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FINITE COR.lJGACY IN GROUP RIICGS 

- -SONI-A P, COELHO and C~SAR POLCINO MILIES 

1. INTRODUCTION 

Let KG be the group ring of a group Gover a field Kand 

let u ,(KG) .denote the group of units of this ring. The set S = SK(G) 

of elements in G having a finite number of conjugates in U(KG) is 

called the K-supercenter of G. Clearly, if S .. G then U(KG) 1s it­

self an FC group. 

This concept was introduced by S.K. Sehgal and H. 

J. Zassenhaus in the context of integral group rings (11]. C. Pol­

cino Milles and S.K. Sehgal [8] studied the supercenter or· a group 

Gover an 1nr1n1te field K ln two cases: when G is a torsion group 

and when char(K) = p > 0 and G c·ontains a normal p-subgroup. 

In this paper we are concerned with supercenters of FC 

groups, but our techniques allow us to include also the case where 

K is infinite and G arbitrary. In this way, our results include 

those in [8]; however, we do not need to impose the restriction of 

the existence of a normal p-subgroup and we are able to describe S 

also in the case where char(K) = 0, 

Group rings whose unit groups form an FC group have been 

studied in a series of papers: [ 10), [ 7] and ( 1). Considering the 

Both authors were partially supported by the Conselho Nacional de 

Desenvolvimento Cientlfico e Tecnologico (CNPq) while this work 

was done. 
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case where S"' G we are able to fully describe these rings. Our 

results. given in section 4, are equivalent to those in these 

papers but we are able to describe conditions for the existence of 

FC unit groups solely in terms of the given group G and the field 

K. 

2. SOME LEMMAS 

Throughout this section we shall always assume either 

that K.is an infinite field or that G is an infinite FC group. 

(2.1) Lemma. Let x c KG be an element such that x 2 = ex for some 

8 c K, Then [x,KS) • {xy-yx I y c KS}= O. 

Proof. We wish to show that x commutes with every element y c S. 

-1 So, set c = yxy We claim ~ that there exist infinitely many 

elements in K0 
U G which commute simultaneously with x, y and c. 

In fact, if K 1s infinite then the assertion is obvious. If not 1 

then G is an infinite FC group and thus. all centralizers of 

elements in Gare infinite, 

We ennunerate explicttely supp(x) U supp(c) .. {g1 ,82•••••~} • 

· Denote C
0 

• CG (y). Since g1 has finitely many conjugates by elements 

of C
0 

then c1 .. cC (g1 ) is also infinite. Inductively, we see that 
0 

Cm= Cc (gm) is infinite, and the elements in en verify our claim. 
m-1 

Set a r K0 U G. If II °' O we consider the unit 

compute: 
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-1 -1 -1 -1 -1 -2 -2 -2 -1 = y-B xy-B yx+B axy+S a yx+(2B -B a-a a }xyx. 

Since yx • cy we get: 

( ~1 -1 -1 -1 -1 -2 -2 -2 -1 w0 • l+B ax-8 x-B c+B a c+28 xc-8 axc-B a xc)y • . 

Hence: 

-1 J Thus, .if x-B xc"' 0 we would have infinitely many pos-

sible values f'or xw
0

, a contradiction. So, x .. s-1xc 1.e. ax .. xc. 

Back in the e_xpression of w
0 

we obtain: 

w -a 
( -1 -1 -1( ) 1-B c+B a c-x }y. 

Once again, we obtain in1'in1tely many values f'or w
0 

un­

less x .. c, as we wished to show. 

If 8 "' 0 we consider the unit u
0 

• l+ax whose inverse is 

-1 .u
0 

•l-ax and a similar argument will show again that x ... c. 6 

(2.2) Corollary. Every idempotent of KS is central in KG. 

Proof. Let e E KS be an f dempoter.t element and set x E G. The 

elements a • ex(l-e) and B • (1-e)xe are such that a 2 ., a2 • O. 

From lemma (2.1) we have that: 

a• ea• ae • ex(l-e)e • O. 

In a similar way we see that 8 .. O. Hence a • 8 and thus 

ex .. xe. 6 



4 

(2.3) Lemma. Lett be a torsion element in G. Then, for every 

elements t S we have that tst <t>, 

Proof. Set 

above shows 

o(t) 1 2 
x = t t • Then x .. ax where a = o( t). The 
. iz1 
that xs = x and the result follows immediately. 

lemma 

A 

We shall denote by T(S) the set of all torsion elements 

ins. Lemma (2.3) shows that T(S) is a subgroup of G. Moreover, it 

shows that each of its subgroups is normal in T(S) hence it is 

e1 ther an abelian group or a group of the form K8 IC A IC B where K8 
1s the quaternion group of eight elements, A is an elementary 

abelian 2-group and Ban abelian group all of whose elements are 

of odd order. 

(2.4) Lemma. Assume that char(K) • p > O. Then every p-element of 

T(S) is central in G. 

Proof. Lett c T(S) be a p-element and let x be an arbitrary 

element in G. As in lemma (2.1) we can find infinitely many 

elements a in K0 U G which commute with both t and x. 

It follows from the description of T(S) above that t is 

contained in a finite p-group H which is normal in G. Hence, the 

element ax( t-1) £ ti (G:H) is nilpotent and thus u
0 

• 1-ax( t-1) is a 

unit. We compute: 

(1-ax(t-l))t(l-ax(t-1))-l 

where we assume that [x(t-l))n+l • O. 
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Hence: 

ia:1 

Notice that the set of all p-elements in T(S) forms a 

subgroup; hence, y • t-lx-1tx is also a p-element of T(S). We 

have that: 

9 • (tx-xt)(t-1) a xt(y-l)(t-1) , 

Assume, by contradicti~n, that xt; tx i.e. that e;o. 

If we can choose infinitely many values of a in K it is easy to 

see that tx -1- xt implies that the coefficient of xt in w is of the 
Cl 

form 

a non zero polynomial which assumes 1nf1n1 tely many values as 

varies in K, a contradiction. 

If, on the other hand, we can choose infinitely many 

values tor a in G, but not in K, it is easy to see that ~e would 

have infinitely many values for w a 
unless a 1 c <X, t> for some 

positive integer 1. Let ok be the smallest power of a that belongs 

to <x,t>. We can write: 

WCI • t+ae (l+ak(x( t-1 ))k+a 2k(x(t-1 )) 2k♦ -••• ) + 

+ a 2 e(x(t-l)+ak(x(t-l))k+l+ ••• ) + 

k k k 2)k-1 + a e(x(t-1) +a (x(t-1) + ••• ) • 
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Since w
0 

must assume finitely many values for infinitely 

many values of ? , if k; l we must have th~t all the coefficients 

of the powers of o in the expression above, which belongs to 

K<x, t> must be equal to o. The coefficient of o is of the form 

e(l+a) where 4 t A(G:H): hence 4 is nilpotent, 1+4 is a unit and 

thus e • O, a contradiction. 

Finally, let us consider the case where a c <x,t>, In 

order to have 1nfin1 tely many such a, we must have that o(x) • •. 

As a power xm must commute with t, we may assume that a is of the 

form o ~ xmj, for a pos1 tive integer J. 

Notice that since tx .. xty we can write (x(t-1)) 1- 1 • 

1-1 x r 1_
1 

with r 1_
1
., K<t,y> where <t,y> c: T(S) is :finite and 

e .. x(tyt-tr-t2+t): hence: 

Once more, if xt ,/, tx i .e, if ,/, 1, we would have in-

finitely many values for w, a contradiction. A 

(2,5) Lemma. Let char(K) • p > 0 and denote by P(K) the prime field 

of K. If T(S) is not central in G, then the algebraic closure o of 

P(~) in K is finite and for every x, G and every t t T(S) there 
r 

exists an integer r=r(x,t) such that tx.tp where r is a nultiple 

of [o:P(K)]. 

Proof. Let L be a finite subfield of K and let t , T(S) be a non 

central element. Then, by lemma 2.4, we may assume that t is a p-

element, so L<t> • t Ki where one summand, K1 say, ~s of the 

K1 • LCt) with t a root of unity such that o(t) .. o(t). 

form 
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Clearly, t is mapped to I; tn the natural projection 

L<t> - K1 • Since idempotents of KS are central in KG,· a routine 

argument shows that, for any element x t G we have tx • t 1 for sane 

1. 

Corollary (2.2) also implies that K~ • K1 , hence 

conjugation by x defines an automorphism • of K1 and clearly 

t(t)-=ti. 

Since K1 is finite, ♦ is a power Fr of the Frobenius 
r 

automorphism of K1 , F: x ,_. xp• thus tp • ♦ (t) • c1 and so 

o(t)l(pr-i); consequently tx is of the form tx. ti .. tPr. as 

stated. 

Also notice that K1 • L( t) contains a copy of L which 
Pr 

is fixed by t so, for every element at L we have that a • a, 

thus L is contained in a field with pr elements i.e. [L:P(K)] I r. 

It follows easily that also [o:P(K))lr. 6 

We shall need the following elementary result on 

matrices. 

(2.6} Lemma. Let D be a division ring. If A t M (D) commutes with n . 

all the idempotent matrices of Mn(D) then A• dl for some d 1: D. 

Proof. Let A= (aiJ) 1: Mn(D}. Since AE11 -= E11A, it follows easily 

that aij""o, if ii, J. 

Also let Ebe the matrix such that all entries in the 

first column are equal to 1 and all other entries are o. Then 

E2 .. E and thus AE"' EA. This shows immediately that a 11 = a11 , for 

i•l, ••• ,n completing the proof. a 



8 

(2.7) Lemma. Let s t T(S) and t t T(G). Then (s,t) = 1. 

Proof. Let us consider first the case where car(K) =p > O. The 

group <S,t> is finite so the group ring Zp<S,t> 1s also finite 

and hence its Jacobson Radical, J, is nilpotent. We have that: 

where Ki is a finite extension of Z , 1 < i < r. p - -

Let (s1 ,, •• ,sr) denote the image of s in the left-hand 

member of the isomorphism above. Any idempotent e1 c Mn (Di) can 
i 

be lefted to an idempotent et Zp<s,t>. Therefore, because of 

lemma (2.2), we have that es• se hence also A:fter 

lemma (2.6) this shows that si is central im M (Ki), i-1, ••• ,r. 
ni 

Hence st= ts modulo J. We know, from lemma (2.3) that sts-1 t-1 • 

tJ c S ~or some positive integer J; 
n , 

Consequently, ( tJ-l)p = 0 for some 

hence tj-1 t J is nilpotent. 
n 

n i.e. tJP =l. 

Hence, lemma (2.3) shows that tJ is central in G. 

Since scan be written as the product of a p-element 

and a p'-element and p-elements of 5 are central in Git will suf 

fice to prove our statement assuming thats is a p 1 -element. We 

can wr1 te ts-1 t-1 = s-1 tJ. Since the left-hand side or this 

equation is a p'-element it follows immediately that tj•l and 

thus sts-1 t-1 .. 1 as we wished to prove. 

Assume now that char(K) = o. Then 

n 
K<s,t> • e Mn (D1) 

1=1 1 
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where o 1 is a division ring containing K, 1=1, •.• ,r. Let 

s 1-+ (s1 , .• ,,sr) in this isomorphism. Lemma (2.2) implt~s that s 1 

commutes with every idempotent in Mni (D1 ), so 8 1 • d 1 I for some 

d 1 t o1 and, since 8 1 has a finite number of conjugates in 

Mn (Di) it follows from Herstein [5] that d1 is central in Di' 
i 

i = 1, ••• ,r. Hence, our statement follows. 6 

(2,B) Lemma. Assume that Sis non central and that T(S) is in­

finite such that, if car(K) :is p I- 0 then T(S) contains no p..elements. 

' Then T(S) • Z(q•) 11 B, for some prime qi' p, where Bis finite and 

central in G, Z(q•) is central in S and (G,S) c Z(q•). Further-

more, there exists a positive integer k such that K does not 

contain primitive roots of unity of order qk. 

Proof. We shall give the proof in several steps. 

Claim 1. (G,S) ie contalned 1n every infinite subgroup 

of T(S). 

Let x t G, s t S and set y ., s-1 x-1 sx t s. y -/: 1. As­

sume by contradiction that there exists an infinite subgroup Hin 

T(S) such that y / .H. As T(S) is abelian by Lemma (2.7) we can 

construct an infi_ni te sequence H1 ~ H2 c: • • • c: H c 
" I I n -I-

of finite 

subgroups of H such that y I H1 and, consequently, if . we set 

e
1 

• IHl-l 1 h we obtain idempotents such that (l-y)e1 • (1-y)ej 
ht Hi 

whenever 1-I- J. By Corollary (2.2), these idempotents are central 

and hence ui • e1x+(l-e1 ) 1s a unit, for all 1. 

As in (1,p.166], we would obtain ~nfinttely many 
U1 

conjugates s for s, a contradiction. 
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We know from Fuchs {4. Theorem 21.3] that T(S) can be 

wirtten in the form T(S) .. D II B where D is divisible and B a 

reduced group, 

Claim 2. D. Z( q•) for some prime q -Ip, and B is finite 

and central in G. 

If B were infinite a result of Kulikov [ 4, Corollary 

27.2] shows that B contains a direct product of infinitely many 

cyclic groups and it would be easy to exibit two disjoint infinite 

groups, contradicting Claim 1. 

The structure theorem for divisible groups (4, Theorem 

23,1] shows that Dis the direct product of indecomposable factors 

which are isomorphic either to Z(q•) for some prime q or to Q. 

Once again, Claim 1 shows that there can be only one factor and, 

since (G,S) must be contained in all infinite subgroups, it carnot 

be isomorphic to Q so D • Z(q•) for some prime q. 

To show that Bis central in G consider 
o(b) 

and set 6 • t bi• Since 6x • 6 by Lemma ( 2 .1), it 

b c: B, x c: G 

follows that 
· ia1 

bxs bi for some i and thus b-l x-1 bx• bi-l c: Z(q•) n B so b1- 1 • 1 

and then bx = xb. 

Claim 3. Z(q•) is central ins. 

Assume, by contradiction, that there exists s c: S which 

does not centralize Z(q•). Since (s,T(Z(q.))) c: sCl(s-1 ), where 

Cl(s-1 ) denotes the conjugacy class of s-1 , it is finite. So, we 

can choose an element t 1 • sts-1 t-1 of maximal order. 

Set , t Z{q•) such that ,q •= t and consider t 2 • 

s,s-1 ,-1 • Note that both s1.s-1 and 1. -l belong to T(S), which is 

abelian, thus 

-.. q __ ,q .,-1 , -q • •t.•-1 t_-1 • t_ 
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consequently o( t 2 ) > o( t 1 ), a contrad1 c ti on. 

To conclude, we prove 

Claim 4. There exists a positive integer k such that K 

does not contain primitive roots of units of order qk. 

Once again, assume by contradiction that K contains all 

roots of unity of order a power of q. 

Choose x c G, s c S such that 1 I, t • xsx-1 s-1
1: T(Z(q•)), 

with
0

o(t)=qr. Then, xsx-1 -ts 
r-1 r-1 r-1 

and xsq x-1 .. tq sq so, 
r-1 

if we set y • sq 1 r-1 r-1 r-1 
we see that xyx- y-l • xsq x-q s-q •tq 

is a commutator of order q. 

Now, for each positive integer n we define an 
q"-1 

idempotent en• q-n t (c y )1 where 
io:O n n 

and Yn is an element 1n Z(q•) such 

n is a (qn) th-root of U'lity 
n-1 

th.at y~ .. t. We can construct 

Since y has only finitely many conjugates, we would have 

( t-1 )en • ( t-1 )em for n ~ m, a contradiction. 

The final lemma of this section deals with the case 

where S contains p-elements. 

(2.9) Lemma. Assume that char(K) • p > o. If 5 1s non-central: and 

contains p-elements then p .. 2, T( S) • <t > • A where o( t) = 2. A is 

a finite subgroup of odd order, (G,S) = <t> and T(S) 1s central. 
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Proof. Let ' t c S be a p-element and let s t S, g c G be such that 

sg 1' gs. Since lemma (2,4) shows that t is centra_l, it follows that 

g(t-1) is nilpotent. As before, we can find infinitely many 

elements a c K0 U G which commute with t, s and g so we can 

consider units of the form u • 1 + ag(l-t) and compute: a 

a 2 2 n n-1 n w • s • s+a(sg-gs)+a (sg-gs)g(t-1) +,,,+a (sg-gs)g (t-1) 
a . 

where we are assuming that (t-l)n+l = o. 

w a 

W.ri ting s-1 g- 1sg"' y we ge~: 

Arguments similar to those in lemma (2,4) show that we 

wlll obtain a contrad1ct1on unless (r-l)(t-1) •0, This can only 

happen if char(K)"' 2, yt • 1 and r • t which shows that o(t) .. 2, 

that (S,G) = <t> and that t is the only element of order a power 

of 2 in T(S). 

If we write T(S)., <t> 11 A it follows as in claim 2 of 

lemma (2,4) that A is central, If A were infinite, KA would 

contain an infinite family of idempotents {ei} such that 

(t-l)e1 1' (t-l)ej whenever i 1' J. Setting ui-eig+(l-e1 ) and com­
ui 

puting s , we would obtain a contradiction similar to that in 

claim 4 of lemma (2.4). 6 

3. SUPERCENTERS 

We are now ready to state our results. As before, we 

shall assume either that K is an infinite field or . that G is an 

infinite FC-group. 
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Lemma (2.7) describes the supercenter in the case where 

G is torsion. 
)> 

Theorem A. Let G be a torsion group. Then S = Z(G), the center of 

G. 

To describe the supercenter when G contains elements 

of infinite order we shall discuss two separate cases, according 

to the characteristic of the field K. 

Theorein B. Assume that char(K) • p > O and that G is not a torsion 

group. Then one of the following holds. 

( i) S = Z( G). 

(11) p=2, T(S)=<t>xA where o(t) .. 2, A is a finite suE_ 

group of odd order, (G,S) = <t> and T(S) is central. 

(111) T(S) is an abelian p'-group such that for all 
X pr 

t e T(S),x c G, we have that t • t for some non 

negative integer r = r(x, t). If T( s) is not central 

in G then the algebraic closure a of P(K) in K is 

finite and r is a multiple of [a:P(K)]. 

Furthermore, if T(S) is infinite, then it is of the 

form T(S) .. Z(q•),. B for some prime q /, p, B is finite central in G, 

Z(q•) 1s central in S, (G,S) c Z(q•) and there exists an integer k 

such that K does not contain roots of unity of order qk. 

Proof. Assume that Sis not central. If it contains a p-element 

then lemma (2.9) applies and gives (11). 4 

On the other hand, if S contains no p-elements we can 

use both lemma (2.5) and l emma (2.8) to obtain (111). 
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• 
A few changes will allow us to deal with the case where 

char(K) = o. 

Theorem C. 1\ssume that char(K) • 0 and that G 1 s not a torsion 

group. Then .6ne of the following holds: 

( 1) S•• Z(G) 
.. 

. . 
(11.l, T(S) is an abelian group such that for all t.:T(S), 

.x a: G we have that tx .. t 1 for some positive integer 

1 and for each non central element t t T(S) the 

· fie,ld K does not contain roots of unity of order 

o(t). Furthermore if .T(S) is infinite then T(S) 

and K can be described as in part (111) of ·Theorem 

B above. 

Proof. Assume thats 1s non-central. Sin~e idempotents of KS are 

··central in KG, it follows easily that tx .. t 1 for some 1. 

Assume, by contradiction, that we can find a non-central 

·element t such that K contains a root of unity t with o(t) • o(t). 

Let x a: G be such that xt -1- tx and consider the idempotent 

1 o(t)-1 1 e • o ( t ,- t ( t t) e KS 
i•O 

Since e is central, we have that ex• e ·. Also, we have 

that tx • t 1 so, computing the coefficient of ti in this equation 

we obtain < • < i. But i < o( t) so we would have i • l, a ccntradicticn. 

If T(S) is infinite it must be as in Theorem B above 

since Lemma (2.8) applies also in this case. A 
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4, re UNIT GROUPS 

In this section we consider the question as to when 

the group of units U(KG) is an re-group, i.e. when SK(G) = G. 

Theorem A of section §3 gives immediately our first result. 

Theorem A'. Let G be a torsion group. Then U(KG) is an re group 

if and only if either KG is finite or G is abelian. 

In order to simplify the statement of the results, we 

shall divide the case where char(K) = p > 0 in two subcases, ac­

cording to the existence of p-elements. 

Theorem B'. Assume that char(K) ,. p > 0 and that G is a ncn-torsion 

group which contains p-elements. Then U(KG) is an re group if and 

only if either G is abelian or G is a non abelian Fe-group, p = 2, 

T(G) = . <t> • A where o(t) • 2, A is a finite group of odd order, 

G' = <t> and T(G) is central. 

Proof. If U(KG) is re then S=G and theorem B part (1) and (11) 

gives the "only if" part of our statement, 

The converse is precisely the same as in [1, p.168). A 

Theorem B". Let char(K) • p > 0 and let G be a non torsion group 

with no p-elements. Then U(KG) is an FC group if and only if either 

G is abelian or G is a non abelian Fe group, T(G) is abelian and 

one of the following conditions holds: 

(1) KT(G) is finite and for all t t T(G), x, G, we 
X pr 

have that t = t for some non negative integer r = 

r(x,t) which is a multiple of [K:P(K)]. 
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(11) T(G) is finite, central. 

(111) T(G) ts central, of the form T(G) z Z(q•) B for 

some prime q ~ p, G' c: Z(q•) and there exists an 

integer k such that K does not contain roots of 

unity of order qk, 

Proof. If 5 • G and G 1s non abel ian, Theorem B gt ves directly 

that T(G) 1s abelian, that conjugacy is as stated and that if 

T(G) 1s infinite then it 1s as described 1n (111) above. 

So, it remains to prove that if T(G) 1s finite then 

either it is central or K 1s finite and r• r(x,t) 1s a multiple 

[K:P(K)J. Assume then that T(G) is finite and non central. Lemma 

(2.3) of (7) shows that K must be finite, hence K coincides with 

o in t~eorem Band the conclusion follows. 

To prove the converse we remark that cond 1 ti on (1) 

implies, after [2), that every idempotent of KT(G) is central 1n 

KG hence, by (1] theorem A, part (111) it follows that U(KG) 1s 

re. 
If (11) holds then either theorem A part (111) 

or theorem C part (11) of [1] shows that U(KG) is FC. 

Finally, the fact that (111) implies U(KG) Fe is also 

due to theorem A and C of [1], 6 

Theorem C'. Let char(K) .. O and assume that G is a non-torsion 

group. Then U(KG) is an FC group if and only if G is either 

abelian or a non abelian FC group with T(G) central and, if T(G) 

1s infinite then T(G) and K can be described as in part (111) of 

Theorem B" above. 
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Proof. To prove the "only 1 f" part of the statement, in view of 

theorem C, it suffices to show that T(G) is central. 

well as the converse, 1s done in (10] or (9, pp.209-214], 

This, as 

6 

5. FINAL EXAMPLES 

Both in theorems Band C we have shown that T(S) is an 

abelian subgroup of G but not its centrality, as obtained in [8), 

Our first example shows that T(S) can actually be non-central. It 

also 11 lustrates the fact that, though theorem B shows that the 

algebraic closure of P(K} in K is finite, K itself needs not be 

finite, 

Example 1, Let G • <g, t I t 3 .. 1, gtg-l = t 2 >. It is easy to see 

thatT(G)•<t>. Set K•Q or K=Zs(x), 

functions. 

a field of rational 

Since K<t> c • _fill e K[X] 
(X-1) cx2+X+l) 

is 

irreducible in K(X] in both cases, we see that K<t> is of the 

form K<t> where are fields, 

with e • 

Since the first part of [9, Lemma VI.3.22) holds also 

in the semisimple case, we have that a unit u £ KG can be written 
11 12 l -il 1 -i2 1 

in the form u • u 1 g +u2 g with inverse u- • g ui + g u2 
with u 1 e Ki, 1•1,2, 11 ,12 e Z.Hence: 
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where 61 = 1, 2, i .. 1, 2. 

Consequently, T(S)"" <t> which is not a central subgroup, 

Again, both in theorems Band C we have shown that Z(q•) 

is central in S but not in G, Our next example shows a situation 

where this actually happens. 

Example 2, LetG•<Z(3•), glgtg-1 .t2 , Vt t Z(3.)}. As before, 

it is easy to see that Tc T(G) = Z( 3•) and we set again K • Q or 

t E 

is 

We wish to show that T = T(S), To do so, consider 

Z(q•) e .. o(t)-l 
o(t) 

ti, and let J: Then 1-e, A (T) and since K 
1•1 

a field of the first kind, [6, lemma 14,4,3] shows that 1-e • 

a finite sum of orthogonal primitive idempotents of KT, 

Given a unit u, KG, it can be written as r 
U • J: yJ'g I ,. 

yr 1: KT, r c z, We consider the subgroup H c: G generated by t, the 

supports of the elements Yr and the supports ·or the idempotents 

e 1• Clearly His finite and we can writes 

KT• KTetlKT(l-e) • KTetlL1 e •• ,tlLm• where Li• KTei, l~i~m 

and 

n 
Writing e = t fj a sum of orthogonal primitive 

J•1 
idempotents of KH we can writer 

KH = KHfl e ••• tlKHi'n BKHel 11 ••• 8KHem 

a direct sum 01' i'ields. 

Since the theorems in [2] and [3] show that all 
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idempotents of KT are central in KG we can apply again [9, Lemma 

VI.3.22] and write u in the form: 

n Cl m 8 
u II: J: k g j + J: .. i g i kj E KH f j' t 1 t KHe 1 , Clj,8it z. 

J•1 
j 

1 .. 1 

Ill m 
Now, writing t .. te + J: te1 = e + t te we obtain: 

1•1 1•1 
8 

tu • eu 
m m f, g 1 m 8 i 

+ i: (tei)u • e + t ( te 1) 1 = e + J: tg ei. 
1 .. 1 1:1 1•1 

Consequently, t has finitely many conjugates in KG, sot t S and 

thus T(S) • T(G) = Z(3•) is not central in G. 
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