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FINITE CONJUGACY IN GROUP RINGS

SONIA P, COELHO and  CESAR POLCINO MILIES

1. INTRODUCTION

Let KG be the group ring of a group G over a field K and
let U(KG) denote the group of units of this ring. The set S==SK(G)
of elements in G having a finite number of conjugates in U(KG) 1is
called the K-supercenter of G. Clearly, if S=G then U(KG) is 1it-
self an FC group.

This concept was introduced by S.K. Sehgal and H.
J. Zassenhaus in the context of integral group rings [11]). C., Pol-
cino Milies and S.K. Sehgal [8] studied the supercenter of a group
G over an infinite field K in two cases: when G is a torsion group
and when char(K)=p>0 and G contains a normal p-subgroup.

In this paper we are concerned with supercenters of FC
groups, but our techniques allow us to 1n91ude also the case where
K is infinite and G arbitrary. In this way, our results include
those in [8]; however, we do not need to impose the restriction of
the existence of a normal p-subgroup and we are able to describe S
also in the case where char(K) =0.

Group rings whose unit groups form an FC group have been

studied in a series of papers: [10], [7] and [1]. Considering the
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case where S=G we are able to fully describe these rings. Our
results, given in section 4, are equivalent to those in these
papers but we are able to describe conditions for the existence of
FC unit groups solely in terms of the given group G and the field
K.

2. SOME LEMMAS

Throughout this section we shall always assume either

that K.is an infinite field or that G is an infinite FC group.
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(2.1) Lemma. Let x ¢ KG be an element such that x“=8x for some

8 ¢ K. Then [x,KS]={xy-yx | ¥y ¢ KS} =0.

Proof. We wish to show that x commutes with every element y e S.
So, set c=yxy-1. We claim - that there exist infinitely many
elements in K° UG which commute simultaneously with x, ¥y and e¢.
In fact, if K is infinite then the assertion is obvious. If not,
then G is an infinite FC group and thus, all centralizers of
elements in G are infinite,

We enrumerate explicitely  supp(x) Uvsupp(c) = {81800}
‘Denote C°=CG(y)_. Since 31 has finitely many conjugates by elements

of Co then C1=CC (gl) is also infinite. Inductively, we see that
o

Chn=Cc (gm) is infinite, and the elements in C  verify our claim.
m-1

Set ac¢k’°UG. If 8 #0 we consider the unit

u =1- 8" x + 8 1ax whose inverse is u;J’ =1 -8"1xsp"la"x and

compute:



wo= uuyu;1 = (I—B'1x+s—1ux)y(1-8'1x+a'1q'1x) =

= y-B-lxy-B'lyx+B-Inxy+8_1n'1yx+(28'2-8-2c-8'2n-1)xyx.
Since yx = cy we get:
w, = (1+8;1axfa'Ix-a'1c+B'1u'lc+zs'zxc-s-éaxc-a'an'lxc)y.

Hence:

xw, --x(u+8'1c-8'1uc)y = u(x-a'lxc) + e,

Thus, if x-8"1

xc #0 we would have infinitely many pos-
sible values for XW,, a contradiction. So, x==8—1xc i.e. Bx= xc.

Back in the expression of W, we obtain:

1

w, o= (1-8~ c+s—1u'1(c-x))y.

Once again, we obtain infinitely many values for w, un-
less x=¢c, a8 we wished to show.
If 8 =0 we consider the unit u = l4ax whose 1inverse is

.u;1= l1-ax and a similar argument will show again that x=c. a

(2.2) Corollary. Every idempotent of KS is central in KG.

Proof. Let e € KS be an idempotent element and set x ¢ G. The
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elements o = ex(l-e) and B8 = (1-e)xe are such that a“=8“=0.

From lemma (2.1) we have that:
a = ea = ae = ex(1l-e)e = O.

In a similar way we see that 8 = 0. Hence a =8 and thus

ex = xe. a



(2.3) Lemma. Let t be a torsion element in G. Then, for every

element s ¢ S we have that ts:<t>.

o(t)
Proof. Set x= £ t'. Then x°=gx where 8 = o(t). The lemma
= . i=
above shows that x®=x and the result follows immediately. ‘A

We shall denote by T(S) the set of all torsion elements
in S. Lemma (2.3) shows that T(S) is a subgroup of G. Moreover, it
shows that each of its subgroups is normal in T(S) hence it 1is
either an abelian group or a group of the form KB x Ax B where Ks
is the(quaternion group of eight elements, A is an elementary
abelian 2-group and B an abelian group all of whose elements are

of odd order.

(2.4) Lemma. Assume that char(K) =p> 0. Then every p-element of

T(S) is central in G.

Proof. Let t ¢ T(S) be a p-element and let x be an arbitrary
element in G. As in 1lemma (2.1) we can find infinitely many
elements o in K° U G which commute with both t and x.

It follows from the description of T(S) above that t is
contained in a finite p-group H which is normal in G. Hence, the
element ax(t-1) ¢ A(G:H) is nilpotent and thus u_ =1-ax(t-1) is a

unit. We compute:

1

w, =u tull = (1-ax(t-1))t(l-ax(t-1))"1

= (1-ax(t-1))t(1+ax(t-1)+a2(x(t=-1))2¢. . . +a™(x(t-1))",

n+l

where we assume that [x(t-1)] = 0,



Hence:

n
we = t+ (tx-xt)(t-1) © ol(x(t-2))i7L,
i=1

Notice that the set of all p-elements in T(S) forms a
subgroup; hence, y = t~1 x"lex is also a p-element of T(S). We

have that:

8 = (tx-xt)(t-1) = xt(y-1)(t-1) ,

n
w =t+e £ ol(x t-1))1"1,
- i=1

Assume, by contradiction,that xt#tx 1i.e. that e #0.
If we can choose infinitely many values of a in K it is easy to
see that tx# xt implies that the coefficient of xt in wn is of the

form

a+k1u2+k2&3-&... i ky e K ,
a non zero polynomial which assumes infinitely many values as
varies in K, a contradiction.

If, on the other hand, we can choose 1infinitely many
values for a in G, but not in K, it is easy to see that we would
have infinitely many values for v, unless 01 ¢ <x,t> for some
positive integer 1. Let uk be the smallest power of a that belongs

to <x,t>. We can write:

w_ = trae (1+aX(x(t-1)) %40 (x(t-1))%K

k+1

Heoa) 4
+ aZe(x(t-1)+a(x(t-20)K* e ) «

+ oFolx(t-1)%a¥(x(t-1))% 1, ) .



Since L must assume finitely many values for infinitely
many values of a, if k#1 we must have that all the coefficients
of the powers of a in the expression above, which belongs to
K<x,t> must be equal to O. The coefficient of o« is of the form
0(1+68) where 6 ¢ 4(G:H); hence & is nilpotent, 148 is a unit and
thus e = 0, a contradiction.

Finally, let us consider the case where a ¢ <x,t>. In
order to have infinitely many such a, we must have that o(x)=w,
As a power x™ must commute with t, we may assume that a is of the
form u;xmj. for a positive integer J.

Notice that since tx=xty we can write (x(t-1))i-1 .

x171 y,_, with v, . ¢ K<t,y> where <t,y>< T(S) 1is finite and

0= x(tvt—ty-t2+t) ; hence:

w, = t+xm‘1+1 (tyt-t‘y-t2+t)(1+xmd+1 11+x2m:l+2 Yo+ evete )

Once more, if xt#£tx i.e, if #£1, we would have in-

finitely many values for w , a contradiction. A

(2.5) Lemma. Let char(K)=p>0 and denote by P(K) the prime field
of K. If T(S) 1s not central in G, then the algebraic closure a of
P(K) in K is finite and for every x ¢ G and every t ¢ T(S) there
exists an integer r=r(x,t) such that tx= tpr where r is a multiple

Proof. Let L be a finite subfield of K and let t ¢ T(S) be a non
central element. Then, by lemma 2.4, we may assume that t is a p-
element, so L<t> = ?Ki where one summand, K, say, is of the form

KI.L(;) with § a root of unity such that o(f) =o(t).



Clearly, t is mapped to & in the natural projection
L<t> — Kl' Since idempotents of KS are central in KG, a routine

argument shows that, for any element X ¢ G we have t* - t1 for some

i.

Corollary (2.2) also implies that K: = Ky hence
conjugation by x defines an automorphism ¢ of Kl and clearly
()=l

Since K1 is finite, ¢ 13 a power F' of the Frobenius

; r
automorphism of K,, F: x + x5 thus ¢ = o(¢) = ¢} and  so

r
o(E)l(pr-i); consequently t* is of the form t* - ti = tP , as

stated.

Also notice that Kl = L(g) contains a copy of L which

r
is fixed by ¢ so, for every element a ¢ L we have that of = a,
thus L is contained in a field with p~ elements i.e. [L:P(K)]| r.

- It follows easily that also [a:P(K)]Ir. a

We shall need the following elementary result on

matrices.

(2.6) Lemma. Let D be a division ring. If A ¢ Mn(D) commutes with

all the idempotent matrices of Hn(D) then A=dI for some d ¢ D.

Proof. Let A = (aiJ) e M (D). Since AE ; =E,; A, it follows easily
that a”=0. if 1 4.

Also let E be the matrix such that all entries in the
first column are equal to 1 and all other entries are O, Then
E2=E and thus AE=EA. This shows immediately that a,, =a,;, for

i=1,...,n completing the proof. 4



(2.7) Lemma. Let s ¢ T(S) and t ¢ T(G). Then (s,t)=1.

Proof. Let us consider first the case where car(K)=p > O, The
group <8,t> is finite so the group ring zp<s,t> is also finite

and hence its Jacobson Radical, J, 1s nilpotent. We have that:

Z <s,t>
Sp

J ] i
where K1 is a finite extension of zp. l<iz<r,

Let (sl.....sr) denote the image of s in the left-hand
member of the isomorphism above. Any idempotent ey ¢ Mni(Di) can
be lefted to an idempotent e ¢ zp<s,t>. Therefore, because of
lemma (2.,2), we have that es = se hence also e;8; =8,e,. After
lemma (2.6) this shows that s; 1s central im Mni(Ki). S G AT
Hence st =ts modulo J. We know, from lemma (2.3) that sts >t la
tJ ¢ S for some positive integer J; hence tj-l ¢ J is nilpotent.
Consequently, (td-l)pn=0 for some n {i.e. tjpn=1.

Hence, lemma (2.3) shows that tJ is central in G.

Since 8 can be written as the product of a p-element
and a p'~-element and p-elements of S are central in G 1t will suf
fice to prove our statement assuming that s is a p'-element. We

1,-1

can write ts " t =s_:l tJ. Since the 1left-hand side of this

equation is a p'-element it follows immediately that tJ=1 and
thus sts™} t™1 =1 as we wished to prove,

*  Assume now that char(K) =0, Then

n
Kes,t> = @M (D,) .
) =1 "y 1



where Di is a division ring containing X, 1=1,...,r. Let

s (sl""'sr) in this isomorphism. Lemma (2.2) implies that Sy

commutes with every idempotent in M (Di)' so s, =d,I for some
i

d

€ D1 and, since s

1 1 has a finite number of conjugates in

M (Di) it follows from Herstein [5] that d, is central in D,,
i

{=1,...,r. Hence, our statement follows. A

(2.8) Lemma. Assume that S is non central and that T(S) 1is in-
finite such that, if car(K)=p#0 then T(S) contains no p-elements.
Then T(S) = Z(q") x B, for some prime q# p, where B 18 finite and
central in G, Z(q") is central in S and (G,S) € Z(q"). Further-
more, there exists a positive integer k such that K does not

contain primitive roots of unity of order qk

Proof. We shall give the proof in several steps.

Claim 1. (G,S) 1s contained in every infinite subgroup

of T(S).

Let x ¢ G, 8 ¢ S and sety=s'1x'lsxc S, vy # 1. As-

sume by contradiction that there exists an infinite subgroup H in
T(S) such that vy ¢ H. As T(S) is abelian by Lemma (2.7) we can
construct an infinite sequence H, ¢ H, ¢ ... € H c ... of finite
13724 # N4 :
subgroups of H such that vy ¢ l-l1 and, consequently, 1if we set

e = [HI"! £ h we obtain idempotents such that (1-v)ey = (l—T)eJ
heH
i

whenever i # j. By Corollary (2.2), these idempotents are central
and hence u1=eix+(1-e1) is a unit, for all i.
As in [1,p.166], we would obtain infinitely many

u
conjugates s 1 for 8, a contradiction.
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We know from Fuchs [4, Theorem 21.3] that T(S) can be
wirtten in the form T(S)=DxB where D 1is divisible and B a

reduced group,

Claim 2. D=Z(q") for some prime q#p, and B is finite

and central in G.

If B were infinite a result of Kulikov [4, Corqllary
27.2] shows that B contains a direct product of infinitely many
cyclic groups and it would be easy to exibit two disjoint infinite
groups, contradicting Claim 1.

The structure theorem for divisible groups [4, Theorem
23,1] shows that D is the direct product of indecomposable factors
which are isomorphic either to Z(q~) for some prime q or to Q.
Once again, Claim 1 shows that there can be only one factor and,
since (G,S) musi be contained in all infinite subgroups, it camot
be isomorphic to Q so Dsz(q') for some prime q.

To show that B is central in G consider b e B, X ¢ G

. o(b)
and set B= © b}, Since 6*=H by Lemma (2.1), it follows that
v 181 .
i

b* = bl for some 1 and thus bl x 1px=bl-1 ¢ Z(q") N B so i 1.

and then bx = xb.

Claim 3. Z(q") 1s central in S.
Assume, by contradiction, that there exists s ¢ S which

does not centralize Z(q~). Since (s,T(Z(q"))) = sCl(s"l). where

c1(s~!) denotes the conjugacy class of s”!, 1t 1s finite. So, we

can choose an element t, = sts~! t~! of maximal order,

Set t ¢ Z(q") such that 19=t and consider t

2 =
sts~1 171, Note that both sts”! and 17! belong to T(S), which 1is
abelian, thus

SRR S SN IS, e B
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consequently o(t2) > o(tl). a contradiction.
To conclude, we prove

Claim 4. There exists a positive integer k such that K

does not contain primitive roots of units of order qk.

Once again, assume by contradiction that K contains all
roots of unity of order a power of q.

Choose x ¢ G, 8 ¢ S such that 1¢ t=xsx"1s le T(2(q")),

. i -1 qr-l -1 r-1 r-1
with o{(t)=q . Then, x8x =ts and xs x "=t - so,

r-1 r-1 r-1 r-1
if we set y=89  we see that xyx 1yl = xs9 x 959 .t
is a commutator of order q.

Now, for each positive integer n we define an

PO I 1 n\th
idempotent e = q £ (¢ y )" where is a (q ') "'-root of unity
i=0 n'n n n-1
and ¥ is an element in Z(q") such that yﬂ = t. We can construct

units u, =e x+ ( 1—en) and compute:

y "= [ex+(1-e )]y[e x + (1-e )]

-1 ;
= e, xyx = + y(1l-e ) = (t-1l)e y+y.

Since y has only finitely many conjugates, we would have

(t:-l)en = (t.—l)em for n#m, a contradiction. . A

The final lemma of this section deals with the case

il

where S contains p-elements.

(2.9) Lemma. Assume that char(K)=p >0, If § is non-central and
contains p-elements then p=2, T(S)= <t> xA where o(t)=2, A ({s

a finite subgroup of odd order, (G,S) = <t> and T(S) is central.
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Proof. Let t ¢ 5 be a p-element and let 5 ¢ S, g ¢ G be such that
sg # gs. Since lemma (2.4) shows that t is central, it follows that
g(t-1) is nilpotent. 'As before, we can find infinitely many
elemenfs a ¢ }(°UG which commute with t, s and g so we can

consider units of the form u =14+ ag(1-t) and compute:

w = 8% = s+u(sg-gs)+u2(sg-gs)g(t-1)2+...+an(sg~gs)gn-1(t-1)n

where we are assuming that (t‘.-l)m1

1

= 0.

Writing 8~ g'lsg-y we get:

w =8+ gs(T-l)(t-l)[a+02g(t-1)2+...+un gn'l(t—l)n].

Arguments similar to those in lemma (2.4) show that we

will obtain a contradiction unless (y-1)(t-1) =0, This can only
happen if char(K)=2, yt=1 and y=t which shows that o(t)=2,
that (S,G) = <t> and that t is the only element of order a power
of 2 in T(S).

_ If we write T(S) =<t> x A it follows as in claim 2 of
lemma (2.4) that A is central, If A were infinite, KA would
contain an infinite family of 1idempotents (ei) such that
(t-1)e, # (t-l)ed whenever 1 # J. Setting u1-e1g+(1—e1) and com-
puting sui. we would obtain a contradiction similar to that in

claim 4 of lemma (2.4). A

3. SUPERCENTERS

We are now ready to state our results. As before, we
shall assume either that K is an infinite field or that G  is an

infinite FC-group.



13

Lemma (2.7) describes the supercenter in the case where

G is torsion.

Theorem A. Let G be a torsion group. Then S=12%Z(G), the center of
G.
To describe the supercenter when G contains elements

of infinite order we shall discuss two separate cases, according

to the characteristic of the field K.

Theorem B, Assume that char(K)=p> 0 and that G is not a torsion

group. Then one of the following holds.
(1) s=2(G).

(11) p=2, T(S) =<t>xA where o(t)=2, A is a finite sub

group of odd order, (G,S)=<t> and T(S) is central.

(i11) T(S) is an abelian p'-group such that for all

te T(S),x e G, we have that t*= tpr for some non

negative integer r= r(x,t). If T(S) is not central

in G then the algebraic closure f of P(K) in K Iis

finite and r is a multiple of [a:P(K)].

Furthermore, if T(S) is infinite, then it is of the
form T(S) =Z(q") x B for some prime q#p, B is finite central in G,
Z(q") is central in S, (G,S) © Z(q" ) and there exists an integer k

such that K does not contain roots of unity of order qk.

Proof. Assume that S is not central. If it contains a p-element
then lemma (2.9) applies and gives (it). a
On the other hand, if S contains no p-elements we can

use both lemma (2.5) and lemma (2.8) to obtain (iii).
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A few changes will allow us to deal with the case where

char(K) = 0.

Theorem C. ."A‘s‘sume that char(K) =0 and that G is not a torsion

group. Th;.ﬁ '.ié;e of the following holds:
(1) s'=2(G)

(11) T(S) is an abelian group such that for all teT(S),

X ¢ G we have that t*¥= t for some positive integer

i and for each non central element t ¢ T(S) the

"fie‘ld K does not contain roots of unity of order

o(t). Furthermore if T(S) is infinite then T(S)

and K can be described as in part (iii) of Theorem

B above.

Proof. Assume that S is non-central. Since idempotents of KS are
central in KG, it follows easily that t* = ti for some 1{.
Assume, by contradiction, that we can find a non-central
‘element t such that K contains a root of unity ¢ with o(g) = o(t).
Let x ¢ G be such that xt# tx and consider the idempotent
olt)-1

e=0o(t)"! " (et)le ks .
1=0

Since & is central, we have that ex-e. Also, we have

that txszt'.1 s0, computing the coefficient of ti in this equation

we obtain ¢ = ci. But i <o(f) so we would have i =1, a contradiction.

If T(S) is infinite it must be as in Theorem B above

since Lemma (2.8) applies also in this case, A
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4., FC UNIT GROUPS

In this section we consider the question as to when
the group of units U(KG) is an FC-group, i.e. when Sk(G) = G.

Theorem A of section §3 gives immediately our first result.

Theorem A'. Let G be a torsion group. Then U(KG) is an FC group

if and only if either KG is finite or G is abelian.

In order to simplify the statement of the results, we
shall divide the case where char(K)=p>0 in two subcases, ac-

cording to the existence of p-elements.

Theorem B'. Assume that char(K)=p>0 and that G is a non-torsion
group which contains p-elehents. Then U(KG) is an FC group if and
only 1if either G is abelian or G is a non abelian FC-group, p=2,
T(G) = <t> x A where o(t)=2, A is a finite group of odd order,

G' = <t> and T(G) is central.

Proof, If U(KG) is FC then S=G and theorem B part (i) and (ii)
gives the "only if" part of our statement.

The converse is precisely the same as in [1, p.168]. &

Theorem B'". Let char(K)=p>0 and let G be a non torsion group

with no p-elements. Then U(KG) is an FC group if and only if either

G is abelian or G is a non abelian FC group, T(G) is abelian and
one of the following conditions holds:

(1) KT(G) 18 finite and for all t ¢ T(G), x ¢ G, we

have that tx==tpr for some non negative integer r =

r(x,t) which is a multiple of [K:P(K)].
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(i1) T(G) is finite, central.

(111) T(G) is central, of the form T(G) = Z(q") B for
some prime q#p. G'c 2Z(q") and there exists an
integer k such that K does not contain roots of

unity of order qk.

Proof. If S=G and G is non abelian, Theorem B gives directly
that T(G) is abelian, that conjugacy is as stated and that 1{f
T(G) 1s infinite then it is as described in (i11i) above.

So, it remains to prove that if T(G) 1s finite then
either it is central or K is finite and r=r(x,t) is a multiple
[K:P(K)]. Assume then that T(G) is finite and non central. Lemma
(2.3) of [7] shows that K must be finite, hence K coincides with
92 in theorem B and the conclusion follows.

To prove the converse we remark that condition (1)
implies, after [2], that every idempotent of KT(G) is central in
KG hence, by [1] theorem A, part (1i11) 1t follows that U(KG) 1is
FC,

If (ii1i) holds then either theorem A part (1i1)
or theorem C part (ii) of [1] shows that U(KG) is FC.

Finally, the fact that (iii) implies U(KG) FC 1is also

3

due to theorem A and C of [1]. a

Theorem C', Let char(K)=0 and assume that G is a non-torsion
group. Then U(KG) is an FC group if and only if G is either
abelian or a non abelian FC group with T(G) central and, 1f T(G)
is infinite then T(G) and K can be described as in part (iii) of

.

Theorem B'" above,
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Proof. To prove the "only if" part of the statement, in view of
theorem C, it suffices to show that T(G) 1is central. This, as

well as the converse, is done in [10] or (9, pp.209-214], )

5. FINAL EXAMPLES

Both in theorems B and C we have shown that T(S) is an
abelian subgroup of G but not its centrality, as obtained in [8].
Our first example shows that T(S) can actually be non-central. It
also illustrates the fact that, though theorem B shows that the

algebraic closure of P(K) in K is finite, K itself needs not be
finite.

Example 1. Let G=<g,t| t3=1, gtg'1=t2>. It 1is easy to see

that T(G) =<t>., Set K=Q or x=z5(x). a field of rational
functions.

Since K<t> & xgx] = KIX1 ¢ ZK[’Q and X2+X+1 is
X°-1 (x-1) (X“+X+1)

irreducible in K[X] in both cases, we see that K<t> 1s of the

form K<t> = K1 ® l-(2 where K1=K<t>e, K2=K<t>(1—e) are fields,

1atet?

with e = 3 .

Since the first part of [9, Lemma VI.3.22] holds also

in the semisimple case, we have that a unit u ¢ KG can be written

i -1 -1
al = 2 =
in the form u=u; g +u, g 2 with inverse u 1= g 1u11+ g \121

with u; e Ki' i=1,2, 11.12 ¢ Z. Hence:

i -1 i -1
-1 : 2 2 -1
.ulgltg 1u1 +u,g tg u, =t " e

tu
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where 61=1.2, i=1,2.
Consequently, T(S) = <t> which is not a central subgroup.
Again, both in theorems B and C we have shown that Z(q")
is central in S but not in G, Our next example shows a situation

where this actually happens,

1

Example 2. Let G=<z(3%), gl gtg” =t2. ¥ t e Z(3")}. As before,

it is easy to see that T=T(G)=2(3") and we set again K=Q or

K=zs(x)c
We wish to show that T=T(S), To do so, consider
o(t)
t ¢ Z(q") and let e==o(t:)_1 £ tl, Then 1-e ¢ A(T) and since K
i=1

is a field of the first kind, [6, lemma 14.4.3] shows that 1l-e =
= ? e4. a finite sum of orthogonal ﬁrimitive idempotents of KT.
o Given a unit v ¢ KG, it can be written as u= [ yrgr,
Tp € KT, r ¢ Z, We consider the subgroup HcG generated b;‘t.the
supports of the elements Yp and the supports of the idempotents

ey. Clearly H is finite and we can write:

KT = KT e 6KT(1-e) = KTe®L, ®.,,@®L_, where L, = KTe,, 1<i<m

and

KH = KHe @KH(1-¢) = KHe @KHe, ... @KHe_, where KHe,c L, 1<i<m

n

Writing e = Jz fJ a sum of orthogonal primitive
=
idempotents of KH we can writeg

KH=KHf1Q...OKanOKHele-..OKHem *

a direct sum of fields.

Since the theorems in [2] and [3] show that all
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idempotents of KT are central in KG we can apply again [9, Lemma
VI.3.22] and write u in the form:
n aJ m Bi
= [ k L 2
u i Jg + = 1 8 . kJ € KHfJ. li € KHei. nJ,eic Z.
m m
Now, writing t=te + tei =e+ I te we obtain:
i=1 i=1
B
i 8
.oom m L. g m i
tY=e%4+ & (tei)u =e+ I (tei) 1 =e+ I t8 e.
i=1 i=1 iet

Consequently, t has finitely many conjugates in KG, so t ¢ S ahd
thus T(S) = T(G) = Z(3") is not central in G.
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