, one limitation of
TOPSIS is that the results can be sensitive to the normalisation
process, and it does not account for the subjective preferences
of decision-makers unless combined with other methods like
entropy or AHP.

AHP is a widely used MCDM method that involves
structuring decision problems into a hierarchy and then
performing pairwise comparisons to assign relative weights
to each criterion. AHP’s strength lies in its ability to
incorporate the decision-makers’ judgements and prefer-
ences, making it highly effective in scenarios where sub-
jective opinions are essential. However, for a study like
ours, which focuses on quantitative criteria and objective
data, AHP may be less appropriate, as it can become
complex and time-consuming when dealing with a large
number of alternatives and criteria. AHP also has the
ranking reversal issue, which can directly impact its results
(Junior, Osiro, and Carpinetti 2014).

VIKOR is another popular MCDM technique, which
focuses on ranking alternatives based on the concept of
compromise solutions. It is particularly effective when the
decision-makers aim to find a balance between conflicting
criteria. VIKOR’s strength lies in its capacity to handle
decision-making problems with high levels of conflict
among criteria, making it useful for problems involving
trade-offs between multiple stakeholders. However, for
our study, which prioritises a clear ranking based on
objective data, VIKOR’s focus on compromise solutions
was less aligned with our goal of selecting the best photo-
voltaic panel for floating systems.

By choosing TOPSIS, we leveraged its strengths in ranking
alternatives based on objective criteria and clear distance mea-
sures from ideal solutions. In contrast, methods like AHP and
VIKOR would have added complexity without providing sig-
nificant advantages for the type of quantitative data used in
this study.

4. Results and discussions
4.1. Photovoltaic panel analysis and selection

The analysis revealed that panel P15 consistently ranked as the
top-performing option across all weighting scenarios, regard-
less of the specific method used — Entropy, CRITIC, or equal
weighting. This consistent dominance suggests that PV15
offers an optimal balance of cost-efficiency, energy output,
and structural suitability, making it particularly robust for
FPV applications. Its top ranking highlights its versatility and
reliability across different project priorities and conditions,
underscoring P15 as a preferred choice for FPV installations.

However, to reach this conclusion, it is essential to under-
stand the underlying calculations that led to PV15’s high
ranking. The consistent performance of PV15 is a result of
the weight calculations applied to each criterion, which we
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detail in the following sections. By examining how different
criteria weights affect the panel rankings, we can confirm the
robustness of PV15 in comparison with other panels, ensuring
that the selection process aligns with diverse project require-
ments and methodological rigour. With this initial conclusion
established, we proceed to examine the criteria weight distri-
butions calculated using the Entropy and CRITIC methods

Figure 2 represents the weights found using the Entropy
methodology for the 20 panels selected in the study, analysing
the eight criteria. This figure illustrates the distribution of
weights assigned to each criterion using the Entropy method.
Higher weights, such as those for cost per watt (C1) and panel
weight (C8), indicate criteria with more variation across the
analysed alternatives, suggesting a stronger influence on the
decision-making process. In contrast, lower weights, such as
for panel efficiency (C5), reflect criteria with less variability,
which the Entropy method interprets as less significant in
distinguishing between alternatives.

An evaluation of the weight relationship among various
criteria highlights those with the highest values, indicating
good criteria to be used: cost per watt (C1) had a weight
value of 17.4%, and panel weight (C8) had a value of 16.4%.
On the other hand, panel efficiency (C5) had the lowest weight,
0.3%, as well as the number of cells (C6) with 11.2%. In this
case, both are not good criteria for panel selection.

Specifically, the natural cooling effect of the water surface can
enhance the performance of all panels uniformly, reducing the
significance of efficiency differences (C5) that are often critical in
land-based systems where temperature variations impact panel
performance more directly. In FPV systems, this cooling effect
minimises performance disparities, making other factors, such as
cost per watt (C1) and structural characteristics (e.g. panel weight
and area), more decisive for ensuring feasibility and stability.

Furthermore, the number of cells per panel (C6) also has
a lower impact in FPV contexts. This criterion is typically
relevant in land-based installations where structural limita-
tions and space constraints require optimised panel layouts.
In FPV projects, however, the available space on water bodies
is generally more flexible, allowing for larger and varied con-
figurations without strict cell count constraints. Therefore,
while the number of cells can influence the electrical output,
it is less crucial in FPV systems compared to other criteria that
directly affect installation and operational stability on water.
Additionally, the reflective properties of water may increase
irradiance levels, further diminishing the marginal advantage
of high-efficiency panels and cell counts in FPV contexts.

The Entropy methodology considers efficiency as a less
relevant criterion because the method analyzes the variation
of values to generate its weights. Therefore, since the efficien-
cies of the selected panels do not have significant variations
among their values, the Entropy method deemed this criterion
less relevant. However, in other analyses, if the efficiency of the
panels shows significant differences, this criterion would have
a higher degree of importance.

By normalising the decision matrix using Equation 12 and
then weighting the data using Equations 16 and 17, the follow-
ing values are obtained, as described in Table 3.

Using Equations 17 and 18, the worst and best ideal values
are obtained. For this calculation, the maximum parameters
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Figure 2. Criteria weight calculation using the Entropy method. Source: Authors’ own creation.

Table 3. Values obtained for ideal solutions for each criterion.

a Q a c4

(&) c6 (@) 8

W; 0,174 0,133 0,137
z* 5,34E-02 1,58E-05 6,07E-04
" 9,00E-02 9,42E-06 3,46E-04

0,134

5,58E-04
3,21E-04

0,003
7,08E-06
6,59E-06

0,112
2,47E-05
4,44E-05

0,144
3,37E-03
6,59E-06

0,164
2,02E-04
3,37E-03

Source: Authors’ own creation.

for criteria C2, C3, C4, C5 and C7 are considered as ideal
criteria; and the minimum ideal values for parameters C1, C6
and C8. The results are described in Table 4, which presents
the positive ideal solution (sepi+), for beneficial qualities, and
the negative ideal solution (sepi-). Finally, the relative degree of
approximation Ci determined by Equation 20 is obtained.

The values presented in Table 4, located in the last column
of the table, determine the best classification for choosing the
panel. After analysing the results, panel 15 (PV15) presents the
best classification, with a value of 0.921; then PV12, with an
order of 0.828, represents the second option.

The selection of SP15 as the best panel is a result of its
balanced performance across several important criteria, rather
than excelling in any single attribute. Using the Entropy and
CRITIC methods, we calculated weights that emphasise cri-
teria most relevant to floating photovoltaic (FPV) applications,
such as cost per watt (Cl) and panel weight (C8). SP15’s
closeness to the Positive Ideal Solution (PIS) in the TOPSIS
analysis resulted in the highest relative closeness coefficient
among all panels.

Although SP15 is not the lightest, cheapest, or most efficient
in isolation, its consistent ranking across multiple scenarios -
including sensitivity analyses using different weighting meth-
ods - confirms its robustness. This is particularly important
for FPV systems, where the structural demands and economic
constraints necessitate a well-rounded panel choice that pro-
vides reliability, durability, and economic feasibility under
varying environmental conditions. SP15’s balanced attributes
make it the most suitable choice within this context, aligning
technical, structural, and economic requirements for FPV
installations.

Although this study presents a generalisable approach, its
application can be particularly beneficial for FPV installations
in hydroelectric reservoirs, such as those in Brazil’s Tucurui
(Para) and Billings (Sao Paulo). By applying our multi-criteria
decision-making framework, decision-makers can select PV
panels that align with the specific structural and environmen-
tal demands of these reservoirs. This practical example under-
scores how our method can guide PV panel selection in diverse
hydroelectric contexts, promoting sustainable energy solutions
while adapting to unique site requirements.

Table 4. Selection using entropy-TOPSIS.

Panel Sep+ Sep- c* Ranking
PV15 0.037 0.003 0.921 1%t
PV12 0.031 0.006 0.828 ond
PV14 0.031 0.006 0.827 31
PV7 0.028 0.009 0.758 4th
PV4 0.026 0.011 0.700 5th
PV5 0.025 0.012 0.685 6"
PV16 0.023 0.014 0.610 7"
PV11 0.023 0.014 0.610 gth
PV13 0.020 0.017 0.535 oth
PV8 0.015 0.022 0.414 10
PV17 0.014 0.023 0.384 11t
PV19 0.010 0.027 0.277 12t
PV18 0.007 0.029 0.201 13t
PV9 0.007 0.029 0.201 14t
PV20 0.005 0.032 0.125 15t
PV1 0.003 0.033 0.095 16™
PV10 0.003 0.033 0.094 17t
PV6 0.003 0.034 0.080 18t
PV2 0.001 0.036 0.031 19t
PV3 0.001 0.037 0.016 20t

Source: Authors’ own creation.



4.2. Sensitivity analysis

A sensitivity analysis of the weights was conducted to examine the
reliability of the Entropy-TOPSIS method in determining the best
panel option to be adopted for the floating project. For this
purpose, three additional evaluation scenarios were proposed, in
which the criteria weights were modified, totalling four scenarios.
The base scenario for the sensitivity analysis was Entropy.

In the second scenario, all criteria were assigned equal
weights, with each representing 12.5%. In the third scenario,
the CRITIC method was used, as described in section 3.2,
resulting in a variation in the weights compared to the
Entropy method. In this analysis, the criteria considered
good for selection are as follows: Panel Efficiency (C5) has
a weight of 20.14%, and Cost per Watt (C1) has a weight of
18.85%. On the other hand, the panel’s Maximum Power (C2)
and Panel Weight (C8) obtained the lowest weights, 4.25% and
6.14%, respectively, indicating that they are not as relevant
criteria for panel selection by this methodology.

In the fourth scenario, the criteria were weighted according
to the technical and economic aspects necessary for the success
of floating projects, assigning higher weights to Cost,
Efficiency, Area, and Weight, each with 15%, while the other
criteria received 10%. Figure 3 represents the distribution of
weights in the established scenarios.

In this study, the weighting of the criteria was conducted
using the Entropy and CRITIC methods, both of which offer
objective, data-driven insights into the importance of each
criterion. The Entropy method assigns weights based on the
distribution of values within each criterion, ensuring that
criteria with significant variation across alternatives — such as
cost per watt (C1) and panel weight (C8) - receive higher
importance. This minimises subjective bias, providing weights
based solely on data variability. However, this focus on varia-
bility can lead to the underweighting of criteria that show
minimal differences among alternatives, such as panel effi-
ciency (C5), even if they are important in practice.

In contrast, the CRITIC method incorporates both the
variability of each criterion and the degree of conflict between
criteria, giving greater weight to criteria that provide unique,
non-redundant information. For example, while Entropy de-
emphasised panel efficiency due to its low variability, CRITIC

20.0%
18.85%

17.4%

15.00% 15%

12.5%

INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING . 1181

identified it as more relevant based on its distinct informa-
tional contribution. This approach helps capture criteria inter-
dependencies and better reflects real-world complexity. The
dual use of Entropy and CRITIC in this analysis thus provides
a balanced evaluation, though some biases may still arise. For
instance, methods emphasising cost (like Entropy) may over-
look critical technical attributes, while methods focusing on
information diversity (like CRITIC) might assign greater
weight to less economically impactful criteria.

By clarifying the weighting processes and addressing potential
biases, we aim to help practitioners align the weighting interpreta-
tion with project-specific priorities, facilitating informed decision-
making in real-world floating photovoltaic applications.

Table 5 provides a detailed presentation of the results
obtained for the 20 selected panels. There is a slight variation
in the ranking of the panels, as evidenced by the variation in
the values of the relative closeness coefficients (C;*), demon-
strating that, despite the variations in the scenarios, PV15
remains the best option, followed by PV12 and PV14.

In Figure 4, it is possible to visualise the closeness coefti-
cient values found for the four scenarios. This figure shows the
closeness coefficient values for each photovoltaic panel under
the different weighting scenarios tested in the sensitivity ana-
lysis. Panels with consistently high coefficients, such as PV15,
demonstrate robustness across weighting methods, making
them strong candidates for practical applications. Variability
in closeness coefficients for lower-ranked panels, such as PV3
and PV2, suggests that their suitability is more dependent on
specific project priorities and chosen weighting methods.

The dominance of the PV15 panel across all tested scenarios
highlights its performance across a range of criteria. This result
is particularly significant in light of the challenges posed by
floating photovoltaic systems, where the balance between tech-
nical performance and structural feasibility is crucial. PV15’s
ability to consistently rank highest suggests that it meets the
complex demands of floating installations, where weight,
structural integrity, and economic considerations are as
important as energy output.

The sensitivity analysis further supports the robustness of
the methodology employed. Despite variations in weighting
techniques, the top-performing panels remained largely con-
sistent, indicating that the selection process is not overly
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Figure 3. Weight values for sensitivity analysis. Source: Authors’ own creation.
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Table 5. Closeness coefficient and rankings of sensitivity analysis considering all scenarios.

Entropy Equal Weights CRITIC Floating
Panel G Ranking G Ranking G Ranking G Ranking
PV1 0.095 16 0.094 16 0.095 16 0.096 17
PV2 0.031 19 0.028 19 0.033 19 0.035 19
PV3 0.017 20 0.011 20 0.020 20 0.023 20
Pv4 0.700 5 0.700 5 0.692 5 0.697 5
PV5 0.685 6 0.685 6 0.677 6 0.682 6
PV6 0.080 18 0.079 18 0.080 18 0.081 18
PV7 0.758 4 0.759 4 0.747 4 0.754 4
PV8 0.414 10 0.414 10 0411 10 0414 10
PV9 0.200 14 0.200 14 0.200 14 0.202 13
PV10 0.093 17 0.093 17 0.093 17 0.101 16
PV11 0.610 7 0.611 7 0.605 8 0.608 8
PV12 0.828 2 0.829 2 0.812 2 0.822 2
PV13 0.535 9 0.535 9 0.531 9 0.533 9
PV14 0.827 3 0.829 3 0.812 3 0.822 3
PV15 0.921 1 0.924 1 0.892 1 0.909 1
PV16 0.610 8 0.611 8 0.605 7 0.609 7
PV17 0.384 1 0.384 1 0.381 1 0.383 1
PV18 0.201 13 0.201 13 0.200 13 0.201 14
PV19 0.277 12 0.277 12 0.275 12 0.279 12
PV20 0.125 15 0.124 15 0.125 15 0.126 15

Source: Authors’ own creation.
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Figure 4. Closeness coefficients in sensitivity analysis. Source: Authors’ own creation.

sensitive to shifts in criteria prioritisation. This robustness is
crucial for floating systems, which must operate under diverse
environmental conditions, including variable water levels,
weather patterns, and structural constraints. The fact that
PV15 remained the top choice under different weighting
schemes suggests that it offers a level of adaptability that is
particularly valuable in floating photovoltaic projects.

The lower emphasis on panel efficiency (C5) as a key factor
also merits discussion. While efficiency is traditionally
a critical criterion in solar panel selection, the relatively small
range of efficiency values among the panels studied explains
why it had less impact in this analysis. Cooling effects from
water surfaces can mitigate efficiency losses, making other
factors like cost and weight more critical. In this context, the
cooling effect of water bodies on floating panels may allow for
less emphasis on small efficiency gains, shifting the focus to
other criteria that affect the long-term viability and cost-
effectiveness of the project.

Furthermore, the prominence of panel weight (C8) in the
analysis reflects the structural demands unique to floating systems.

Unlike land-based installations, where weight is generally less of
a concern, floating systems require buoyant structures that can
support the panels. Heavier panels may necessitate more robust
and expensive support systems, impacting the overall project cost.
This is particularly relevant in large-scale installations, where the
cumulative weight of hundreds or thousands of panels could
significantly influence the design and cost of the floating platform.
The high weight given to cost per watt (C1) in this analysis is
consistent with the growing focus on making renewable energy
more competitive with traditional energy sources.

For researchers, the use of approaches like TOPSIS, alongside
sensitivity analysis, provides a replicable framework for future
studies in renewable energy project selection. Practitioners in
the field can benefit from this approach by optimising project
implementation, ensuring that selected photovoltaic panels
meet the specific technical and economic requirements of float-
ing systems. The identified best-performing panels, such as
PV15 and PV12, are well-suited for environments where factors
like structural support and cost-effectiveness are critical, con-
tributing to more efficient energy production.



The sensitivity analysis conducted in this study aimed to
assess the robustness of the panel selection process under dif-
ferent weighting schemes. By comparing the Entropy method,
CRITIC, and equal weights, we were able to evaluate how each
method influenced the ranking of the panels and identify the
criteria that had the greatest impact on the final decision.

When using the CRITIC method, the criteria with the highest
weights were panel efficiency (C5) and cost per watt (C1), indicat-
ing that these two factors were deemed the most influential in the
decision-making process. The CRITIC method, by considering
both the variability of the data and the conflict between criteria,
gives more importance to criteria that show significant differences
between alternatives. This suggests that, in real-world applica-
tions, the CRITIC method would be particularly useful in contexts
where certain criteria, such as efficiency or cost, show marked
variation and need to be prioritised to optimise performance. For
example, in a scenario where energy output is critical, the empha-
sis on efficiency would guide the selection towards panels that
offer higher performance, despite possible higher costs.

On the other hand, the equal weights method assigned the
same level of importance to all criteria, leading to a more balanced
influence of each factor on the ranking of the panels. While this
approach simplifies the decision-making process by avoiding
subjective bias or complex calculations, it may overlook the nuan-
ces between criteria that have different levels of significance in
real-world applications. For instance, treating panel efficiency and
weight as equally important could lead to suboptimal choices in
floating systems, where weight plays a crucial role in determining
the structural feasibility of the installation. In practical terms, the
equal weights method might be more suitable in early-stage eva-
luations, where decision-makers are exploring a wide range of
alternatives without specific priorities, or when data on the relative
importance of criteria is limited.

The results of the sensitivity analysis highlight that the choice of
weighting method can significantly influence the final ranking of
photovoltaic panels. In all scenarios tested, panel PV15 consis-
tently ranked highest, demonstrating its robustness as the best
option across different weighting schemes. However, panels that
ranked lower, such as PV3 and PV2, showed more variability in
their performance, indicating that their selection would depend
heavily on the specific priorities of the project.

This has important implications for real-world applications: if
cost minimisation is the primary goal, methods like CRITIC,
which place higher weight on economic factors, would be more
effective. Conversely, if operational reliability is a priority, meth-
ods that give equal importance to all criteria may lead to a more
balanced, if less optimised, decision.

4.3. Environmental impacts and sustainability
considerations

FPVs present a promising solution for sustainable energy genera-
tion, offering several advantages, particularly in terms of land
conservation and improved energy efficiency. One of the most
notable benefits of FPVs is their ability to reduce water evapora-
tion by covering portions of water bodies. This is especially valu-
able in regions with high evaporation rates, where preserving
water levels is crucial for both water conservation and the opera-
tional efficiency of hydroelectric plants. By reducing evaporation,
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FPVs contribute to the overall sustainability of water resources,
creating a synergy between solar and hydroelectric energy
production.

However, it is important to consider potential environmental
impacts, particularly related to water quality and aquatic ecosys-
tems. The installation of FPVs can influence the physical and
chemical characteristics of water, such as temperature and oxygen
levels. While the shading effect from panels can reduce water
temperature, which may benefit certain species in warmer cli-
mates, it can also affect light penetration, potentially impacting
the photosynthesis of aquatic plants and microorganisms. These
effects tend to be localised and manageable, especially with careful
monitoring and site selection to minimise ecological disruption.

Aquatic ecosystems may also experience some changes due
to the presence of FPVs, as the shading and structure of the
panels can modify habitat conditions. In certain cases, this
could create cooler areas that benefit specific species, while in
others, reduced sunlight might disturb the behaviour of aqua-
tic organisms. Additionally, the anchoring systems used to
stabilise floating platforms need to be carefully designed to
avoid disturbing sediments and underwater vegetation.

Therefore, it is essential to implement these systems respon-
sibly, with ongoing environmental assessments to ensure that
any impacts on water quality or ecosystems are managed
effectively. With appropriate planning and monitoring, FPVs
can contribute positively to the renewable energy landscape
while minimising environmental concerns.

5. Conclusions

MCDM techniques were used to rank the ideal panel options,
assisting decision-makers in choosing the best option according to
their specific demands for the construction of the floating project.
Through the use of the TOPSIS methodology weighted by
Entropy and subsequently CRITIC, it was possible to select the
best option among the 20 panels considered for the floating
project.

Among the eight criteria considered, the non-beneficial
ones were cost per watt (Cl), the number of photovoltaic
cells (C6), and weight (C8), since these criteria would be
detrimental to a floating project. On the other hand, the
beneficial criteria included the panel’s maximum power (C2),
maximum power current (C3), short-circuit current (C4),
panel efficiency (C5), and panel area (C7).

The results indicated that the best panel option for the
floating system is P15, followed by option P12. Using the
weights obtained through the Entropy methodology, the rela-
tive closeness coefficients obtained in the TOPSIS technique
were 0.921 for P15 and 0.828 for P12.

A sensitivity analysis was conducted, using three additional
scenarios: the second scenario with equal weights, the third
with weights obtained through the CRITIC methodology, and
a fourth scenario called the ‘floating scenario’, where higher
weights are assigned according to the technical and economic
aspects necessary for the project’s success.

The sensitivity analysis results pointed to the same options
proposed by the Entropy-TOPSIS approach. However, there was
a noticeable change in the closeness coefficients (C;*) for scenario
2 (Equal Weights), where the C; for PV15 was 0.924; for scenario 3
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(CRITIC), this value was 0.892; and for the fourth scenario
(Floating), the closeness coefficient was 0.909. Therefore, we
infer that using other panels could potentially change the ranking
of the top panels selected by the method used.

It is important to highlight that the weights obtained in
the analyses, especially for the cost and panel weight cri-
teria, showed more significant values for the Entropy meth-
odology. However, for the CRITIC method, the most
relevant criteria were not only cost but also efficiency,
with panel weight being one of the least relevant criteria.
Thus, it is possible to observe that depending on the choice
of the decision-making method, the weights of the criteria
can vary, and therefore, specific characteristics of each
system must be taken into account.

The results obtained, as well as the sensitivity analysis, demon-
strate the importance of using MCDM to identify the best panel
for installation in floating systems, and that the Entropy metho-
dology proved to be suitable for the selection of these panels.
Therefore, the weight of the panel is particularly relevant, as it
influences the choice of the type of structure and materials needed
for the installation of the offshore photovoltaic plant. Thus, the
fourth scenario analysed emphasises panel weight, along with
efficiency, area, and cost, as the most relevant criteria for this
study, in line with the base scenario (Entropy) presented in the
first analysis.

Thus, this research contributed significantly to decision-
making regarding photovoltaic panels in floating installations,
allowing decision-makers to choose the best sustainable energy
projects considering the specific characteristics of each system.
Future research could explore other alternatives such as bifacial
panels and solar tracking systems to increase the efficiency of
these floating projects. In addition, it is important that future
research considers new evaluation criteria for photovoltaic
panels, expanding the dimensions of sustainability analysed,
including economic, environmental and social aspects.
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