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ABSTRACT
In the context of sustainable energy use, multiple criteria are involved in the decision to select the best 
energy generation projects, as well as its installation location. However, despite the widespread use of 
decision-making techniques, there is a noticeable gap due to the lack of a systematic process for selecting 
the best projects for energy transition. This paper evaluates alternatives of photovoltaic panels for energy 
generation in floating systems and proposes a procedure to select the best project using a multiple- 
criteria decision analysis. The Entropy method was used to determine the weight of eight criteria, 
including cost, number of cells, efficiency, area, panel weight, and power characteristics, and the 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to make the selection. 
A sensitivity analysis was conducted considering different weighing methods. Among the 20 photo
voltaic panels analysed, the method proved to be effective in determining the most successful one for 
installation in floating systems. The chosen panel maintained the best performance in all scenarios tested. 
This paper provides a systematic approach for selecting the most suitable photovoltaic panel for floating 
energy systems, contributing to researchers to refine decision-making methodologies and practitioners 
to optimise project implementation in sustainable energy initiatives.
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1. Introduction

A variety of solar panels are available on the market, and this 
diversity extends to the type of project proposed for each panel 
arrangement, whether in onshore (land-based) or offshore 
(marine-based) systems. Therefore, it is crucial to include 
analyses of cost, panel efficiency – considering the local instal
lation conditions – as well as the area occupied by the panels, 
weight, and other characteristics linked to the performance 
and efficiency of the photovoltaic system.

Although the cost of photovoltaic energy has been decreas
ing, it remains higher than that of electricity from fossil 
sources. As such, improvements in the design and manufac
turing of solar cells are essential to increase efficiency and 
reduce costs. New technologies that use tracking systems, 
both terrestrial and floating, can significantly boost energy 
production, with gains ranging from 22% to 56%. However, 
these systems face technical challenges, particularly in floating 
setups (Tina and Scavo 2022).

Floating photovoltaic energy promotes the installation of 
panels on water surfaces, such as reservoirs and canals, offering 
advantages over onshore systems, including the lack of need 
for large occupied areas, higher energy yields due to the cool
ing effect of water, and synergies with existing infrastructure, 
such as hydroelectric power plants (Silalahi and Blakers 2023).

Floating photovoltaic systems, also known as offshore 
photovoltaic systems, have shown significant growth over the 
years, with the first installation in Japan in 2007, followed by 
the first commercial plant in the U.S. in the same year. 
Although they represented less than 1% of solar panels in 
2022, the installed capacity of floating panels has grown by 
more than 2000% in the last decade, with large installations in 
bodies of water, such as coal mines and hydroelectric lakes, the 
majority of which located in China (Essak and Ghosh 2022).

Therefore, it is essential to consider a range of factors before 
choosing the most suitable option for the specific needs of each 
project. The use of increasingly sophisticated decision-making 
methods has grown significantly, with special emphasis on the 
TOPSIS (Technique for Order Preference by Similarity to Ideal 
Solution) method, which provides an objective ranking by 
evaluating each alternative’s performance based on specific 
criteria (G. Sun et al. 2018). To ensure that these criteria are 
accurately weighted in the analysis, complementary methods 
can be applied to address potential biases and enhance the 
robustness of the results.

The Entropy Weighted Method (EWM) helps determine 
criteria weights objectively, avoiding human bias and enhan
cing the reliability of the evaluation results (Sahoo et al. 2017). 
Similarly, the CRITIC (Criteria Importance Through 
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Intercriteria Correlation) method has gained prominence by 
factoring in both the conflict between criteria and the variation 
in information provided by each criterion, ensuring a balanced 
approach to weighting (Krishnan 2024).

Thus, considering the context of sustainable energy use, in 
which multiple criteria are involved in the decision to select the 
best energy generation projects, it is crucial to rely on capable 
of integrating multiple factors in the decision process. In this 
sense, this paper evaluates alternatives of photovoltaic panels 
for energy generation in a floating system and proposes 
a procedure to select the best project using multiple-criteria 
decision making (MCDM) methods. The TOPSIS technique 
weighted by Entropy and CRITIC was used to account for the 
different characteristics of each panel, as well as the economic 
and structural criteria selected for the analysis. This research 
provides a systematic approach for selecting the most suitable 
photovoltaic panel for floating energy systems, contributing to 
researchers to refine decision-making methodologies and 
practitioners to optimise project implementation in sustain
able energy initiatives.

While selection models are commonly applied in various 
engineering fields, this study presents a novel integration of the 
TOPSIS method with Entropy and CRITIC weighting techni
ques tailored for floating photovoltaic (FPV) systems. Unlike 
traditional selection models, which may not account for the 
specific environmental and structural constraints associated 
with water-based installations, this approach systematically 
evaluates each criterion’s relevance within the unique context 
of FPV. The dual weighting process ensures a balanced empha
sis on both economic and structural factors, addressing prac
tical challenges such as panel stability, maintenance in aquatic 
environments, and performance optimisation. This methodo
logical combination provides practitioners with a more precise 
tool for selecting photovoltaic panels in sustainable energy 
projects, contributing unique insights into decision-making 
frameworks for FPV applications.

This paper is organised as follows: section two presents the 
theoretical foundation of this study, section three outlines the 
research methodology used and section four presents the 
results.

2. Theoretical background

Jin et al. (2023) report that the growing global energy demand 
and the need for decarbonisation in electricity generation have 
driven the search for renewable energy sources, with solar 
photovoltaic energy emerging as a prominent alternative. 
Among the various configurations of solar photovoltaic gen
eration, floating photovoltaic systems (FPV) installed in reser
voirs offer advantages over conventional ground-mounted 
solar systems in several aspects, such as land conservation, 
increased efficiency, and reduced water loss.

Kumar, Niyaz, and Gupta (2021) highlight the various 
benefits of implementing floating photovoltaic projects. 
Among them is the fact that there is no need to use land 
surfaces, as the arrays utilise the surfaces of lakes and hydro
electric reservoirs (UHE). Additionally, they help reduce eva
poration from these reservoirs and improve energy output, as 
the presence of water beneath the panels provides a cooling 

effect, enhancing efficiency. According to the same authors, 
other benefits of floating projects include synergy with existing 
systems, forming a hybrid system where hydroelectric plants 
are integrated with floating photovoltaic systems. This integra
tion reduces investment costs and facilitates the connection of 
this system to integrated energy systems.

Regarding the topic of hybrid systems, Murphy, Schleifer, 
and Newman (2021) report that these systems are charac
terised by their economic viability due to the resulting cou
pling of multiple generation technologies, such as in this case 
hydroelectric and photovoltaic solar. They are classified into 
three hybridisation configurations, with selected criteria being: 
cost improvement, performance, and in some cases, both cost 
and performance. Padilha et al. (2022) estimate that Brazil has 
200 artificial water bodies of the UHE type suitable for the 
installation of FPV projects, considering only 1% of the reser
voir surface. This represents 33,140 km2 of area, with an instal
lation capacity of 31,520 MWp and 57,384 GWh/year, 
equivalent to 82.1% of the generation of the Itaipu 
Hydroelectric Plant.

The challenges of implementing floating photovoltaic systems 
can be exemplified in several points. Cazzaniga et al. (2020) 
mention the impact of humidity on panel structures, which can 
affect their longevity. They also highlight the effects of water 
quality in reservoirs, with possible changes in the chemical and 
biological parameters of water bodies. Essak and Ghosh (2022) 
discuss the need for specific mooring systems, which may use 
anchors on the ground or at the bottom of reservoirs, allowing the 
arrays to remain in their established positions and withstand 
changes in wind regimes and water movement.

Another important aspect for the success of floating instal
lations is the selection of the appropriate photovoltaic (PV) 
solar panel which is crucial to ensure that the photovoltaic 
system operates efficiently and reliably. Particularly for the 
development of offshore projects, this panel selection process 
is essential, requiring consideration of various criteria and 
a thorough analysis of parameters. The literature offers several 
examples of the application of MCDM (multiple-criteria deci
sion making) methods for selecting solar panels.

Alao et al. (2020) describe the TOPSIS method as a tool 
used to rank alternatives in decision-making problems with 
multiple criteria. Decision-makers categorise criteria into cost 
and benefit categories, with the best alternative being the one 
closest to the Positive Ideal Solution (PIS) and farthest from 
the Negative Ideal Solution (NIS), using the Euclidean distance 
principle.

Kaur, Gupta, and Dhingra (2023) used the Entropy and 
TOPSIS methodologies for rural electrification. Kozlov and 
Sałabun (2021) applied MCDM methods, using the COMET 
and TOPSIS methodologies, to evaluate solar panels. Ziemba 
(2023) conducted the selection of photovoltaic panels for use 
in the Polish market, based on balanced weight ranges and 
evaluation criteria, employing the PROSA methodology, sup
ported by a stochastic approach based on the Monte Carlo 
method. Seker and Kahraman (2021) performed 
a socioeconomic evaluation for selecting photovoltaic panels 
in a case study in Turkey. Zhang (2015) evaluated energy 
company suppliers using the TOPSIS and Entropy 
methodologies.
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Table 1 presents additional examples of studies that have 
applied the TOPSIS method combined with methods for 
weighting criteria in several areas of application in energy use.

Several studies are representative of recent advances in 
floating PV systems. X. Sun (2024), for instance, utilised 
a novel multicriteria risk assessment model to evaluate floating 
PV projects in China. This study contributes a fuzzy decision- 
making environment tailored to the risk management needs of 
floating PV systems, particularly in complex and variable 
climates.

Sarkodie, Ofosu, and Ampimah (2022) applied TOPSIS and 
entropy to evaluate renewable energy resources for a 5 MWp 
floating solar PV installation in Ghana. Their findings under
score the effectiveness of these decision-making tools in opti
mising criteria tailored to such installations, such as energy 
yield, environmental impact, and cost-effectiveness. Di Grazia 
and Tina (2024) also propose an optimal site selection for 
floating photovoltaic systems based on Geographic 
Information Systems (GIS) and multicriteria decision making 
using AHP and TOPSIS.

Guo et al. (2021) propose a locations appraisal framework for 
floating photovoltaic power plants based on relative-entropy mea
sure and improved hesitant fuzzy linguistic DEMATEL- 
PROMETHEE method. Melek et al. (2024) propose a fuzzy 
Einstein-based decision-making model for the evaluation of site 
selection criteria of floating photovoltaic system.

Deveci, Pamucar, and Oguz (2022) propose a floating photo
voltaic site selection approach using fuzzy rough numbers based 
LAAW and RAFSI model. Gökmener et al. (2023) conduct site 
selection for floating photovoltaic system on dam reservoirs using 
sine trigonometric decision making model. Finally, Velaz-Acera 
et al. (2024) brings a semi-automatic selection of optimal locations 
for FPV installations using MCDM-GIS.

3. Methods

Based on the extensive applicability of the TOPSIS methodology 
as a decision-making method in energy projects, as well as the 
growth of photovoltaic systems as an energy source, this work 
utilised this method along with the Entropy and CRITIC methods 
for weighting, in addition to sensitivity analysis in different 

scenarios, to validate the reliability of the results for selecting 
photovoltaic panels for electricity generation in floating systems.

Data from 20 commercially available panels were used in 
this study, including major suppliers in the European market, 
such as AE Solar; the North American market, represented by 
Canadian Solar; and the Asian market, such as Login Solar. 
The criteria adopted are based on certain premises found in 
various studies, such as Ziemba (2023), who included in his 
analysis the cost per watt (€/watt), the panel’s maximum power 
(Pmax - W), short-circuit current (Isc - A), panel efficiency (%), 
maximum power current (Imp - A), and panel area (m2). 
Additionally, for the analysis of the floating case proposed in 
this work, weight (kg) and the number of cells per panel were 
included. The selection of all these criteria allows for an under
standing of different aspects of panel performance and suit
ability for the adaptation needs of the floating systems 
analysed.

This study focuses on developing a multi-criteria decision- 
making framework to select photovoltaic panels suited for 
floating installations on lake surfaces, particularly in hydro
electric reservoirs. Our methodology is designed to be adap
table across various lake environments, without specifying 
a particular location or gathering site-specific radiation data. 
Unlike terrestrial-focused studies, which evaluate panel per
formance based on precise geographical conditions, our 
approach generalises the panel selection process for aquatic 
environments. This allows for broader applicability of the 
proposal, enabling stakeholders to tailor the selection process 
to individual reservoir conditions as needed.

Table 2 presents the information collected for the 20 panels, 
used as decision-making criteria. The criteria were categorised 
as follows: cost per watt (C1), panel maximum power (C2), 
maximum power current (C3), short-circuit current (C4), 
panel efficiency (C5), number of cells per panel (C6), panel 
area (C7), and weight (C8). Among these criteria, C1, C6, and 
C8 are considered non-beneficial, while C2, C3, C4, C5, and 
C7 are considered beneficial.

The criteria selected for this study were based on their 
relevance to both floating and land-based photovoltaic sys
tems, as identified in various studies on solar energy genera
tion projects. Below is a more detailed justification for the 
selection of each criterion:

Table 1. Application of entropy and TOPSIS in the energy sector.

Authors Method Applications

Alao et al. (2020) Entropy, TOPSIS Waste-to-energy
Fahmi et al. (2024) Entropy, Fuzzy, TOPSIS Natural gas
S. Zhu et al. (2024) AHP, Entropy, TOPSIS Hydropower optimisation
J. Li et al. (2024) Entropy, TOPSIS Rural heating systems
W. Zhu et al. (2024) Entropy, TOPSIS Hydrogen storage
Banadkouki (2023) Entropy, Fuzzy, TOPSIS Industrial energy efficiency
Wang et al. (2024) AHP, Entropy, TOPSIS Energy storage
H. Li et al. (2021) Entropy, TOPSIS Climate data generation
F. Sun and Yu (2021) Entropy, TOPSIS, K-means Energy performance of commercial buildings
Seker and Aydin (2020) Entropy, TOPSIS Hydrogen production
Agar et al. (2023) DIRECT, SMART, SWING, AHP, PAPRIKA, Entropy, and TOPSIS Biomass pellet classification
Kaur, Gupta, and Dhingra (2023) Entropy, TOPSIS PV panel selection
Ma et al. (2023) G1-EW-TOPSIS Carbon neutrality optimisation
Alamri, Saeed, and Saeed (2024) TOPSIS, VIKOR, and MultiMOORA Hydrogen generation
Dhiman and Deb (2020) Fuzzy, TOPSIS Hybrid wind farms
Dwivedi and Sharma (2023) Entropy, TOPSIS Electric vehicle battery optimisation

Source: Authors’ own creation.
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● Cost per watt (C1): This criterion is crucial in any photo
voltaic project, as cost directly impacts the feasibility of 
large-scale implementation. For floating systems, this is 
even more significant, given the additional infrastructure 
required for installation on water surfaces.

● Panel maximum power (C2): The maximum power out
put (Pmax) determines the energy generation capacity of 
a panel under standard conditions. Floating systems, 
benefiting from the cooling effect of water, can further 
enhance panel performance, making this a key criterion.

● Maximum power current (C3) and short-circuit current 
(C4): These electrical performance indicators are essen
tial to ensure that the panels can efficiently generate 
electricity in floating conditions, where temperature and 
humidity levels may vary from land-based systems.

● Panel efficiency (C5): Although panel efficiency is typi
cally a significant factor in solar panel selection, the 
differences between the panels analysed in this study 
were relatively small. Nonetheless, efficiency remains 
important, as higher efficiency reduces the space needed 
for installation, which can be advantageous even in float
ing systems.

● Number of cells per panel (C6): The number of cells 
affects the overall panel efficiency and durability. While 
the number of cells does not vary significantly between 
land-based and floating systems, it can influence the 
structural integrity of the panel. Floating systems may 
require reinforced structures to account for environmen
tal conditions, which justifies the inclusion of this criter
ion in the analysis.

● Panel area (C7): This criterion determines the amount of 
surface area required for panel installation. In floating 
systems, larger panel areas might be feasible due to the 
available water surface, but the added size must be 
balanced against the capacity of the floating platform.

● Panel weight (C8): The weight of the panel is particularly 
important for floating systems, as heavier panels require 
more robust floating structures and mooring solutions. 

This criterion was therefore included to ensure that the 
panels selected are structurally suitable for floating 
installations.

The criteria selected in Table 2 represent key performance indi
cators for photovoltaic panel suitability in floating systems. The 
values in the table include both beneficial criteria, which positively 
impact performance (such as panel efficiency and maximum 
power), and non-beneficial criteria, which may impose limitations 
(such as panel weight and cost per watt). For instance, lower values 
for cost per watt (C1) indicate better economic efficiency, while 
higher values for panel efficiency (C5) and maximum power (C2) 
suggest greater energy output potential.

The cost per watt determines the price of the panel relative to 
its maximum power. A lower cost per watt ratio means better 
value for the consumer. Another important criterion is the panel’s 
maximum power (Pmax), which determines the amount of energy 
a panel can generate under Standard Testing Conditions (STC), 
which include an irradiance of 1000 W/m2 and a cell temperature 
of 25°C (Kaur, Gupta, and Dhingra 2023).

The maximum power current (Imp) and short-circuit cur
rent (Isc) help determine the electrical performance of the panel. 
Panel efficiency indicates the proportion of energy that the panel 
can convert into electricity; the higher the panel’s efficiency, the 
more energy will be generated from the available sunlight.

The inclusion of the panel’s area, as well as the number of 
cells, should be considered, as it determines the land allocation 
required for installation. Smaller panels have an advantage in 
these cases (Kaur, Gupta, and Dhingra 2023). However, in the 
case presented in this work, a larger occupied area is not an 
issue due to the utilisation of surfaces on the lakes of UHE.

Another criterion highlighted in this study is the panel’s 
weight, which becomes relevant in determining the type of struc
ture to be used, as well as the other materials required for the 
installation of the project on a UHE reservoir, among other off
shore examples. Figure 1 shows a FPV located in the Southeast of 
Brazil. In this figure the floating system beneath the panels can be 
seen. These structures are responsible for supporting the panels’ 

Table 2. Criteria of the photovoltaic panels analysed.

Panel
Cost 

(€/watt) [C1] Pmax (W) [C2] Imp (A) [C3]
Isc 

(A) [C4]
Efficiency 
(%) [C5] Number of cells [C6]

Area per Wp 
(m2/Wp) [C7] Weight per Wp (kg/Wp) [C8]

PV1 0.101 535 13.05 13.81 20.70 144 0.004809 0.054206
PV2 0.097 530 12.83 13.72 20.51 144 0.004855 0.053962
PV3 0.095 530 12.71 13.47 20.53 144 0.004855 0.05
PV4 0.141 530 13.00 13.76 20.40 144 0.004894 0.054717
PV5 0.140 550 13.12 13.93 21.30 144 0.004613 0.050909
PV6 0.100 530 12.96 13.80 20.50 144 0.004874 0.060943
PV7 0.145 545 13.04 13.92 21.10 144 0.004739 0.050459
PV8 0.122 640 17.07 18.31 20.60 132 0.004853 0.059063
PV9 0.108 585 17.21 18.26 20.70 120 0.004838 0.059658
PV10 0.101 640 17.20 18.06 20.60 132 0.004853 0.053125
PV11 0.135 435 9.99 10.64 21.80 144 0.004593 0.048276
PV12 0.150 455 13.17 13.95 21.10 132 0.004743 0.053187
PV13 0.130 400 17.30 18.36 20.82 80 0.004805 0.0525
PV14 0.150 400 12.83 13.73 20.50 108 0.004888 0.055
PV15 0.160 400 12.83 13.73 20.48 108 0.004883 0.065
PV16 0.135 560 13.16 13.93 21.70 144 0.005518 0.057679
PV17 0.120 535 12.90 13.78 20.71 144 0.004742 0.053458
PV18 0.108 525 12.76 13.65 20.30 144 0.00492 0.060571
PV19 0.113 670 17.50 18.51 21.57 132 0.004636 0.051493
PV20 0.103 530 13.07 13.71 20.55 144 0.004874 0.050943

Source: Authors’ own creation.

1176 A. B. LEAL ET AL.



weight. As such, materials are selected to meet this requirement, 
allowing thus for electricity generation.

In this study, several variables and indices are used to 
define the mathematical model and equations. Here, Xmn 
represents the value associated with criterion m for photo
voltaic panel n, where m and n are indices corresponding 
to specific criteria and panels, respectively. The indices 
i and j are used for summation or iterative operations, 
generalising calculations across criteria and alternatives. 
The term rjk represents the amount of information gener
ated by each criterion, where j and j indicate specific 
relationships or interactions between criteria in the model.

3.1. Entropy method

The entropy weighting approach, presented by Shannon (1948), 
is a weighting mechanism used to evaluate the distribution of 
value in decision-making. This approach employs probability 
theory, providing the methodologies and equations necessary to 
calculate entropy weights and conduct the evaluation of criteria. 
The descriptions of the equations will be presented below.

Initially, the decision matrix (Equation 1) includes the 
criteria and alternatives previously described.

Next, the matrix is normalised using Equation 2.

Subsequently, the entropy value, ej, is calculated using 
Equation 3. This factor can be used to quantify the information 
about the choice contained in the normalised matrix, in this 
case, the established value of a criterion in the study.

The degree of diversification, dj (Equation 4), of the deci
sion matrix with the panel options and n criteria, are the 
weights based on the satisfying of the established 
requirements.

Finally, the value of the criteria weights (WjÞ is obtained 
using Equation 5.

The weight values found will be used in TOPSIS to calculate 
the performance of the alternatives, using entropy or uncertain 
information calculated based on probability theory.

3.2. CRITIC method

The CRITIC method uses an objective weighting approach 
based on the criteria data. This methodology considers not 
only the amount of information contained in the criteria, but 
also the divergence between the different schemes and the 
conflict between the criteria, resulting in more objective calcu
lations (Diakoulaki, Mavrotas, and Papayannakis 1995).

The steps the calculation by the CRITIC method will be 
presented using the data decision matrix (Equation 1) which is 
then normalised using the membership function (Equation 6). It 
indicates how much the alternative ai is located between the best 
performing values (f best

j ) and worst performing values ðf worst
j Þ.

The relative score matrix xij, means the value of alternative i 
and criterion j. Then, the standard deviation (σjÞ and the 
correlation coefficient (pij), are calculated, presented by 
Equation 7 and Equation 8, respectively.

Where xij means that the mean value of alternative 
i; cov Xi;Xj

� �
refers to the covariance between row i and row j 

of the decision matrix X.
With the data obtained, a symmetric matrix (N x N) is 

structured, in which the elements represent the correlation 
between the parameters studied.

Then, the amount of information generated by each criter
ion (rjk), is determined, subtracting 1 from each element of the 
symmetric linear correlation matrix (N x N) and the sum is 
calculated for each row, as shown in Equation 9.

Then, the value obtained is multiplied by the standard devia
tion (σj) of each practice, previously calculated, to provide the 
amount of information of the criterion (Equation 10).

Figure 1. Floating photovoltaic system example at a Brazilian solar plant. Source: 
Authors.
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To calculate the weight of each criterion, (Equation 11) is used.

It is possible to observe that CRITIC is an objective weighting 
method that determines the weights of criteria based on the 
conflict between criteria and the amount of information they 
provide. This method contrasts with several other popular 
weighting approaches, such as Entropy, the Analytic 
Hierarchy Process (AHP) and Equal Weights methods.

Both CRITIC and the Entropy method are objective weight
ing techniques that rely on the distribution of information 
within the dataset. However, while Entropy focuses solely on 
the variation of values within each criterion to assign weights, 
CRITIC also considers the conflict between criteria, making it 
more robust in scenarios where criteria may have interdepen
dencies or correlations. This allows CRITIC to capture more 
nuances in the data, especially when evaluating criteria with 
varying degrees of importance.

Unlike CRITIC, AHP is a subjective weighting method that 
depends on the decision-maker’s judgement to assign relative 
importance to criteria through pairwise comparisons. AHP is 
beneficial in scenarios that require the incorporation of sub
jective preferences, but it can introduce bias into the decision- 
making process. CRITIC, being fully data-driven, avoids such 
biases, which is why it was selected as one of the weighting 
methods in this study. AHP, also, has the ranking reversal 
issue, which can represent a methodological challenge 
(Junior, Osiro, and Carpinetti 2014).

Assigning equal weights to all criteria is a simple approach 
that assumes all criteria have the same importance. This 
method is often used in scenarios where there is insufficient 
information to differentiate the importance of criteria. 
However, the equal weights method lacks the sensitivity to 
data variations that CRITIC provides, which limits its effec
tiveness in more complex decision-making contexts where 
criteria have different levels of influence.

By comparing CRITIC with these methods, we see that 
CRITIC’s ability to account for both the amount of infor
mation and the conflict between criteria makes it particu
larly suitable for applications where a deeper understanding 
of the relationships between criteria is required, as in the 
case of photovoltaic panel selection for floating systems. 
This is why CRITIC was used in conjunction with Entropy 
and TOPSIS to ensure a comprehensive and objective 
analysis.

3.3. TOPSIS method

X. Li et al. (2011) describe the steps for processing decision 
matrix data. Initially, the decision matrix is normalised using 
Equation 12, obtaining the matrix Mij, described below. This 
procedure ensures that all attributes are equivalent and have 
the same format.

Then the weighted decision matrix is obtained, in which the 
normalised decision matrix is multiplied by the respective 
weights obtained using the Entropy method, as seen in 
Equation 13.

To obtain the ideal solution, which is composed of the positive 
ideal solution and the negative ideal solution, the former is 
obtained by the highest value of the weighted decision matrix, 
as seen in Equation 14, and the latter is obtained by the lowest 
value of each attribute in the weighted decision matrix, as 
illustrated in Equation 15.

We know that the positive ideal value and the negative ideal 
value are determined by Equation 16 and Equation 17, 
respectively,

The Euclidean distance was used to calculate the separation 
measures of each alternative from the positive ideal solution 
(Sepþi Þ, for beneficial qualities, and from the negative ideal 
solution (Sep�i Þ, for non-beneficial qualities. Thus, the mea
sures are obtained through Equation 18 and Equation 19, 
respectively.

Finally, the relative degree of approximation Ci� is determined 
by Equation 20.

The ranking of the evaluation object is based on the value of 
the relative degree of approximation. The higher the value, the 
better the evaluation object.

In addition to TOPSIS, other MCDM methods such as AHP 
and VIKOR are commonly used in decision-making scenarios. 
Each of these methods has distinct advantages and limitations, 
which make them suitable for different types of decision 
problems.

TOPSIS was selected for our study because it evaluates 
alternatives based on their distance from an ideal solution, 
considering both beneficial and non-beneficial criteria. 
TOPSIS is well-suited for cases where precise criteria 
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performance values are available, and the decision-making 
process needs to consider trade-offs between different criteria. 
A notable strength of TOPSIS is its ability to handle large 
datasets and provide a clear ranking of alternatives, making it 
particularly effective in engineering applications such as 
photovoltaic panel selection. However, one limitation of 
TOPSIS is that the results can be sensitive to the normalisation 
process, and it does not account for the subjective preferences 
of decision-makers unless combined with other methods like 
entropy or AHP.

AHP is a widely used MCDM method that involves 
structuring decision problems into a hierarchy and then 
performing pairwise comparisons to assign relative weights 
to each criterion. AHP’s strength lies in its ability to 
incorporate the decision-makers’ judgements and prefer
ences, making it highly effective in scenarios where sub
jective opinions are essential. However, for a study like 
ours, which focuses on quantitative criteria and objective 
data, AHP may be less appropriate, as it can become 
complex and time-consuming when dealing with a large 
number of alternatives and criteria. AHP also has the 
ranking reversal issue, which can directly impact its results 
(Junior, Osiro, and Carpinetti 2014).

VIKOR is another popular MCDM technique, which 
focuses on ranking alternatives based on the concept of 
compromise solutions. It is particularly effective when the 
decision-makers aim to find a balance between conflicting 
criteria. VIKOR’s strength lies in its capacity to handle 
decision-making problems with high levels of conflict 
among criteria, making it useful for problems involving 
trade-offs between multiple stakeholders. However, for 
our study, which prioritises a clear ranking based on 
objective data, VIKOR’s focus on compromise solutions 
was less aligned with our goal of selecting the best photo
voltaic panel for floating systems.

By choosing TOPSIS, we leveraged its strengths in ranking 
alternatives based on objective criteria and clear distance mea
sures from ideal solutions. In contrast, methods like AHP and 
VIKOR would have added complexity without providing sig
nificant advantages for the type of quantitative data used in 
this study.

4. Results and discussions

4.1. Photovoltaic panel analysis and selection

The analysis revealed that panel P15 consistently ranked as the 
top-performing option across all weighting scenarios, regard
less of the specific method used – Entropy, CRITIC, or equal 
weighting. This consistent dominance suggests that PV15 
offers an optimal balance of cost-efficiency, energy output, 
and structural suitability, making it particularly robust for 
FPV applications. Its top ranking highlights its versatility and 
reliability across different project priorities and conditions, 
underscoring P15 as a preferred choice for FPV installations.

However, to reach this conclusion, it is essential to under
stand the underlying calculations that led to PV15’s high 
ranking. The consistent performance of PV15 is a result of 
the weight calculations applied to each criterion, which we 

detail in the following sections. By examining how different 
criteria weights affect the panel rankings, we can confirm the 
robustness of PV15 in comparison with other panels, ensuring 
that the selection process aligns with diverse project require
ments and methodological rigour. With this initial conclusion 
established, we proceed to examine the criteria weight distri
butions calculated using the Entropy and CRITIC methods

Figure 2 represents the weights found using the Entropy 
methodology for the 20 panels selected in the study, analysing 
the eight criteria. This figure illustrates the distribution of 
weights assigned to each criterion using the Entropy method. 
Higher weights, such as those for cost per watt (C1) and panel 
weight (C8), indicate criteria with more variation across the 
analysed alternatives, suggesting a stronger influence on the 
decision-making process. In contrast, lower weights, such as 
for panel efficiency (C5), reflect criteria with less variability, 
which the Entropy method interprets as less significant in 
distinguishing between alternatives.

An evaluation of the weight relationship among various 
criteria highlights those with the highest values, indicating 
good criteria to be used: cost per watt (C1) had a weight 
value of 17.4%, and panel weight (C8) had a value of 16.4%. 
On the other hand, panel efficiency (C5) had the lowest weight, 
0.3%, as well as the number of cells (C6) with 11.2%. In this 
case, both are not good criteria for panel selection.

Specifically, the natural cooling effect of the water surface can 
enhance the performance of all panels uniformly, reducing the 
significance of efficiency differences (C5) that are often critical in 
land-based systems where temperature variations impact panel 
performance more directly. In FPV systems, this cooling effect 
minimises performance disparities, making other factors, such as 
cost per watt (C1) and structural characteristics (e.g. panel weight 
and area), more decisive for ensuring feasibility and stability.

Furthermore, the number of cells per panel (C6) also has 
a lower impact in FPV contexts. This criterion is typically 
relevant in land-based installations where structural limita
tions and space constraints require optimised panel layouts. 
In FPV projects, however, the available space on water bodies 
is generally more flexible, allowing for larger and varied con
figurations without strict cell count constraints. Therefore, 
while the number of cells can influence the electrical output, 
it is less crucial in FPV systems compared to other criteria that 
directly affect installation and operational stability on water. 
Additionally, the reflective properties of water may increase 
irradiance levels, further diminishing the marginal advantage 
of high-efficiency panels and cell counts in FPV contexts.

The Entropy methodology considers efficiency as a less 
relevant criterion because the method analyzes the variation 
of values to generate its weights. Therefore, since the efficien
cies of the selected panels do not have significant variations 
among their values, the Entropy method deemed this criterion 
less relevant. However, in other analyses, if the efficiency of the 
panels shows significant differences, this criterion would have 
a higher degree of importance.

By normalising the decision matrix using Equation 12 and 
then weighting the data using Equations 16 and 17, the follow
ing values are obtained, as described in Table 3.

Using Equations 17 and 18, the worst and best ideal values 
are obtained. For this calculation, the maximum parameters 
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for criteria C2, C3, C4, C5 and C7 are considered as ideal 
criteria; and the minimum ideal values for parameters C1, C6 
and C8. The results are described in Table 4, which presents 
the positive ideal solution (sepi+), for beneficial qualities, and 
the negative ideal solution (sepi-). Finally, the relative degree of 
approximation Ci determined by Equation 20 is obtained.

The values presented in Table 4, located in the last column 
of the table, determine the best classification for choosing the 
panel. After analysing the results, panel 15 (PV15) presents the 
best classification, with a value of 0.921; then PV12, with an 
order of 0.828, represents the second option.

The selection of SP15 as the best panel is a result of its 
balanced performance across several important criteria, rather 
than excelling in any single attribute. Using the Entropy and 
CRITIC methods, we calculated weights that emphasise cri
teria most relevant to floating photovoltaic (FPV) applications, 
such as cost per watt (C1) and panel weight (C8). SP15’s 
closeness to the Positive Ideal Solution (PIS) in the TOPSIS 
analysis resulted in the highest relative closeness coefficient 
among all panels.

Although SP15 is not the lightest, cheapest, or most efficient 
in isolation, its consistent ranking across multiple scenarios – 
including sensitivity analyses using different weighting meth
ods – confirms its robustness. This is particularly important 
for FPV systems, where the structural demands and economic 
constraints necessitate a well-rounded panel choice that pro
vides reliability, durability, and economic feasibility under 
varying environmental conditions. SP15’s balanced attributes 
make it the most suitable choice within this context, aligning 
technical, structural, and economic requirements for FPV 
installations.

Although this study presents a generalisable approach, its 
application can be particularly beneficial for FPV installations 
in hydroelectric reservoirs, such as those in Brazil’s Tucuruí 
(Pará) and Billings (São Paulo). By applying our multi-criteria 
decision-making framework, decision-makers can select PV 
panels that align with the specific structural and environmen
tal demands of these reservoirs. This practical example under
scores how our method can guide PV panel selection in diverse 
hydroelectric contexts, promoting sustainable energy solutions 
while adapting to unique site requirements.

Figure 2. Criteria weight calculation using the Entropy method. Source: Authors’ own creation.

Table 3. Values obtained for ideal solutions for each criterion.

C1 C2 C3 C4 C5 C6 C7 C8

Wj 0,174 0,133 0,137 0,134 0,003 0,112 0,144 0,164
Z+ 5,34E–02 1,58E–05 6,07E–04 5,58E–04 7,08E–06 2,47E–05 3,37E–03 2,02E–04
Z− 9,00E–02 9,42E–06 3,46E–04 3,21E–04 6,59E–06 4,44E–05 6,59E–06 3,37E–03

Source: Authors’ own creation.

Table 4. Selection using entropy-TOPSIS.

Panel Sep+ Sep- Ci* Ranking

PV15 0.037 0.003 0.921 1st

PV12 0.031 0.006 0.828 2nd

PV14 0.031 0.006 0.827 3rd

PV7 0.028 0.009 0.758 4th

PV4 0.026 0.011 0.700 5th

PV5 0.025 0.012 0.685 6th

PV16 0.023 0.014 0.610 7th

PV11 0.023 0.014 0.610 8th

PV13 0.020 0.017 0.535 9th

PV8 0.015 0.022 0.414 10th

PV17 0.014 0.023 0.384 11th

PV19 0.010 0.027 0.277 12th

PV18 0.007 0.029 0.201 13th

PV9 0.007 0.029 0.201 14th

PV20 0.005 0.032 0.125 15th

PV1 0.003 0.033 0.095 16th

PV10 0.003 0.033 0.094 17th

PV6 0.003 0.034 0.080 18th

PV2 0.001 0.036 0.031 19th

PV3 0.001 0.037 0.016 20th

Source: Authors’ own creation.
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4.2. Sensitivity analysis

A sensitivity analysis of the weights was conducted to examine the 
reliability of the Entropy-TOPSIS method in determining the best 
panel option to be adopted for the floating project. For this 
purpose, three additional evaluation scenarios were proposed, in 
which the criteria weights were modified, totalling four scenarios. 
The base scenario for the sensitivity analysis was Entropy.

In the second scenario, all criteria were assigned equal 
weights, with each representing 12.5%. In the third scenario, 
the CRITIC method was used, as described in section 3.2, 
resulting in a variation in the weights compared to the 
Entropy method. In this analysis, the criteria considered 
good for selection are as follows: Panel Efficiency (C5) has 
a weight of 20.14%, and Cost per Watt (C1) has a weight of 
18.85%. On the other hand, the panel’s Maximum Power (C2) 
and Panel Weight (C8) obtained the lowest weights, 4.25% and 
6.14%, respectively, indicating that they are not as relevant 
criteria for panel selection by this methodology.

In the fourth scenario, the criteria were weighted according 
to the technical and economic aspects necessary for the success 
of floating projects, assigning higher weights to Cost, 
Efficiency, Area, and Weight, each with 15%, while the other 
criteria received 10%. Figure 3 represents the distribution of 
weights in the established scenarios.

In this study, the weighting of the criteria was conducted 
using the Entropy and CRITIC methods, both of which offer 
objective, data-driven insights into the importance of each 
criterion. The Entropy method assigns weights based on the 
distribution of values within each criterion, ensuring that 
criteria with significant variation across alternatives – such as 
cost per watt (C1) and panel weight (C8) – receive higher 
importance. This minimises subjective bias, providing weights 
based solely on data variability. However, this focus on varia
bility can lead to the underweighting of criteria that show 
minimal differences among alternatives, such as panel effi
ciency (C5), even if they are important in practice.

In contrast, the CRITIC method incorporates both the 
variability of each criterion and the degree of conflict between 
criteria, giving greater weight to criteria that provide unique, 
non-redundant information. For example, while Entropy de- 
emphasised panel efficiency due to its low variability, CRITIC 

identified it as more relevant based on its distinct informa
tional contribution. This approach helps capture criteria inter
dependencies and better reflects real-world complexity. The 
dual use of Entropy and CRITIC in this analysis thus provides 
a balanced evaluation, though some biases may still arise. For 
instance, methods emphasising cost (like Entropy) may over
look critical technical attributes, while methods focusing on 
information diversity (like CRITIC) might assign greater 
weight to less economically impactful criteria.

By clarifying the weighting processes and addressing potential 
biases, we aim to help practitioners align the weighting interpreta
tion with project-specific priorities, facilitating informed decision- 
making in real-world floating photovoltaic applications.

Table 5 provides a detailed presentation of the results 
obtained for the 20 selected panels. There is a slight variation 
in the ranking of the panels, as evidenced by the variation in 
the values of the relative closeness coefficients (Ci*), demon
strating that, despite the variations in the scenarios, PV15 
remains the best option, followed by PV12 and PV14.

In Figure 4, it is possible to visualise the closeness coeffi
cient values found for the four scenarios. This figure shows the 
closeness coefficient values for each photovoltaic panel under 
the different weighting scenarios tested in the sensitivity ana
lysis. Panels with consistently high coefficients, such as PV15, 
demonstrate robustness across weighting methods, making 
them strong candidates for practical applications. Variability 
in closeness coefficients for lower-ranked panels, such as PV3 
and PV2, suggests that their suitability is more dependent on 
specific project priorities and chosen weighting methods.

The dominance of the PV15 panel across all tested scenarios 
highlights its performance across a range of criteria. This result 
is particularly significant in light of the challenges posed by 
floating photovoltaic systems, where the balance between tech
nical performance and structural feasibility is crucial. PV15’s 
ability to consistently rank highest suggests that it meets the 
complex demands of floating installations, where weight, 
structural integrity, and economic considerations are as 
important as energy output.

The sensitivity analysis further supports the robustness of 
the methodology employed. Despite variations in weighting 
techniques, the top-performing panels remained largely con
sistent, indicating that the selection process is not overly 

Figure 3. Weight values for sensitivity analysis. Source: Authors’ own creation.
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sensitive to shifts in criteria prioritisation. This robustness is 
crucial for floating systems, which must operate under diverse 
environmental conditions, including variable water levels, 
weather patterns, and structural constraints. The fact that 
PV15 remained the top choice under different weighting 
schemes suggests that it offers a level of adaptability that is 
particularly valuable in floating photovoltaic projects.

The lower emphasis on panel efficiency (C5) as a key factor 
also merits discussion. While efficiency is traditionally 
a critical criterion in solar panel selection, the relatively small 
range of efficiency values among the panels studied explains 
why it had less impact in this analysis. Cooling effects from 
water surfaces can mitigate efficiency losses, making other 
factors like cost and weight more critical. In this context, the 
cooling effect of water bodies on floating panels may allow for 
less emphasis on small efficiency gains, shifting the focus to 
other criteria that affect the long-term viability and cost- 
effectiveness of the project.

Furthermore, the prominence of panel weight (C8) in the 
analysis reflects the structural demands unique to floating systems. 

Unlike land-based installations, where weight is generally less of 
a concern, floating systems require buoyant structures that can 
support the panels. Heavier panels may necessitate more robust 
and expensive support systems, impacting the overall project cost. 
This is particularly relevant in large-scale installations, where the 
cumulative weight of hundreds or thousands of panels could 
significantly influence the design and cost of the floating platform. 
The high weight given to cost per watt (C1) in this analysis is 
consistent with the growing focus on making renewable energy 
more competitive with traditional energy sources.

For researchers, the use of approaches like TOPSIS, alongside 
sensitivity analysis, provides a replicable framework for future 
studies in renewable energy project selection. Practitioners in 
the field can benefit from this approach by optimising project 
implementation, ensuring that selected photovoltaic panels 
meet the specific technical and economic requirements of float
ing systems. The identified best-performing panels, such as 
PV15 and PV12, are well-suited for environments where factors 
like structural support and cost-effectiveness are critical, con
tributing to more efficient energy production.

Table 5. Closeness coefficient and rankings of sensitivity analysis considering all scenarios.

Panel

Entropy Equal Weights CRITIC Floating

Ci Ranking Ci Ranking Ci Ranking Ci Ranking

PV1 0.095 16 0.094 16 0.095 16 0.096 17
PV2 0.031 19 0.028 19 0.033 19 0.035 19
PV3 0.017 20 0.011 20 0.020 20 0.023 20
PV4 0.700 5 0.700 5 0.692 5 0.697 5
PV5 0.685 6 0.685 6 0.677 6 0.682 6
PV6 0.080 18 0.079 18 0.080 18 0.081 18
PV7 0.758 4 0.759 4 0.747 4 0.754 4
PV8 0.414 10 0.414 10 0.411 10 0.414 10
PV9 0.200 14 0.200 14 0.200 14 0.202 13
PV10 0.093 17 0.093 17 0.093 17 0.101 16
PV11 0.610 7 0.611 7 0.605 8 0.608 8
PV12 0.828 2 0.829 2 0.812 2 0.822 2
PV13 0.535 9 0.535 9 0.531 9 0.533 9
PV14 0.827 3 0.829 3 0.812 3 0.822 3
PV15 0.921 1 0.924 1 0.892 1 0.909 1
PV16 0.610 8 0.611 8 0.605 7 0.609 7
PV17 0.384 11 0.384 11 0.381 11 0.383 11
PV18 0.201 13 0.201 13 0.200 13 0.201 14
PV19 0.277 12 0.277 12 0.275 12 0.279 12
PV20 0.125 15 0.124 15 0.125 15 0.126 15

Source: Authors’ own creation.

Figure 4. Closeness coefficients in sensitivity analysis. Source: Authors’ own creation.
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The sensitivity analysis conducted in this study aimed to 
assess the robustness of the panel selection process under dif
ferent weighting schemes. By comparing the Entropy method, 
CRITIC, and equal weights, we were able to evaluate how each 
method influenced the ranking of the panels and identify the 
criteria that had the greatest impact on the final decision.

When using the CRITIC method, the criteria with the highest 
weights were panel efficiency (C5) and cost per watt (C1), indicat
ing that these two factors were deemed the most influential in the 
decision-making process. The CRITIC method, by considering 
both the variability of the data and the conflict between criteria, 
gives more importance to criteria that show significant differences 
between alternatives. This suggests that, in real-world applica
tions, the CRITIC method would be particularly useful in contexts 
where certain criteria, such as efficiency or cost, show marked 
variation and need to be prioritised to optimise performance. For 
example, in a scenario where energy output is critical, the empha
sis on efficiency would guide the selection towards panels that 
offer higher performance, despite possible higher costs.

On the other hand, the equal weights method assigned the 
same level of importance to all criteria, leading to a more balanced 
influence of each factor on the ranking of the panels. While this 
approach simplifies the decision-making process by avoiding 
subjective bias or complex calculations, it may overlook the nuan
ces between criteria that have different levels of significance in 
real-world applications. For instance, treating panel efficiency and 
weight as equally important could lead to suboptimal choices in 
floating systems, where weight plays a crucial role in determining 
the structural feasibility of the installation. In practical terms, the 
equal weights method might be more suitable in early-stage eva
luations, where decision-makers are exploring a wide range of 
alternatives without specific priorities, or when data on the relative 
importance of criteria is limited.

The results of the sensitivity analysis highlight that the choice of 
weighting method can significantly influence the final ranking of 
photovoltaic panels. In all scenarios tested, panel PV15 consis
tently ranked highest, demonstrating its robustness as the best 
option across different weighting schemes. However, panels that 
ranked lower, such as PV3 and PV2, showed more variability in 
their performance, indicating that their selection would depend 
heavily on the specific priorities of the project.

This has important implications for real-world applications: if 
cost minimisation is the primary goal, methods like CRITIC, 
which place higher weight on economic factors, would be more 
effective. Conversely, if operational reliability is a priority, meth
ods that give equal importance to all criteria may lead to a more 
balanced, if less optimised, decision.

4.3. Environmental impacts and sustainability 
considerations

FPVs present a promising solution for sustainable energy genera
tion, offering several advantages, particularly in terms of land 
conservation and improved energy efficiency. One of the most 
notable benefits of FPVs is their ability to reduce water evapora
tion by covering portions of water bodies. This is especially valu
able in regions with high evaporation rates, where preserving 
water levels is crucial for both water conservation and the opera
tional efficiency of hydroelectric plants. By reducing evaporation, 

FPVs contribute to the overall sustainability of water resources, 
creating a synergy between solar and hydroelectric energy 
production.

However, it is important to consider potential environmental 
impacts, particularly related to water quality and aquatic ecosys
tems. The installation of FPVs can influence the physical and 
chemical characteristics of water, such as temperature and oxygen 
levels. While the shading effect from panels can reduce water 
temperature, which may benefit certain species in warmer cli
mates, it can also affect light penetration, potentially impacting 
the photosynthesis of aquatic plants and microorganisms. These 
effects tend to be localised and manageable, especially with careful 
monitoring and site selection to minimise ecological disruption.

Aquatic ecosystems may also experience some changes due 
to the presence of FPVs, as the shading and structure of the 
panels can modify habitat conditions. In certain cases, this 
could create cooler areas that benefit specific species, while in 
others, reduced sunlight might disturb the behaviour of aqua
tic organisms. Additionally, the anchoring systems used to 
stabilise floating platforms need to be carefully designed to 
avoid disturbing sediments and underwater vegetation.

Therefore, it is essential to implement these systems respon
sibly, with ongoing environmental assessments to ensure that 
any impacts on water quality or ecosystems are managed 
effectively. With appropriate planning and monitoring, FPVs 
can contribute positively to the renewable energy landscape 
while minimising environmental concerns.

5. Conclusions

MCDM techniques were used to rank the ideal panel options, 
assisting decision-makers in choosing the best option according to 
their specific demands for the construction of the floating project. 
Through the use of the TOPSIS methodology weighted by 
Entropy and subsequently CRITIC, it was possible to select the 
best option among the 20 panels considered for the floating 
project.

Among the eight criteria considered, the non-beneficial 
ones were cost per watt (C1), the number of photovoltaic 
cells (C6), and weight (C8), since these criteria would be 
detrimental to a floating project. On the other hand, the 
beneficial criteria included the panel’s maximum power (C2), 
maximum power current (C3), short-circuit current (C4), 
panel efficiency (C5), and panel area (C7).

The results indicated that the best panel option for the 
floating system is P15, followed by option P12. Using the 
weights obtained through the Entropy methodology, the rela
tive closeness coefficients obtained in the TOPSIS technique 
were 0.921 for P15 and 0.828 for P12.

A sensitivity analysis was conducted, using three additional 
scenarios: the second scenario with equal weights, the third 
with weights obtained through the CRITIC methodology, and 
a fourth scenario called the ‘floating scenario’, where higher 
weights are assigned according to the technical and economic 
aspects necessary for the project’s success.

The sensitivity analysis results pointed to the same options 
proposed by the Entropy-TOPSIS approach. However, there was 
a noticeable change in the closeness coefficients (Ci*) for scenario 
2 (Equal Weights), where the Ci for PV15 was 0.924; for scenario 3 
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(CRITIC), this value was 0.892; and for the fourth scenario 
(Floating), the closeness coefficient was 0.909. Therefore, we 
infer that using other panels could potentially change the ranking 
of the top panels selected by the method used.

It is important to highlight that the weights obtained in 
the analyses, especially for the cost and panel weight cri
teria, showed more significant values for the Entropy meth
odology. However, for the CRITIC method, the most 
relevant criteria were not only cost but also efficiency, 
with panel weight being one of the least relevant criteria. 
Thus, it is possible to observe that depending on the choice 
of the decision-making method, the weights of the criteria 
can vary, and therefore, specific characteristics of each 
system must be taken into account.

The results obtained, as well as the sensitivity analysis, demon
strate the importance of using MCDM to identify the best panel 
for installation in floating systems, and that the Entropy metho
dology proved to be suitable for the selection of these panels. 
Therefore, the weight of the panel is particularly relevant, as it 
influences the choice of the type of structure and materials needed 
for the installation of the offshore photovoltaic plant. Thus, the 
fourth scenario analysed emphasises panel weight, along with 
efficiency, area, and cost, as the most relevant criteria for this 
study, in line with the base scenario (Entropy) presented in the 
first analysis.

Thus, this research contributed significantly to decision- 
making regarding photovoltaic panels in floating installations, 
allowing decision-makers to choose the best sustainable energy 
projects considering the specific characteristics of each system. 
Future research could explore other alternatives such as bifacial 
panels and solar tracking systems to increase the efficiency of 
these floating projects. In addition, it is important that future 
research considers new evaluation criteria for photovoltaic 
panels, expanding the dimensions of sustainability analysed, 
including economic, environmental and social aspects.
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