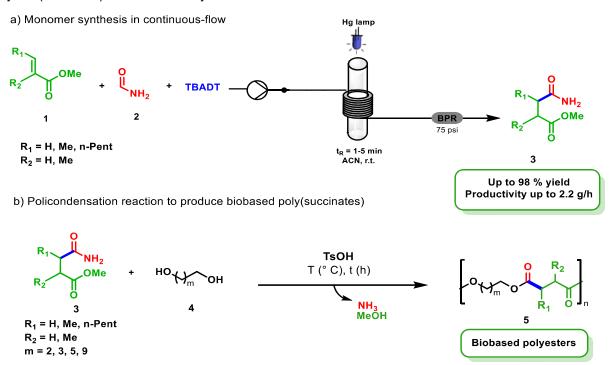
Área: ORG

A novel synthetic route to produce biobased poly(succinates) from renewable acrylates

<u>Bianca C. Rocha</u> (PG),¹ Gabriel S. Michelini (PG),¹ Matheus G. Conceição (IC),¹ Luiz H. Catalani (PQ),¹ Leandro H. Andrade (PQ).^{1*}

bianca.campanile@usp.br; leandroh@iq.usp.br

¹Departamento de Química, Universidade de São Paulo, SP, Brasil.


Key-words: Formamide, Polyester, Photocatalysis, Polycondensation, Biobased.

Highlights

Photocatalytic synthesis of amide-esters in excellent yields and high productivity. Production of biobased poly(succinates) via polycondensation.

Resumo/Abstract

Motivated by the great importance of polymers in our society, this work describes a novel synthetic route for the production of biobased poly(succinates). The first step is the production of renewable amide-esters via a photocatalytic reaction under continuous flow conditions.¹ Formamide, renewable acrylates and the tetrakis(tetrabutylammonium)decatungstate (TBADT) are irradiated with UV light, producing the monomers $\bf 3$ in excellent yields (up to 98%) and very high productivity (up to 2.2 g/h in a 2 mL reactor) (Scheme 1a). For the second step, a polycondensation reaction of these amide-esters with biobased diols produced the poly(succinates) $\bf 5$ via alcoholysis of the amide group, releasing only methanol and ammonia as by-products (Scheme 1b).² Polybutylene(succinate) was successfully obtained with $\bf M_w = 2.0 \ kDa$.

Scheme 1: a) Photocatalytic synthesis of amide-esters from renewable acrylates and formamide b) Polycondensation reaction to produce biobased poly(succinates) via alcoholysis.

[1] Rocha, B. C.; Dourado, I. L. A.; Sanabria, M. N.; Kimura, N. S. P.; Cordeiro, P. H.; Catalani, L. H.; Andrade, L. H., *Green. Chem.*, **2024**, 26, 7019.

[2] Mastitski, A.; Vellemae, E.; Smorodina, V.; Konist, A.; Jarv, J., Org. Prep. Proced. Int., 2023, 55, 458.

Agradecimentos/Acknowledgments

We thank FAPESP (2022/15898-1) and CNPq (182375/2023-4) for the financial support.