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Abstract

Background/Objectives: Leishmaniasis is an infectious disease caused by digenetic proto-
zoa of the genus Leishmania, transmitted by infected female sandflies of the Phlebotominae
subfamily. Current treatments are limited, relying on drugs that were not specifically
developed for this disease and are often associated with high toxicity and elevated costs.
Among alternative therapeutic strategies, antifolate compounds have been investigated
due to their ability to inhibit dihydrofolate reductase (DHFR), an enzyme essential for
folate metabolism in the parasite. However, the parasite circumvents DHFR inhibition
through the activity of pteridine reductase-1 (PTR-1), which maintains folate reduction
and ensures parasite survival. In this context, this study aimed to identify potential PTR-1
inhibitors in Leishmania major through in silico approaches. Methods: The methodology
included virtual screening of molecular databases, Tanimoto similarity analysis, pharma-
cokinetic and toxicological predictions, and biological activity evaluation in silico. The
most promising compounds were further analyzed via molecular docking. Results: The
virtual screening resulted in 474 molecules, of which 4 structures (M601, M692, M700, and
M703) showed high potential as PTR-1 inhibitors in Leishmania major throughout all stages
of the methodology employed, especially in the results of molecular docking where they
exhibited strong binding affinities and significant interactions with key residues of the
target enzymes. Conclusions: This work provides a solid foundation for advancing these
molecules into experimental validation, contributing to the development of safer and more
effective therapeutic alternatives for the treatment of leishmaniasis.

Keywords: Leishmania major; pteridine reductase-1; virtual screening; methotrexate;
molecular docking
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1. Introduction
Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania,

transmitted by the female sandfly of the phlebotomine subfamily and is present in almost
100 countries [1]. Despite being a neglected tropical disease, it has gained significant
attention due to its disproportionate impact on underdeveloped nations and highly vulner-
able populations. In Brazil, the incidence of leishmaniasis cases has risen exponentially,
particularly in the northern region. This surge could be attributed to deforestation, rapid
urbanization, and extensive construction activities, which have significantly disrupted the
habitat of the sandfly vector [2,3].

The disease has several clinical forms grouped into four categories that vary according
to the species involved and the parasite–host relationship. They include visceral leish-
maniasis, cutaneous leishmaniasis, mucocutaneous leishmaniasis, and diffuse cutaneous
leishmaniasis [4]. Cutaneous leishmaniasis (CL) is the most prevalent form of leishmaniasis,
characterized by skin lesions, mainly ulcers, on exposed body parts. These lesions leave
lifelong scars, causing significant disability, stigma, and a reduced quality of life. Around
95% of CL cases occur in the Americas, the Mediterranean basin, the Middle East, and
Central Asia [5]. In 2020, more than 85% of new cases of CL occurred in 10 countries:
Afghanistan, Algeria, Brazil, Colombia, Iraq, Libya, Pakistan, Peru, Syria, and Tunisia.
Globally, it is estimated that between 700,000 and 1 million new cases occur annually [6].

Parasites of the genus Leishmania are obligatory intracellular parasites that affect cells
of the mononuclear phagocytic system, thus hindering the immune response. They have
two main morphological characteristics: a flagellated promastigote, which can be found
in the digestive tract of the insect vector, and a non-flagellated amastigote form, found in
the mammalian host [7]. The first line of treatment approved by the Brazilian Ministry
of Health consists of pentavalent antimonials. However, these drugs have low efficacy
rates and high toxicity, therefore raising concerns about their effectiveness. Other drugs
also make up the therapeutic regimen according to the species of agent involved, such
as Amphotericin B, which, despite showing good efficacy, also has high toxicity and is
costly [2,8]. The parenteral form of administration of these drugs, which is considered
invasive, makes it difficult for patients to adhere to treatment and hence contributes to the
development of drug-resistant infectious forms [9].

Antifolate drugs have been extensively researched for treating protozoal diseases
with emphasis on malaria, but their efficacy against leishmaniasis has been limited due to
the parasite’s developing resistance. Since the main therapeutic target in these protozoa
is a folate-reducing enzyme called dihydrofolate reductase (DHFR) [10], in the genus
Leishmania, this strategy has proved to be ineffective due to an enzyme called pteridine
reductase-1 (PTR-1), which has the function of reducing free or conjugated pteridines for
its development. However, PTR-1 is also capable of reducing folates to a lesser extent,
but enough to compensate for the suppression of DHFR, thus resisting the action of
antifolates [11,12]. Since the parasite cannot survive the inhibition of these two enzymes,
it is worth developing an antagonist that acts in conjunction with a DHFR-thymidylate
synthase (TS) antifolate drug or that acts simultaneously on both enzymes since the sites of
action have similar characteristics [12,13].

Given the folate reduction pathway’s potential as a drug target for leishmaniasis, this
study aimed to discover molecules with potential inhibitory activity against PTR-1, a key
enzyme in Leishmania major. A pharmacophoric model was constructed as a reference for
virtual screening of molecular libraries, followed by in silico evaluations of pharmacokinetic
profiles and structure–activity relationships; thus, it was possible to obtain four structures
with a good probability of antiprotozoal activity and with lower toxicological risk. The



Pharmaceuticals 2025, 18, 1237 3 of 24

results obtained may motivate in vivo biological activity assays, including in association
with DHFR inhibitors, aiming at a more effective therapy.

The methodological approach is outlined in Scheme 1 (for more details, see the Section 3).

Scheme 1. Main methodological steps.

2. Results and Discussion
2.1. Pharmacophoric Model Generation

The pharmacophore model was developed from selected structures, using the Pharmagist
online server (https://bioinfo3d.cs.tau.ac.il/PharmaGist, accessed on 2 February 2024). It was
based on the alignment of the reference structure with the other structures in the ligand group.
From the results, the alignment with the best score was selected, which was 72.746 (Table 1), a
value considered to be high for alignment [14]. This is probably due to the presence of the
pteridine ring and benzoic acid in all the structures selected. Figure 1 shows the qualitative
characteristics of the best-selected model.

Table 1. Best alignment score of selected compounds generated by Pharmagist.

Score F SF Aro Hyd Don Acc Neg Pos Aligned Compounds

72,746 11 11 3 0 2 6 0 0 1 *, 2, 3, 5, 6, 7, 8, 9, 10
Abbreviations: F: Total features; SF: Total spatial features; Aro: Aromatic groups; Hyd: Hydrophobic groups; Don:
Hydrogen bond donor groups; Acc: Hydrogen bond acceptor groups; Neg: Anionic atoms; Pos: Cationic atoms;
* Reference structure.

Figure 1. Pharmacophoric characteristics, obtained from alignment by the Pharmagist online server
(yellow sphere: Acc; purple sphere: Aro; white sphere: Don).

https://bioinfo3d.cs.tau.ac.il/PharmaGist
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2.2. Virtual Screening Based on Pharmacophore

On the Pharmit online platform (https://pharmit.csb.pitt.edu/, accessed on 2 February 2024),
Molport was selected to carry out pharmacophore-based virtual screening (VS) to obtain molecules
(HITS) within the pharmacophore characteristics obtained on Pharmagist. As a strategy for better
refinement of these structures, the maximum and minimum values of the physicochemical
characteristics of the nine reference structures were used as a selection filter (Table 2).

Table 2. Physicochemical properties of reference structures.

Structures MolWeight RotBonds LogP PSA Aromatics HBA HBD

MTX 454.45 9 −1.97 210.55 3 9 3
1 480.53 8 0.25 173.69 3 8 3
2 450.50 6 0.88 153.47 3 7 2
3 464.53 7 1.48 162.25 3 7 3
4 464.53 7 1.48 162.25 3 7 3
5 436.48 6 0.63 162.25 3 7 3
6 522.57 10 1.12 179.77 3 9 2
7 437.46 6 0.10 175.15 3 8 3
8 421.46 5 −0.50 179.04 3 6 4
9 422.45 5 0.02 173.25 3 7 3

Minimum 421.46 5 −1.97 153.47 3 7 2
Maximum 522.57 10 1.48 210.55 3 9 4

Abbreviations: MTX: Methotrexate; MolWeight: Molecular weight; RotBond: bond rotation; PSA: Polar surface
area; Aromatics: Aromatic rings; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor.

The 11 pharmacophoric characteristics were not enough to obtain the VS hits on the
Pharmit platform, so it was necessary to create pharmacophoric hypotheses according to
the methodological strategy adopted by Ferreira et al. [15].

The number of combinations was obtained using Equation (1) (below), where
C = number of combinations; p = type of model (p ̸= 0, p = 1, p =2, . . ., p = ∞), and
n = number of variables in the pharmacophoric model. Equation (1):

Cp,n =
n!

p!(n − p)!
(1)

Considering the number of variables n = 11, we took into account the studies by
Dube et al. [16] and the contributions of the studies by Phadke [17], which showed that the
main pharmacophore characteristics involved in the inhibitor-PTR-1 interaction are two
H-bond donors, a hydrophobic aromatic characteristic and an aromatic ring characteristic,
so the characteristics Don 1, Don 2, Aro 1 and Aro 2 were excluded from the set of variables,
making it n = 7.

The possible combinations with seven variables were again submitted to hit searches
on the Pharmit platform, analyzed by simple combination and without repetitions, resulting
in a total of 474 molecules.

2.3. Tanimoto Similarity

Based on the assumption that “structurally similar compounds have similar physico-
chemical properties and possibly similar biological profiles” [18], a total of 474 preliminary
hits were analyzed on the BindingDB web server for Tanimoto similarity studies. Molecules
that exhibited a similarity index greater than or equal to 0.6 (60% similarity) with respect to
the reference structure methotrexate (MTX) were selected. This cutoff point was defined
based on the findings by Wang et al. [19], where they observed, through target fishing,
that a Tanimoto similarity coefficient above 0.5 is considered an appropriate threshold to

https://pharmit.csb.pitt.edu/
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exclude irrelevant targets or false positives. The default threshold of the pharmaceutical
target seeker (PTS) tool, which predicts targets for a molecule by overlaying its structure
with 3D ligand structures of macromolecular targets, was also taken into consideration.
Values below 0.6 indicate low similarity [20]. The process resulted in a total of 23 hits.

2.4. Pharmacokinetic and Toxicological Predictions

The 23 hits obtained from the Tanimoto similarity analysis were subjected to phar-
macokinetic and toxicological predictions using the online server PreADMET. First, phar-
macokinetic predictions were performed, evaluating absorption criteria such as human
intestinal absorption (HIA), Caco-2 cell permeability, MDCK (Madin-Darby canine kidney)
cell permeability, as well as distribution factors such as plasma protein binding (PPB) and
blood–brain barrier (BBB) permeation. The MTX was used as a control in the selection
of hits with a better pharmacokinetic profile. Additionally, commercially available drugs
such as meglumine antimoniate (MGL), amphotericin B (ANF-B), and pentamidine (PTM),
which are standard medications for the treatment of leishmaniasis recommended by the
Brazilian Ministry of Health, were also used to contribute to the selection of desirable hits.
The most active molecule from the reference structures group, BDBM50398391 (BDB-1),
was added for comparison purposes.

In pharmacokinetic studies, HIA is an important criterion when it is considered that
the drug must be administered orally; therefore, acceptable results must present values
above 70% [21]. The reference compound (MTX) exhibited a value of 36.6%. Hits that
presented higher values were considered acceptable, with particular attention given to hits
MolPort-008-010-692, MolPort-008-010-700, and MolPort-008-010-703, which showed an
average of 95% similarity.

Conversely, the drugs MGL and ANF-B showed low values (2.7% and 4.7%, respec-
tively), justifying their parenteral administration. However, PTM showed 86% absorption,
like the most active molecule (BDB-1), which exhibited 83% absorption. For Caco-2 cell per-
meability predictions (nm/sec), the classification is as follows: low permeability < 4 nm/s,
medium permeability between 4 and 70 nm/sec, and high permeability > 70 nm/s [22].
Permeability in MDCK cells (nm/s) was also evaluated, using the following classification:
low (<25 nm/s), medium (25–500 nm/s), and high (>500 nm/s) [23].

MTX displayed an average absorption value of 18.88 nm/s in Caco-2 cells, which is
close to the value exhibited by the molecule BDB-1 (18.26 nm/s). Therefore, all hits with
medium and high permeability results were considered acceptable. In MDCK absorption,
MTX showed low permeability (2.44 nm/s), as did BDB-1 (1.63 nm/s). Since the majority
of the hits also presented low values, this criterion was not used as an exclusion factor.

In drug design, considering the percentage of plasma protein binding (PPB) is one
important parameter in optimizing drug efficacy and safety. Knowing the plasma protein
binding profile of a drug allows predicting its distribution in target tissues, its systemic
exposure, the need for dose adjustments, and potential interactions with other drugs that
may compete for protein binding [24].

The PreADMET classifies a high binding rate as %PPB > 90%. The drug MTX exhibited
a 44.5% protein binding rate. Considering that MTX is an anti-folate with a toxic nature
due to its inhibition of human DHFR and serves as a reference in this research, hits with a
percentage ≥ 44.5 were accepted in order to obtain a variability of structures with medium
and high binding rates, as observed in the results of MGL, which showed a high %PPB
(96%), and ANF-B, with an average %PPB rate (39%).

Penetration of the blood–brain barrier (Cbrain/Cblood) is an important parameter in
the development of drugs as it is related to the action of compounds in the central nervous
system. For this research, which aims to obtain leishmanicidal agents, this value must be



Pharmaceuticals 2025, 18, 1237 6 of 24

less than 1 (Cbrain/Cblood < 1) since any value above is an indication that the compound
is in high concentration both in the blood and in the brain, which may cause adverse
effects [25]. Within the previous descriptors, only 18 molecules were selected (Table 3).

Table 3. Absorption and distribution properties of selected compounds.

Hits
Absorption Distribution

HIA (%) CaCo-2 (nm/s) MDCK (nm/s) PPB (%) BBB (%)

MTX (Pivot) 36.61 18.89 2.45 44.50 0.04
MGL 2.72 20.12 0.52 96.57 0.04

ANF B 4.70 14.14 0.046 39.01 0.03
PTM 86.27 21.08 0.52 3.17 0.03

BDB-1 83.23 18.27 1.64 48.12 0.05
MolPort-001-684-165 26.02 16.52 6.59 45.73 0.07
MolPort-001-684-168 23.34 17.00 4.84 48.51 0.05
MolPort-001-684-171 22.81 17.30 4.79 40.77 0.04
MolPort-004-285-551 23.37 17.00 4.84 48.51 0.05
MolPort-004-955-331 82.2 19.87 5.34 61.46 0.06
MolPort-004-964-256 23.47 17.30 4.79 40.81 0.04
MolPort-005-942-787 65.57 21.08 0.57 82.48 0.06
MolPort-005-942-788 88.36 19.51 0.08 86.03 0.09
MolPort-006-169-571 71.67 18.46 4.47 63.84 0.05
MolPort-008-010-692 94.88 24.51 212.65 88.49 0.09
MolPort-008-010-700 94.98 34.78 11.48 86.68 0.11
MolPort-008-010-703 94.92 28.48 79.41 87.64 0.12
MolPort-009-679-397 50.35 19.61 0.07 77.43 0.04
MolPort-035-395-047 50.35 19.61 0.07 77.43 0.04
MolPort-035-776-124 71.93 19.02 23.68 46.05 0.05
MolPort-046-592-422 88.42 19.59 0.14 84.94 0.07
MolPort-046-684-424 81.26 20.19 0.06 79.26 0.05
MolPort-047-399-601 79.50 20.20 0.37 67.52 0.04

Abbreviations: HIA: Human intestinal absorption; CaCo-2: Cancer coli, “colon cancer cell”; MDCK: Madin-Darby
canine kidney; PPB: Plasma protein binding; BBB: blood–brain barrier penetration; MTX: Methotrexate; MGL:
Meglumine antimoniate; ANF B: Amphotericin B; PTM; Pentamidine; BDB-1: The most active molecule from the
reference structures group, BDBM50398391.

Toxicological predictions were also performed on the PreADMET online server, and
the toxicological class and lethal dose (LD50) predictions were performed on the Protox II
server. By predicting the toxicological class and lethal dose of a drug candidate, researchers
can identify substances that have an acceptable safety profile and promise for clinical de-
velopment. This assists in selecting safer candidates, optimizing formulations, determining
appropriate therapeutic doses, and minimizing risks associated with drug use. In addition,
the prediction of toxicity and lethal dose contributes to compliance with the regulatory and
ethical requirements necessary for the approval and commercialization of a drug.

Predictions of carcinogenicity in rats and mice were performed, where a “negative”
result indicates a carcinogenic profile and a “positive” result indicates a non-carcinogenic
profile. The reference structure, MTX, exhibits a negative value, which was expected due to
its mechanism of action. Therefore, hits that showed a positive result for rats, mice, or both
were selected, as demonstrated by the results of ANF-B and PTM. The BDB-1 structure
exhibited the same profile as the control drug, and for MGL, the analysis method was
unable to provide results.

The Ames test is particularly sensitive to detecting point mutations, such as base pair
substitution changes, and is widely used to assess the mutagenic potential of chemicals [26].
In PreADMET, it was possible to perform mutagenicity predictions, where it was observed
that only two hits had non-mutagenic results (MolPort-008-010-700 and MolPort-008-010-
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703). The results of the Protox II server were quite satisfactory since the reference structure
presented LD50 = 3 mg/Kg, categorized as toxicity class 1. The evaluated hits presented
toxicity classes of between 3 and 5. Based on the results of carcinogenicity, mutagenicity,
and LD50 predictions, four hits (Figure 2) were selected (Table 4).

 

MolPort-047-399-601 MolPort-008-010-692 

 
 

MolPort-008-010-700 MolPort-008-010-703 

Figure 2. Selected hits from pharmacokinetic and toxicological predictions.

Table 4. Properties of chemical structures obtained from toxicological predictions.

Structures
Carcinogenicity a Ames Test a LD50

(mg/Kg) b
Toxicity
Class bMouse Rat Mutagenicity

MTX Negative Negative Mutagenic 3 1
MGL Out of range Out of range Mutagenic 1.500 4

ANF B Positive Positive Mutagenic 100 3
PTM Positive Negative Mutagenic 1.086 4

BDB-1 Negative Negative Mutagenic 135 3
MolPort-008-010-692 * Positive Negative Mutagenic 135 3
MolPort-008-010-700 * Positive Negative Non-mutagenic 3.000 5
MolPort-008-010-703 * Positive Negative Non-mutagenic 3.000 5
MolPort-047-399-601 * Negative Positive Mutagenic 135 3

* Selected hits; a PreADMET; b Protox-II.

2.5. Biological Activity and Cytotoxic Effect Predictions

Biological activity predictions play a crucial role in drug development. They provide
valuable information about how a chemical interacts with specific molecular targets in the
body and how it can affect relevant biological processes. The PASSonline server makes
predictions about a wide range of biological activities, using a machine learning approach,
to correlate the chemical structure of substances with their reported biological activities.
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Thus, using the results of the pivot structure as evaluative parameters, the four resulting
hits were submitted to predictions of biological activity (Table 5).

Table 5. Results of biological activity predictions obtained in PASSonline.

Chemical Structure Biological Activity Pa a Pi b

MTX

Dihydrofolate reductase inhibitor 0.913 0.001
Folate antagonist 0.881 0.002

Thymidylate synthase inhibitor 0.549 0.001
Pteridine reductase inhibitor 0.507 0.003
Antiprotozoal (Toxoplasma) 0.452 0.007

Antiprotozoan (Trypanosoma) 0.364 0.054

M601
Folate antagonist 0.385 0.006

Pteridine reductase inhibitor 0.264 0.009

M692

Folate antagonist 0.396 0.006
Pteridine reductase inhibitor 0.360 0.005

Antiprotozoan (Trypanosoma) 0.376 0.048
Antiprotozoal (Toxoplasma) 0.288 0.019
Antiprotozoal (Plasmodium) 0.228 0.036

M700
Antiprotozoan (Trypanosoma) 0.430 0.031

folate antagonist 0.374 0.007
Pteridine reductase inhibitor 0.218 0.013

M703

Antiprotozoan (Trypanosoma) 0.531 0.015
folate antagonist 0.331 0.010

Antiprotozoal (Toxoplasma) 0.331 0.013
Antiprotozoal (Plasmodium) 0.295 0.015
Pteridine reductase inhibitor 0.236 0.011

a Pa = Probability to be active; b Pi = Probability to be inactive.

The four hits analyzed, abbreviated as M601, M692, M700, and M703, produced
satisfactory results for the selected parameters: folate antagonist, DHFR inhibitor, PTR-1
inhibitor, and antiprotozoal activity. They all showed possible inhibitory activity for PTR-1
(the target enzyme of the study) and folate antagonist, which indicates probable inhibitory
activity for the DHFR and TS enzymes. The antiprotozoal parameter was also highlighted in
the results, except for structure M601, all of which showed anti-trypanosome activity, which
may represent a starting point for the future development of inhibitors of the pteridine
metabolism of other trypanosomatids [27,28].

Cytotoxicity predictions allow for the evaluation of the potential of a substance to
cause damage or adverse effects to healthy cells in the body. In PASSonline, the server
uses information about the chemical structure of the substance in question to compare it
with a database containing information on compounds with known cytotoxic activity. The
algorithm analyzes the structural similarity between the substance under evaluation and
the reference compounds, considering characteristics such as functional groups, molecular
conformation, and other relevant properties [29].

The four molecules were submitted for analysis and demonstrated cytotoxic activity
potential. Molecules M692, M700, and M703 showed tumor activity in bone and colon
tissues, while molecule M601 showed activity in a larger number of tissues: brain, pancreas,
skin, and hematopoietic/lymphoid tissue (Table 6)
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Table 6. Results of cytotoxic effect predictions of promising structures.

Chemical
Structure Tissues Pa a Pi b Cell Line Tumor Type

MTX

Brain 0.856 0.001 D54 Glioblastoma
Hematopoietic and lymphoid tissue 0.739 0.000 Manca Lymphoma

Blood 0.662 0.006 CCRF-CEM Leukemia
Blood 0.609 0.014 MOLT-4 Leukemia

M601

Brain 0.317 0.007 D54 Glioblastoma
Pancreas 0.322 0.122 CFPAC-1 Carcinoma

Skin 0.334 0.217 SK-MEL-1 Melanoma
Skin 0.285 0.176 A2058 Melanoma

Hematopoietic and lymphoid tissue 0.153 0.049 U-937 Lymphoma

M692
Bone 0.549 0.004 HOS Sarcoma

Kidney 0.549 0.015 786-0 Carcinoma
Colon 0.511 0.026 HCT-116 Carcinoma

M700
Lung 0.532 0.026 DMS-114 Carcinoma
Bone 0.509 0.005 HOS Sarcoma
Colon 0.502 0.027 HCT-116 Carcinoma

M703
Lung 0.536 0.004 HOS Sarcoma
Bone 0.525 0.029 DMS-114 Carcinoma
Colon 0.509 0.026 HCT_116 Carcinoma
a Pa = Probability to be active; b Pi = Probability to be inactive.

2.6. Molecular Docking

Molecular docking is an important tool in drug design as it plays a key role in under-
standing the interaction between a drug candidate molecule and its biological target. In
this study, the docking tests were performed in the AutoDock-Vina software in the PYRX
version 0.8 graphical interface. First, the validation of the docking method was carried
out [30], also known as re-docking, to evaluate the ability of the method to reproduce
the orientation and binding mode of the experimental crystallographic pose, calculating
the root-mean-square deviation (RMSD) of the poses of the theoretical binders with the
experimental ones. The acceptable RMSD values are below 2.0 Å [31].

The results obtained were: MTX-1DLS complex, RMSD = 0.653 Å; MTX-1E7W,
RMSD = 0.993 Å and MTX-5X66, RMSD= 1.14 Å (Figure 3). With all values below 2 Å, the
docking method used for this study was considered valid.

Figure 3. RMSD values obtained through validation of the molecular docking method with their
respective overlapping of theoretical (green) and computational (red) ligands. (a) MTX-1DLS,
(b) MTX-1E7W, and (c) MTX-5X66.
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Docking studies were carried out with the four promising structures: M692, M700,
M703, and M601, with the PDBs selected targets for this research (1DLS, 1E7W, and 5X66).

The molecular docking method used identified the interactions with the amino acid
residues of the active site of the PDB 1DLS protein complexed with MTX, a competitive
inhibitor. Interactions with common hydrogen bonds were observed around the β-sheet,
with the amino acids ILE-7 and VAL-115, in the α-helix with the amino acids GLU-30,
ARG-28, and ASN-64, and in the loop with ARG-70. Hydrophobic interactions of the
π-alkyl type were observed in the β-sheet with ALA-9 and ILE-7, of the π-sigma type in
α-helix with ILE-60. PHE-31 interacts with the Van der Waals force also in the α-helix.
Figure 4 shows the result of the docking with the four promising structures.

 

 

Conventional hydrogen bond 

 

Alkyl / π-Alkyl 
π-Cation; Salt bridge (MTX) π-Sigma 
π-π T-Shaped / π-π Shaped  

 
 
 

 
 
 

  
 

M700 

M601 

M703 

M692 

MTX 

PDB:1DLS 

Figure 4. Results of molecular docking assays showing interactions with amino acid residues of the
DHFR target site.

The results of the docking assays showed that the M601 ligand presented the highest
number of interactions with the same amino acid residues that interacted with MTX in the
DHFR target, as well as the lowest binding affinity energy, ∆G = −9.6 Kcal/mol, followed
by the M692 ligand that presented four interactions with the residues involved in the
MTX/DHFR complex, with the second lowest value of ∆G = −9.2 Kcal/mol. Ligands M700
and M703 showed fewer interactions but presented acceptable ∆G values since the ligand
M700 resulted in the highest value of all ∆G= −8.8 Kcal/mol.

The crystallographic structure of pteridine reductase complexed with MTX, at a
resolution of 1.75 Å, was selected for molecular docking studies. The results showed
two hydrogen bonding interactions with the amino acid residues TYR194 in the α-helix
and SER111 in the loop. PHE113, in a loop, showed hydrophobic interactions of the π-π
stacked type with the pteridine rings. On the aromatic ring, there were interactions with
residues LEU188, of the π-alkyl loop type, and with TRP238, of the π-π T-shaped type in
α-helix. An unfavorable interaction was observed with the TYR191 residue in the loop
region. Figure 5 illustrates the molecular docking results of the studied structures.
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Figure 5. Molecular docking results, evidencing the interactions with the amino acid residues of the
PTR-1 target site.

The results of docking the ligands with PDB 1E7W showed considerable interactions
with amino acid residues related to the 1E7W/MTX complex. Molecule M601 showed
nine interactions with residues of the target active site, five of which are of a hydrogen
bond type. Three of these hydrogen bonds are with the residues SER111, TYR191, and
TRP238 (1E7W/MTX). The M692 ligand showed six interactions in total, two with the
related residues of the 1E7W/MTX complex, which are π-π shaped hydrophobic with
PHE113 and π-alkyl with LEU188.

The results also showed that the M700 ligand interacted with three described residues
of the reference complex; PHE113 with two interactions (π-π T-shaped and π-stacked),
LEU188 also with two interactions (π-alkyl and π-Sigma), and a hydrogen bond-type inter-
action with TYR194. Ligand M703 showed five interactions in total, of which four are with
related residues of the complex, SER111 with hydrogen bonding, PHE113 with π-π T-shaped
and π-stacked, LEU188 with π-sigma, and TYR194 with π-donor interaction hydrogen.

In the absence of crystallographic structures of TS from leishmania, PDB 5X66 was
used for molecular docking studies. Considering that the substrates used by the human
TS enzyme are the same used by the parasite’s TS, it becomes relevant to evaluate the
interactions of the resulting ligands to obtain possibly more selective inhibitors.

Molecular docking results of the crystallographic structure of the enzyme thymidylate
synthase complexed with MTX showed few interactions with the active site despite the
ligand structure being conjugated. An unfavorable acceptor–acceptor interaction was
observed in the terminal portion of pteridine rings with the residue ASP218 in the β-sheet.
The loop MET311 showed two interactions, π-sulfuric and π-alkyl. Residue ILE108 showed
a looped π-sigma interaction. In α-helix, the residue PHE225 presented two interactions,
π-π T-shaped and π-sigma. The residue ARG78 in the loop also presented two interactions,
a hydrogen bond and π-sulfuric. Figure 6 illustrates the molecular docking results of the
structures studied.



Pharmaceuticals 2025, 18, 1237 12 of 24

 

 

Conventional hydrogen bond 

 

Alkyl / π-Alkyl 
π-Sulfur π-Sigma 
π-π T-Shaped / π-π Shaped Unfavorable bump 

 
 
 

 
 
 

 

M700 

M601 

M692 
M703 

Figure 6. Molecular docking results show interactions with amino acid residues of the TS target site.

Molecular docking assays of the ligands at the target site of the TS enzyme showed
few interactions, but there was a relationship with the amino acid residues present in the
5X66/MTX complex. Ligand M601 showed five interactions, of which four were with the
residues of the complex (ASP218–hydrogen bridge, ILE108–π-alkyl, MET311–π-alkyl, and
PHE225–π-π stacked). Ligands M700 and M703 also interacted with the three referenced
amino acid residues ILE108, MET311, and PHE225, all in a hydrophobic way.

Evaluating the binding affinity (∆G) energies of the ligands suggested in the molecular
docking study, it was possible to observe that the MTX reference structure and the M601
ligand had higher energy (∆G = −6.6 kcal/mol) for the target PTR-1 (1E7W), showing little
affinity. In contrast, the ligands M692 (∆G = −8.6 kcal/mol), M700 (∆G = −8.4 kcal/mol),
and M703 (∆G = −8.0 kcal/mol) obtained lower ∆G values, thus conferring greater affinity
for the target.

The results for the PDB 1DLS, the MTX reference structure, presented lower en-
ergy in relation to all the ligands (∆G = −10.4 kcal/mol), agreeing with the literature.
However, they also presented values close to the reference (M601 ∆G = −9.6 kcal/mol,
M692 ∆G = −9.2 kcal/mol, M700 ∆G = −8.8 kcal/mol, and M703 ∆G = −9.2 kcal/mol).
The results of molecular docking of ligands in PDB 5X66 obtained promising values, es-
pecially ligand M692 (∆G = −9.1 kcal/mol), which presented lower energy than the MTX
reference structure (∆G =−8.1 kcal /mol). Ligands M700 and M703 showed similar values
∆G =−8.1 kcal/mol, and ligand M601 showed the lowest affinity with ∆G = −7.4 kcal/mol
(Figure 7).

It can be concluded that, based on the results obtained from molecular docking, the
four ligands derived from the entire screening process showed affinity for the selected
targets. Overall, it was observed that all ligands exhibited greater selectivity for DHFR
(1DLS), which can be attributed to the choice of the reference structure (MTX) being more
selective for DHFR. This validates the effectiveness of the proposed scientific methodology
for this study.
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Figure 7. The heatmap graph of binding affinity values (∆G) of promising structures and the
commercial drug MTX, at the active sites of PDBs 1E7W, 1DLS, and 5X66.

The results also demonstrated the interactions of the ligands with the same amino acid
residues involved with the reference inhibitor, MTX. Notably, M692 showed the highest
affinity for all three targets, indicating a multitarget profile. Considering that multitarget
drugs play an important role in the field of drug therapy, as they can broaden the spectrum
of action and improve treatment effectiveness, reducing the need for combination with other
drugs, it would be highly beneficial to develop an orally administered drug for a population
that struggles with long-term treatment adherence. However, these results warrant further
in-depth studies such as molecular dynamics simulations and in vitro assays.

2.7. Prediction of Lipophilicity and Water Solubility and Predicted Synthetic Accessibility (SA)

To evaluate the possibilities of future in vivo tests, it became important to determine
the lipophilicity and water solubility predictions of promising compounds so that they
could help in the preparation of experimental solutions. Predictions of synthetic accessibil-
ity were also made, which are an essential tool in the drug discovery process, helping guide
the selection and development of candidate compounds in an efficient and economical
way [30]. Promising molecules were analyzed through the SWISS-ADME web server, first
with the reference (MTX) and with BDB-1 for comparison purposes.

The compounds (MTX) and BDB-1 showed the lowest consensus LogPo/w values
(−1.09 and 0.52, respectively), indicating low lipophilicity. Among the promising molecules
investigated in this study, structures M692, M700, and M703 showed higher consensus
LogPo/w values (2.15, 2.90, and 2.88, respectively), which is a good indicator for drug
candidate molecules (Table 7). This can be attributed to the presence of the pteridine ring
in their chemical structures, which is an aromatic and hydrophobic group.

The values of the water solubility predictions corroborate the previous observations;
the promising molecules were found to be moderately to poorly soluble in water, with LogS
values ranging from −5.26 to −6.05 (Table 8). The estimate of water solubility is based on
the qualitative LogS scale (ESOL, Ali, and SILICO-IT): highly soluble > 0 > very soluble >
−2 > soluble > −4 > moderately soluble > −6 > slightly soluble > −10 > insoluble [32].
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Table 7. Lipophilicity of promising compounds.

Structure iLOG XLOGP WLOGP MLOGP SILICOS-IT Consensus LogP

MTX (Pivot) 0.22 −2.62 −0.52 −1.52 −1.01 −1.09
BDB-1 2.18 −0.10 0.09 0.20 0.21 0.52
M601 2.99 0.96 0.50 −1.41 1.52 0.91
M692 2.59 2.41 2.35 0.94 2.46 2.15
M700 3.48 3.45 3.45 1.41 2.73 2.90
M703 3.11 3.48 3.44 1.71 2.68 2.88

iLOGP: physics-based method relying on free energies of solvation in n-octanol and water calculated by the
generalized-born and solvent-accessible surface area model; XLOGP: an atomistic method including corrective
factors and knowledge-based library; WLOGP: implementation of a purely atomistic method based on the
fragmental system of Wildman and Crippen; MLOGP: an archetype of a topological method relying on a
linear relationship with 13 molecular descriptors; SILICOS-IT: a hybrid method relying on 27 fragments and
7 topological descriptors.

Table 8. Water solubility and prediction of synthetic accessibility (SA) of promising compounds.

Structure ESOL Ali SILICOS-IT Consensus LogS 1 SA 2 Score

MTX (Pivot) −1.03 (s) −2.65 (s) −4.72 (ms) −2.80 (s) 4.49
BDB-1 −2.50 (s) −3.09 (s) −4.72 (ms) −3.43 (s) 3.42
M601 −4.33 (ms) −5.78 (ms) −7.26 (ms) −5.79 (ms) 4.75
M692 −3.72 (ms) −3.95 (ms) −8.12 (ps) −5.26 (ms) 2.84
M700 −4.72 (ms) −5.11 (ms) −8.31 (ms) −6.05 (ps) 3.09
M703 −4.46 (ms) −4.94 (ms) −8.21 (ps) −5.87 (ms) 2.85

1 Solubility (s = soluble, ms = moderately soluble, ps = poorly soluble); 2 Synthetic accessibility (SA): SwissADME—
SA scores range from 1 (very easy) to 10 (very difficult).

In the evaluation of the synthetic accessibility estimate, structures M692 and M703
showed an SA score of 2.84 and 2.85, respectively, while structures M601 and M700 showed
a score of 4.75 and 3.09, respectively. Compared to the control compounds (MTX and
BDB-1), the SA values were close, ranging from 2.85 to 4.75. Both structures (M692 and
M703) were easy to synthesize, considering the parameters reported in the literature [33].

2.8. Structure–Activity Relationship (SAR) and Molecular Overlay of Promising Molecules

The identified promising molecules were searched in the SciFinder® online database
(https://scifinder.cas.org/, accessed on 23 March 2024) to obtain additional information
regarding their biological activity. However, no specific data related to the biological effects
of the selected compounds were found, aside from some physicochemical properties already
reported in the MolPort database. Notably, the presence of the pteridine ring in these
molecules is of particular interest, given its well-documented therapeutic potential [34].

Pteridines are aromatic heterocyclic compounds composed of fused pyrazine and
pyrimidine rings. They are biosynthesized by a wide variety of living organisms, where
they function as pigments, enzyme cofactors, or modulators of immune responses [35]. Due
to their versatile chemical structure, pteridine derivatives have been extensively studied and
are associated with a broad spectrum of biological activities, including antiviral, antifungal,
antiparasitic, nitric oxide synthase inhibition, antitumor, anti-inflammatory, antibacterial,
neuroprotective, antihypertensive, and anti-osteoporotic effects, among others [34]. The
substantial evidence supporting the diverse biological activities of pteridine derivatives
reinforces the relevance of the in silico findings obtained in this study, further justifying the
progression to in vitro and in vivo validation of the selected compounds.

In addition, considering the structural similarity of the identified molecules to other
bioactive pteridine-based compounds reported in the literature, there is a strong rationale
to hypothesize that these candidates may exhibit not only inhibitory activity against PTR1

https://scifinder.cas.org/
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but also potential multitarget effects that could enhance their therapeutic efficacy against
Leishmania major. This multifunctional profile is particularly advantageous in the context
of neglected tropical diseases, where drug resistance and treatment limitations remain
significant challenges. Therefore, further experimental studies, including biochemical
assays and efficacy tests in parasitic models, are essential to validate the therapeutic
potential of these compounds and to explore possible synergistic mechanisms of action.

Molecular overlap analysis is a valuable tool for predicting the binding affinity of
candidate molecules to their biological targets. When a molecule exhibits similar steric and
electrostatic properties to a reference drug, it is more likely to interact with the same amino
acid residues at the active site, potentially resulting in comparable or even superior binding
affinity [18]. In this study, the molecular structures of the four promising compounds were
superimposed onto the commercial drug methotrexate (MTX) and the most active molecule
in the studied series, BDB-1. The analysis considered varying electrostatic contributions at
25%, 50%, 75%, and 100%, as shown in Table 9.

Table 9. Steric and electrostatic molecular field overlaps analyzed by Discovery Studio for the
pivot structure (MTX), the most active molecule of the studied series (BDB-1), and the promising
compounds identified in the MolPort® database.

Structure
Overlay

Molecules 25% a 50% b 75% c 100% d

MTX

M601 0.58 0.50 0.42 0.35
M692 0.43 0.40 0.36 0.37
M700 0.51 0.44 0.40 0.37
M703 0.52 0.45 0.39 0.34

BDB-1 *

M601 0.51 0.48 0.44 0.41
M692 0.46 0.41 0.36 0.32
M700 0.51 0.43 0.37 0.35
M703 0.56 0.49 0.39 0.40

a 75%/25% steric and electrostatic contribution, respectively; b 50%/50% electrostatic contribution; c 25%/75%
electrostatic contribution; d 100% electrostatic contribution; * Most active molecule of the studied series.

The results revealed that molecules M601 and M703 exhibited the highest overlap
values in relation to both MTX and BDB-1 across all contribution ratios, suggesting a
strong similarity in their steric and electronic fields. This finding is particularly relevant
since higher overlap values are generally associated with better accommodation within
the enzyme’s active site, potentially translating into greater inhibitory activity. Notably,
M703 showed the highest overlap with BDB-1 at 50% and 75% electrostatic contribution
(0.49 and 0.44, respectively), indicating a balanced steric-electrostatic profile favorable for
interaction with the target enzyme. These observations reinforce the potential of M601
and M703 as strong PTR1 inhibitors, supporting the progression to further computational
and experimental validation steps, such as molecular dynamics simulations and in vitro
enzyme inhibition assays.

The results of the molecular overlay between the promising molecules and the MTX
and BDB-1 structures showed that, for an electronic contribution of 25%, the range was 43%
to 58%; for 50%, the range was 40% to 50%; for 75%, the structures ranged from 36% to 44%
and for 100% electronic contribution, the range was 32% to 41%. The best overlap occurred
between the M601 molecule and the MTX and BDB-1 structures (Figure 8).
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(a) 

75%ste/25%ele = 58% 50%ste/50%ele = 50% 25%ste/75%ele = 42% 100%ele = 35% 

(b) 

75%ste/25%ele = 51% 50%ste/50%ele = 48% 25%ste/75%ele = 44% 100%ele = 41% 

Figure 8. Similarity analysis according to the electronic overlap between the M601 molecule (green),
the MTX structure (red (a)), and BDB-1 (orange (b)).

3. Materials and Methods
3.1. Selection of Structures

The first step of the study was the selection in ascending order of Ki (inhibition
constant) of 9 chemical structures with proven inhibitory activity for PTR-1 and DHFR
enzymes from Leishmania major hosted in the online database BindingDB (https://www.
bindingdb.org, accessed on 12 January 2024). The commercial drug methotrexate (4-amino-
N10 methyl pteroglutamic acid, MTX) was used as a reference structure for all stages of the
project due to its inhibitory activity for PTR-1 and DHFR of L. major already determined in
the literature [12]. As a selection criterion, molecules that contained a pteridine ring in their
structures were selected due to the affinity of this structural base with the target site of the
referred macromolecules. Since this is where the catalytic mechanism of folate reduction
occurs [36], it can be observed in folic acid (DHFR) and biopterin (PTR-1) agonists and in
the reference molecule MTX (Figure 9).

Figure 9. Chemical structure of pteridine present in the structure of folic acid, biopterin, and methotrexate.

https://www.bindingdb.org
https://www.bindingdb.org
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3.2. Geometric Optimization of Structures

The Chem-Sketch software (ACD/Chemsketch Freeware, version 2018.1: Advanced
Chemistry Development, Inc., Toronto, ON, Canada, 2019) was used for geometric design
and optimization of selected molecules [37], which uses a 3D optimization algorithm, the
force field based on parameterization CHARMM [38].

3.3. Building a Pharmacophoric Model

After the geometric optimization of the structures, in the molecular modeling program
Discovery Studio Visualizer (version 19.1.0), the molecules were superimposed and saved
in a single file in “.mol2” format for later input on the Pharmagist online server [25,39].

The Pharmagist online server calculated multiple flexible alignments of the selected
ligands and ranked the best overlaps (score) by analyzing points in common with the MTX
reference ligand, thus resulting in the pharmacophores and their structural characteris-
tics [39] (Table 10). These structural characteristics were important to refine the search for
compounds, on VS, to favor a pharmacokinetic profile within the parameters of Lipinski’s
“Rule of 5” [40], which is a set of criteria used in the field of medicinal chemistry to assess
the suitability of a molecule as a potential drug.

Table 10. Structural and pharmacophoric characteristics obtained in Pharmagist, showing, from
left to right, total number of atoms (Atm), total number of spatial features (SF), number of aromatic
rings (Aro), hydrophobic groups (Hyd), hydrogen bond donor group (Don), hydrogen bond acceptor
group (Acc), and negatives (Neg) and positives (Pos).

Molecules Atm SF Aro Hyd Don Acc Neg Pos

MTX (pivot) 53 18 3 1 3 9 2 0
01 63 14 3 1 3 8 0 0
02 59 14 3 2 2 7 0 0
03 62 17 3 4 3 7 0 0
04 62 17 3 4 3 7 0 0
05 56 14 3 1 3 7 0 0
06 68 16 3 2 2 9 0 0
07 55 15 3 1 3 8 0 0
08 54 13 3 0 4 6 0 0

These rules were developed based on statistical analysis of a large set of successful
pharmaceutical compounds. Although they are not an absolute guarantee that a molecule
will be an effective drug [41], Lipinski’s rule is widely used as an initial tool to assess the
viability of a molecule as a drug candidate.

3.4. Pharmacophore-Based Virtual Screening

A strategy adopted for further refinement in obtaining compounds with similar
characteristics in the virtual screening was the construction of filters with minimum
and maximum values of the physicochemical and structural properties of the molecules
used in the pharmacophoric model. With the information obtained from the Pharmag-
ist and using the Molinspiration online servers (https://molinspiration.com/ and Pro-
tox II (https://tox-new.charite.de/protox_II/, accessed on 9 February 2024), data were
collected as follows: molecular weight, bond rotation, LogP (on Molinspiration), polar
surface area, number of aromatic rings, hydrogen bond acceptor and hydrogen bond donor
groups [42,43], thus generating a parameter for obtaining “Hits” with similar characteristics
on the VS in the Pharmit molecule bank [44] (Table 11).

https://molinspiration.com/
https://tox-new.charite.de/protox_II/
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Table 11. Maximum and minimum values of the physicochemical and structural properties of the
molecules used in the generation of the pharmacophoric model.

Min Max

421.46 Molweight 522.57
5.00 Rotbonds 10.00
−1.97 LogP 1.48
153.47 PSA 210.55

3.00 Aromatics 3.00
7.00 HBA 9.00
2.00 HBD 4.00

Gathering structural, physicochemical information and pharmacophoric groups, the
search for “hits” that understood these requirements began in the Pharmit online molecule
bank, precisely in the Molport company database (https://www.molport.com/).

3.5. Tanimoto Similarity

Two types of searches were carried out: Search 1, with a filter, using the parameter
of values obtained from Molinspiration, and Search 2, without a filter. The hits obtained
from the two searches were saved and on the Bindingdb web server they were submitted
separately to Tanimoto Similarity studies, with the objective of obtaining hits with greater
structural similarities to the reference molecule (MTX), in which similarity indexes that
were greater than or equal to 0.6 (60% similarity) were selected, thus starting the second
stage of the study [45,46].

3.6. Pharmacokinetic and Toxicological Predictions

The structures obtained on VS were prepared for pharmacokinetic and toxicological
predictions. Using the PreADMET online server (https://preadmet.webservice.bmdrc.
org/), the hits selected after similarity studies were first submitted to pharmacokinetic
predictions, evaluating criteria such as plasma protein binding (PPB), blood–brain barrier
penetration (BBB) [47], human intestinal absorption (HIA) [48], permeability of Caco2 cells,
which predicts permeability in differentiated cells of the intestinal epithelium [49], and
permeability of MDCK cells used as a model for permeability measurements in membranes.

In toxicological predictions, the Ames test was evaluated, which aims to predict
whether a molecule or chemical product has mutagenic capacity for the genetic material
of the tested organism, and the carcinogenic profile in rodents (mice and rats). It was also
possible to obtain the toxicity class and the lethal dose (LD50) in mg/Kg via Protox ll online
server [50].

3.7. Biological Activity and Cytotoxic Effect Predictions

PASSonline (http://way2drug.com/passonline/, accessed on 15 February 2024) is
a website that allows for estimating the likely profile of biological activity of an organic
compound (whose molecular mass is between 50 and 1250 Da) based on its structural
formula [51]. It is possible to predict more than 4000 types of biological activity, including
pharmacological effects, mechanisms of action, cytotoxic and adverse effects, interaction
with metabolic enzymes and transporters, influence on gene expression, etc., with predic-
tion of up to 95% accuracy [52].

A spectrum of biological activity is generated for the evaluated substance, and a list of
types of biological activity for which it is likely to be active (Pa) and the probability of not
being active (Pi) are calculated. In PASSonline, Pa and Pi values are independent, and their
values vary from 0 to 1. By default, the value of Pa = Pi is defined as a threshold; therefore,
all compounds with Pa > Pi are suggested as active [53].

https://www.molport.com/
https://preadmet.webservice.bmdrc.org/
https://preadmet.webservice.bmdrc.org/
http://way2drug.com/passonline/
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Biological activity spectra were predicted for all promising compounds in PASSonline,
where the structures that showed folate antagonist activity, DHFR inhibitor, PTR-1 inhibitor
and antiprotozoal activity were selected for predictions of cytotoxic effect, which were
performed via CLC-Pred (Cell Line Cytotoxic Preditor) (http://www.way2drug.com/cell-
line/, accessed on 18 February 2024), which indicated the probability of cytotoxicity of
chemical compounds in non-transformed or cancerous cell lines.

3.8. Molecular Docking

After biological activity predictions, the selected molecules were subjected to molecular
docking assays. Obtaining the crystallographic structures of the molecular targets (available
on the PDB website), it was possible to evaluate the interactions of the promising molecules
with the active site of the enzymes selected for this study.

The docking tests were carried out using the Auto-Dock/Vina software in the PYRX
version 0.8 graphical interface [54], using, as a target, the crystallographic structure of PTR-1
from Leishmania major complexed with MTX, PDB ID: 1E7W with resolution of 1.75 Å [55];
crystal structure of human DHFR complexed with MTX, PDB ID: 1DLS with resolution of
2.30 Å [56]; and the crystallographic structure of the enzyme human thymidylate synthase
(TS) complexed with MTX, PDB ID: 5X66 with resolution of 1.99 Å [57]. AutoDock is a
group of tool resources that allow the interaction between ligand and macromolecule and
provides combinations with algorithm options: simulated annealing (SA), genetic algorithm
(GA), and Lamarckian genetic algorithm (LGA) [54]. In this study, the Lamarckian genetic
algorithm (LGA) was used, with standard parameters of the genetic algorithm (with a
population size of 150), a maximum number of evaluations of 250,000, a maximum number
of generations of 27,000, and a crossing rate of 0.8. The coordinates of the active sites used
for each target are described in Table 12.

Table 12. Coordinates of active sites of PTR-1, DHFR, and TS enzymes.

Target Ligand Grid Center
(Å)

Grid Size
(Å)

Pteridine reductase-1 X: −6.4371 42
PDB ID: 1E7W MTX Y: 21.1583 29

Resolution: 1.75 Å Z: 26.5948 42

Dihydrofolate reductase X: 29.9128 42
PDB ID: 1DLS MTX Y: 17.3729 30

Resolution: 2.30 Å Z: −2.4309 42

Thymidylate synthase X: 155.937 48
PDB ID: 5X66 MTX Y: 150.630 23

Resolution: 1.99 Å Z: 24.6042 23

Ten molecular docking assays were conducted for each target compound, and their
respective binding affinity results were presented as the arithmetic mean. The efficiency
of this ligand/target coupling was validated by comparing the poses obtained by the
Autodock software with the theoretical ones described in the literature. RMSD values
(mean square deviation) were obtained and interpreted, being considered satisfactory
when they presented values below 2Å [58].

3.9. Prediction of Lipophilicity and Water Solubility and Predicted Synthetic Accessibility (SA)

SwissADME (http://www.swissadme.ch/, accessed on 2 March 2024) was used to
predict the lipophilicity and water solubility of compounds M601, M692, M700, and M703
expressed by logP and logS values, respectively, according to the methodological proposal

http://www.way2drug.com/cell-line/
http://www.way2drug.com/cell-line/
http://www.swissadme.ch/
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of Ramos et al., 2022 [59]. It was also possible to use the same software to make predictions
of synthetic accessibility, which gives a score between 1 (easy synthesis) and 10 (very
difficult synthesis). This score is based on the fragmented analysis of the structures of
more than 13 million compounds, with the hypothesis that the more frequent a molecular
fragment is, the easier it is to obtain the molecule [33].

3.10. Structure–Activity Relationship (SAR) and Molecular Overlay of Promising Molecules

Data on the structure–activity relationship (SAR) were collected according to the
methodology proposed by Ferreira et al. [15], whereby a structural search of the promising
compounds was carried out in the Scifinder® (https://scifinder.cas.org/, accessed on
28 March 2024) database to check if there is additional information and experiments with
biological activities in the literature on the promising structures [60].

The molecular overlay was carried out following the methodological proposal of Lima
et al. [61]. The molecules resulting from the virtual screening were superimposed with two
or more three-dimensional chemical structures, considering the contributions (%) of the
steric and electronic fields, to evaluate similarities with the pivotal structure. The analyses
were performed using Biovia Discovery Studio Visualizer (Dassault Systémes, version
19.1.0, Vélizy-Villacoublay, France) [62] software, considering the contributions of 25%,
50%, 75% and 100% of the electronic field.

4. Conclusions
This study successfully identified promising PTR1 inhibitors for Leishmania major

through an integrated in silico approach combining virtual screening, pharmacokinetic and
toxicological predictions, and molecular docking analyses. The compounds M601, M692,
M700, and M703 exhibited strong binding affinities and significant interactions with key
residues of the target enzymes, with M692 standing out for its potential multitarget profile.

In addition to favorable binding properties, the ADMET predictions revealed good
intestinal absorption, moderate plasma protein binding, low blood–brain barrier pene-
tration, and a markedly improved toxicological profile compared to methotrexate. These
findings highlight the robustness of the computational pipeline employed, which enabled
the rational selection of candidates with high therapeutic potential and low toxicological
risk, which allows for expanding the applicability of the method of this study to other
therapeutic targets such as trypanothione reductase, responsible for protection against
oxidative stress, and topoisomer l, which has differences with its mammalian counterparts.
However, there are limitations that need to be evaluated, such as the simplified biologi-
cal complexity in in silico models that can lead to inaccurate results. Overall, this work
provides a solid foundation for advancing these molecules into experimental validation,
contributing to the development of safer and more effective therapeutic alternatives for the
treatment of leishmaniasis.
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