
2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

On the Use of Machine Learning for Modern IoT
ELF Malware Detection

Cristian H. M. Souza, Daniel Macêdo Batista
Department of Computer Science
University of São Paulo, Brazil

{cristian.souza, batista}@ime.usp.br

Abstract—The growing adoption of Internet of Things (IoT)
devices has elevated concerns about malware threats, as the
limited resources of these devices and the diversity of vendors
complicate the design of robust security mechanisms. In this
paper, we address the challenge of detecting IoT ELF malware
by combining static and dynamic features; our dataset is made
of 5,169 unique files — 3,306 malicious samples and 1,863 benign
Linux binaries. We then train and compare seven machine
learning classifiers: Random Forest, Support Vector Machine,
Multi-Layer Perceptron, K-Nearest Neighbors, Logistic Regres-
sion, Naive Bayes, and XGBoost. Our results show that Random
Forest achieves the highest accuracy (99.33%), while providing
a 82.15ms mean classification time. The K-Nearest Neighbors
(97.33%) and the Logistic Regression (96.80%) closely follow. We
make the dataset publicly available to encourage further research
in the field. Overall, our findings underscore the importance of
combining static and dynamic features to enhance the detection
of modern malware threats targeting IoT and industrial control
system environments.

Index Terms—machine learning, malware detection, internet
of things, IoT, ELF

I. INTRODUCTION

Security flaws in Internet of Things (IoT) devices can be
critical to users’ privacy and personal safety. The use of
insecure protocols can expose users’ sensitive information to
attackers through network traffic interception. Furthermore, a
compromised device (e.g., in an industrial network or other
cyber-physical systems) can be leveraged to perform actions
in the physical environment, posing risks to human lives [1].

The diversity of manufacturers and IoT devices hinders
the implementation of effective security features for threat
detection, since such devices have limited storage and process-
ing capacities [2]. In addition, the heterogeneity of protocols
requires the use of adaptive approaches and a holistic view of
the infrastructure for effectively mitigating modern threats [3].

Malicious software remain one of the main challenges in
securing computing systems. The advent of the IoT paradigm
was accompanied by an increase in the number of malicious
programs designed for ARM (Advanced RISC Machine) and
MIPS (Microprocessor without Interlocked Pipeline Stages)
architectures [4]. An example of this is the use of the Mirai
botnet [5], whose goal is to infect and control embedded
devices (such as IP cameras and routers) in order to perform
distributed denial-of-service (DDoS) attacks. More recently,
in January 2025, TrendMicro alerted about large-scale DDoS

attacks orchestrated by an IoT botnet exploiting vulnerable
IoT devices such as wireless routers and IP cameras 1.

These threats are responsible for various damages, such as
the compromise of data integrity, theft of confidential informa-
tion, and financial losses for users and corporations. Recently,
ransomware have been widely used by criminals to block
access to files through data encryption, demanding a payment
to retrieve the data [6]. The effectiveness of ransomware
attacks gave rise to the criminal market of Ransomware-as-
a-Service (RaaS), making the purchase of advanced threats
accessible to everyone.

According to the ICS and OT Threat Predictions for 2024
[7], published by Kaspersky Lab, a leading company in cyber-
security, ransomware continue to be among the main threats
to industrial environments. Meanwhile, the 2024 Incident Re-
sponse Analyst Report [8], published by the same organization,
highlights that 24% of incident response requests worldwide
in 2024 occurred in industrial environments, and that one in
every three attacks involved the use of malware. Furthermore,
the widespread use of IoT in combination with 5G technology
has raised numerous discussions about the security of such
devices and the environments in which they operate [9].

Several advances have been and continue to be made by in-
dustry and academia in the areas of malicious artifact analysis
and detection [10]. Detection tools must be able to identify and
contain unknown threats. To achieve this, multiple analysis
techniques must be employed to increase the reliability of
solutions, with behavioral analysis being the most effective
at detecting zero-day malware [11].

In this context, and since many IoT devices are based
on Linux and run ELF binaries, this work focuses on de-
tecting IoT ELF malware through combined static and dy-
namic analysis. We use a dataset of 5,169 binaries, compare
seven classification algorithms based on Machine Learning
(ML), and assess both detection accuracy and classification
speed. Our results show that Random Forest achieves the
highest accuracy (99.33%) and good mean classification time
(82.15ms), followed closely by K-Nearest Neighbhors and
Logistic Regression. As an addition contribution, we share the
dataset as open data.

1https://www.trendmicro.com/en us/research/25/a/iot-botnet-linked-to-
ddos-attacks.html

979-8-3315-5432-3/25/$31.00 ©2025

2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

The rest of this paper is organized as follows: we explore
the necessary background in Section II, review related work
in Section III, describe the data collection procedure in Sec-
tion IV, detail the methodology and experimental setup in
Section V, analyze results in Section VI, and conclude with
final remarks and potential future directions in Section VII.

II. BACKGROUND

Malware analysis is fundamentally important to information
security because, by understanding the artifact’s behavior and
Assembly code, efficient detection and mitigation tools can be
developed [12]. However, the time an analyst spends dissecting
a malicious binary and deploying rules into the developed
solution may be unfavorable to the end user.

As specified by [13], malware analysis typically requires
that the chosen solution have a strong capacity to classify
new files based on previous investigations. The authors high-
light the diversity of available tools and note that choosing
the wrong one can delay the analysis process. Furthermore,
the very purpose of analysis may differ: while one analyst
might be interested only in determining whether an artifact
is malicious, another analyst might delve deeper, aiming to
discover which malware family it belongs to.

The analysis of a malicious program can be performed
either statically or dynamically. It is important to note that one
strategy does not replace the other; both should be employed
to gain a complete understanding of the malware in question.

A. Static analysis

Static analysis is commonly the first step in the process,
during which the analyst inspects the artifact in detail without
executing it. This approach can be divided into basic and
advanced techniques.

Basic static analysis can confirm whether a file is malicious
and provide information on its functionality, as well as data
that can be used to generate signatures. In this phase, the file
type, its hashes, headers, readable strings, function imports
from shared libraries, the use of packers, and other charac-
teristics are identified. Solutions such as PEStudio2 and DIE3

can be used for an initial evaluation of the binary. However,
basic analysis is ineffective against sophisticated threats.

Advanced static analysis, in turn, involves reverse-
engineering the malware to understand its behavior. This can
be achieved by analyzing its instructions in a disassembler. It
is important to emphasize that this type of analysis requires
deep knowledge of the Assembly code specific to the archi-
tecture for which the binary was compiled, as well as of the
malware’s target operating system. Tools such as IDA4, gdb5,
and radare26 are widely used in this category.

2https://www.winitor.com
3https://github.com/horsicq/Detect-It-Easy
4https://hex-rays.com/ida-free/
5https://www.sourceware.org/gdb/
6https://rada.re/n/

B. Dynamic analysis

Unlike static analysis, this stage involves executing the
malicious artifact in a controlled environment, known as a
sandbox, with the goal of monitoring its behavior. Dynamic
analysis is also divided into basic and advanced techniques.

In basic dynamic analysis, the analyst identifies system
calls made, processes running, DNS queries, traffic directed
to known services (such as HTTP, FTP, and SMTP), files
created in the file system, and other events. A commonly
used analysis environment in both academia and industry is
Cuckoo Sandbox7. However, as with basic static analysis,
certain details may not be uncovered.

Advanced dynamic analysis enables the extraction of de-
tailed information about the malicious program. At this stage,
a debugger (such as x64dbg8) is used to examine the binary’s
instructions. In this way, it is possible to step through the
operations one by one, as well as view the information the
malware uses and stores in memory.

C. The ELF format

The Executable and Linkable Format (ELF) serves as the
standard binary format on Linux systems. Any program that
is compiled, be it an executable or a shared library, ultimately
produces an ELF file. This format contains all the necessary
details for the program loader (ld) to interpret its contents
correctly. Within the file, various sections like .text, .data,
and .bss each carry out a specific function, helping to
organize code and data efficiently [14].

Although the ELF format is known for its modular design
and cross-platform compatibility, making it a universal stan-
dard across Linux-based systems, this very universality has
made it an attractive target for malicious actors. While most
malware research has traditionally focused on Windows-based
executables, recent trends indicate a growing number of attacks
targeting Linux environments, especially those embedded in
IoT and Industrial Control Systems (ICS). The consistency
and portability of ELF binaries, often seen as strengths, have
also introduced new risks. These characteristics facilitate the
spread of malware across different devices and architectures,
and make reverse engineering attacks more scalable. Despite
these growing threats, ELF malware remains underexplored
in academic literature. This gap creates a critical blind spot
in the cybersecurity landscape, particularly considering the
widespread use of embedded Linux in IoT and ICS environ-
ments. A focused investigation into ELF-based threats is both
urgent and necessary to anticipate evolving attack patterns and
develop more effective defense strategies.

For detecting ELF malware, an automated examination of
both the static and dynamic properties of the file can be
carried out. Moreover, depending on how the malware is
packaged, its malicious behavior may only become evident
during runtime. Therefore, it is essential for machine learning
models to consider both sets of features.

7https://cuckoosandbox.org
8https://x64dbg.com

2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

III. RELATED WORK

Various efforts were made by the scientific community
in the field of malware detection using machine learning
techniques. In [15], the authors introduce an approach that uses
system call data for detecting specially packed or obfuscated
malware. The best results are achieved using Multi-Layer Per-
ceptron (MLP) with a detection accuracy of 98.57%; however,
the dataset used by the authors only contained 524 malware
samples.

The study by [16] proposes a framework that uses static
analysis to detect and classify malware into known categories.
The system relies on opcode features and is trained on 6,000
samples. Although the system achieved an accuracy of 98%,
relying solely on static features can be a drawback for detect-
ing more stealthy samples. Similarly, [17] introduces a solution
that extracts static features from ELF binaries for malware
identification; the dataset used contained 1,773 malicious files
and the approach achieved an accuracy of 99%.

Unlike other solutions, our work considers both static and
dynamic attributes of malicious artifacts for classification.
In addition, we compare different algorithms implemented,
aiming to guide professionals in choosing the most appropriate
models. Finally, we make the dataset used public in order to
disseminate and encourage new research.

IV. DATA COLLECTION

For constructing the dataset used in this study9, we devel-
oped a Python script10 capable of collecting malicious samples
from the MalwareBazaar11 project, which is a malware sample
exchange platform. It is worth noting that when collecting
data from this kind of source, other files, such as shell scripts,
Windows PE files, and various other formats are also gathered.
As a result, we specifically filtered for ELF files, which can
be recognized by the signature 0x464c457f. This resulted
in 3,306 unique samples.

We then checked the files for details about the target
architecture. As shown in Fig. 1, ARM stands out at 49.73%,
followed by x86 64 and MIPS.

We also collected information about threat verdicts of the
samples from VirusTotal12 using Kaspersky’s engine, as shown
in Fig. 2. We observed that most of the collected samples
belong to the Mirai and Gafgyt malware families, reflecting
the threats that are mainly used to infect IoT environments.

For collecting the goodware samples, we relied on the
artifacts present in pristine Linux systems, located at /bin,
/sbin, and /usr/bin; resulting in a total of 1,863 artifacts.
Table I shows the amount of samples in the final dataset.

V. METHODOLOGY

This section presents our methodology for IoT ELF malware
detection, encompassing both feature extraction and classifi-
cation using multiple machine learning algorithms. We first

9https://github.com/cristianzsh/malware-research
10https://gist.github.com/cristianzsh/2e88b3c33f58a9b83e268d0050eadbdb
11https://bazaar.abuse.ch
12https://www.virustotal.com

ARM
x8

6_6
4

MIPS

Su
pe

rH

Pow
erP

C

Moto
rol

a 6
8K

SPA
RC ARC

Architectures

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f t
ot

al
 b

in
ar

ie
s

ELF binaries by architecture

Fig. 1. Malware architectures.

0 100 200 300 400 500
Frequency

HEUR:Backdoor.Linux.Mirai.cw

HEUR:Backdoor.Linux.Mirai.b

HEUR:Backdoor.Linux.Gafgyt.a

HEUR:Backdoor.Linux.Mirai.ba

HEUR:Backdoor.Linux.Mirai.h

HEUR:Backdoor.Linux.Mirai.es

HEUR:Backdoor.Linux.Mirai.r

HEUR:Backdoor.Linux.Gafgyt.bj

HEUR:Backdoor.Linux.Mirai.gen

HEUR:Backdoor.Linux.Gafgyt.dd

Ve
rd

ict

Top 10 Kaspersky verdicts

Fig. 2. Malware verdicts.

detail how we derive both static and dynamic features from
ELF binaries, then describe the various models implemented.
The implementation is evaluated in detail in Section VI.

A. Feature Extraction

Feature extraction proceeds in two phases, gathering static
and dynamic indicators and populating two types of feature
lists: discrete (i.e., boolean flags indicating presence or absence
of a property) and continuous (i.e., integer counts or sizes).
Unlike discrete variables, which can only have a predetermined
range of values, continuous variables can have an endless
number of possible values. Each ELF file is abstracted as a
binary object, storing the original label (goodware or malware)
and the extracted features.

2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

TABLE I
DISTRIBUTION OF SAMPLES

Type Count Percentage
Malware 3,306 64.0%
Goodware 1,863 36.0%
Total 5,169 100.0%

a) Static analysis: Static indicators are obtained by in-
specting the ELF structure and performing string analysis:

• Discrete features: We set flags for properties such
as whether the binary is packed with UPX, statically
linked, contains no symbols in its symbol table, or
references system-critical paths (e.g., /proc, /sys, or
files like /etc/passwd and /etc/shadow). We also
check whether any compiler strings (such as “GCC”
or “CLANG”) appear frequently. In addition, there is
a dedicated component to parse strings extracted from
the binary to search for URLs, IP addresses, and email
addresses. Any findings here can be used to set flags
or increase counters that represent suspicious network-
related features.

• Continuous features: We count occurrences of certain
substrings (such as the number of references to /home
or /var), measure ELF section sizes (like .text or
.data), determine the total binary size in megabytes
and note how many dynamic libraries the binary links are
compared to. We also record the number of ELF sections,
the number of symbols in .symtab, and the number
of relocation entries to capture more granular structural
information.

b) Dynamic analysis: To approximate runtime behavior,
we scan the binary’s raw content for keywords suggesting pro-
cess manipulation, system calls, and signals. Table II presents
a full description of the syscalls and signals considered. These
checks collectively aim to reveal suspicious or malicious
runtime capabilities that the ELF file might exhibit if executed.

B. Algorithms Implemented

After extracting the aforementioned feature sets, we feed
them into a suite of machine learning algorithms. Each al-
gorithm is trained to distinguish malicious ELF files from
benign ones, leveraging the static and dynamic features. Our
classification pipeline is developed entirely in Python, making
extensive use of the scikit-learn13 library for training
and evaluation. We also employ the Python implementation
of XGBoost14 for gradient boosting. A common superclass
centralizes actions like data splitting, training, testing, and
storing metrics, while subclassing allows the system to flexibly
switch between algorithms. Below we outline the principal
models used and key hyperparameters:

• Random Forest (RF): We utilize an ensemble-based
approach with ten decision trees. Each tree is allowed

13https://scikit-learn.org
14https://xgboost.readthedocs.io

to grow without a strict depth limit, relying on impurity-
based criteria to split nodes. This configuration offers a
balance of simplicity and performance, while remaining
flexible for further tuning (e.g., by adjusting the number
of trees).

• Support Vector Machine (SVM): This classifier can use
either a linear or non-linear kernel, with a default cap
of 1000 iterations. In the linear case, training focuses
on finding a hyperplane that best separates malicious
from benign samples. If a non-linear kernel is selected, a
parameter for kernel shape is automatically determined,
making the model adaptable to more complex feature
boundaries.

• Multi-Layer Perceptron (MLP): A feedforward neural
network is trained with two hidden layers of ten neu-
rons each. Network optimization uses the Adam method,
and we employ an additional regularization term (with
strength α = 0.1) to mitigate overfitting. The network’s
random seed is kept fixed to enhance reproducibility
across runs.

• K-Nearest Neighbors (KNN): Classification is deter-
mined by the five nearest examples in the feature space.
The label of a sample is decided by majority vote among
these neighbors, giving a straightforward measure of
similarity-based classification without requiring a para-
metric model.

• Logistic Regression (LR): This technique uses a regular-
ization mechanism to prevent overfitting by discouraging
excessively large model coefficients. Specifically, it pe-
nalizes the sum of the squared values of the coefficients,
promoting simpler and more generalizable models. The
training process runs for up to 1000 iterations or stops
earlier if convergence is reached, typically achieving a
good balance between performance and interpretability.

• Naive Bayes (NB): A Gaussian-based variant is used,
treating each feature as though it follows a normal
distribution. This probabilistic approach is lightweight
and fast, providing a solid baseline when dealing with
continuous features extracted from each ELF binary.

• XGBoost (XGB): Gradient boosting is conducted with a
binary logistic objective, focusing on iterative refinement
of weak learners. The performance metric relies on a log-
loss function, which incentivizes accurate probability es-
timates. This method typically excels in handling tabular
data containing mixed discrete and continuous attributes.

All models are evaluated using standard confusion-matrix
statistics (true positives, false positives, true negatives, false
negatives) and yield accuracy, precision, recall, and F1 scores.
At the end of training, the selected model is saved us-
ing Python’s serialization utilities, so that it can be readily
reloaded for testing on new binaries. This design allows
rapid substitution of one algorithm for another, facilitates
parameter fine-tuning, and supports consistent performance
tracking across different classification approaches.

2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

TABLE II
SYSTEM CALLS AND SIGNALS CONSIDERED IN DYNAMIC ANALYSIS

Category Description

System calls
Process and thread manipulation fork: Creates a new process by duplicating the calling process (child process).

execve: Replaces the current process with a new program to execute another binary.

File and directory operations open: Opens a file for reading, writing, or both, returning a file descriptor.
read: Reads data from a file or input source into memory.
write: Writes data to a file, socket, or another process’s memory.
rename: Renames files in the file system.

Network communication socket: Creates a network socket for sending or receiving data.
connect: Connects a socket to a remote server for communication.

Memory and resource management mmap: Maps a file or device into memory for direct access.
mprotect: Changes memory protection, like read/write/execute permissions.

Privilege escalation setuid: Sets the user ID of the calling process to gain higher/lower privileges.
capset: Modifies process capabilities for restricted actions.

System information uname: Retrieves system information (e.g., OS name, version).
getpid: Returns the process ID of the calling process.

Time and delays nanosleep: Pauses execution for a specified time (in nanoseconds).
clock_gettime: Retrieves current time from a specific clock.

Anti-debugging techniques ptrace: Detects debugging by checking if a debugger has attached.
getppid: Checks the parent process ID to identify potential debuggers.

Signals
SIGTERM: Termination request, sent to the program.
SIGSEGV: Invalid memory access (segmentation fault).
SIGINT: External interrupt, usually initiated by the user.
SIGILL: Invalid program image, such as invalid instruction.
SIGABRT: Abnormal termination condition (e.g., initiated by abort()).
SIGFPE: Erroneous arithmetic operation such as divide by zero.

VI. RESULTS

Evaluating machine learning models using appropriate met-
rics is essential for assessing their overall quality. These
metrics help determine whether a model adequately fits the
data and meets the specific objectives of the task at hand [18].
Below are the most commonly used metrics considered in
evaluating the models proposed in this study.

Accuracy indicates the overall performance of the model.
It is the number of correct predictions divided by the total
number of examples. For instance, if out of 100 observations,
90 are classified correctly, the model has an accuracy of 90%.
Precision is calculated as the ratio between the number of
examples correctly classified as positive and the total number
of examples classified as positive. This metric places greater
emphasis on errors resulting from false positives. Recall
emphasizes errors caused by false negatives. This metric (also
known as sensitivity) is defined as the ratio between the
number of examples correctly classified as positive and the
total number of examples that are actually positive. F1-Score
is defined as the harmonic mean of precision and recall. A
low F1-Score indicates that the model’s precision or recall is
low. Therefore, this metric serves as a more comprehensive
indicator of the model’s effectiveness, although it is less
intuitive than accuracy.

The evaluations were carried out on a machine with an Intel
Core i7-11800H CPU running at 2.30GHz (8 vCPUs), 32GB

of RAM, and Ubuntu Server 24.04.1 LTS 64-bit (Linux Kernel
6.8.0-41). The training and testing data sets were split into the
7:3 proportion.

Table III compares the performance of the considered
classification algorithms: Random Forest, SVM, MLP, KNN,
Logistic Regression, Naive Bayes, and XGBoost. Random
Forest attains the highest accuracy (99.33%), followed by
KNN (97.33%) and Logistic Regression (96.80%). These three
top-performing models also demonstrate strong precision, re-
call, and F1-Scores, indicating high reliability across multiple
metrics.

The remaining algorithms still achieve competitive re-
sults, with SVM reaching 95.00% accuracy and Naive Bayes
92.83%, the latter showing notably high precision (0.97) and
recall (0.99) but slightly lower overall accuracy. XGBoost
follows at 90.98% accuracy, maintaining balanced precision,
recall, and F1-Scores. MLP lags behind at 87.95% accuracy,
suggesting potential challenges in network design or hyperpa-
rameter tuning. Despite varying results, each model exhibits
particular strengths, reinforcing the importance of evaluating
multiple algorithms to identify the most suitable choice for a
given classification task.

We also evaluated the algorithms in terms of classification
time. Table IV shows the mean classification time, as well
as the lowest and highest records for each model. Overall,
Naive Bayes achieved the lowest mean classification time (79
ms), while MLP required the longest on average (92 ms).

2025 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Mexico City, Mexico

TABLE III
PERFORMANCE METRICS FOR CLASSIFICATION ALGORITHMS

Algorithm Accuracy Precision Recall F1-Score
Random Forest 99.33% 0.97 0.99 0.98
SVM 95.00% 0.93 0.90 0.91
MLP 87.95% 0.88 0.86 0.87
KNN 97.33% 0.98 0.96 0.97
Logistic Regression 96.80% 0.96 0.96 0.96
Naive Bayes 92.83% 0.97 0.99 0.98
XGBoost 90.98% 0.91 0.90 0.90

Logistic Regression presented the smallest minimum time
(65 ms), whereas MLP showed the highest maximum time
(113 ms). Random Forest, the best in terms of accuracy,
required the third smaller mean time (82.15ms). Despite these
differences, all methods remained relatively close (within a
range of roughly 30 ms), indicating that while some models
have a slight speed advantage, classification time does not vary
dramatically across the tested algorithms.

TABLE IV
CLASSIFICATION TIME (MS) FOR EACH ALGORITHM

Algorithm Mean (ms) Min (ms) Max (ms)
Random Forest 82.150 68.184 93.076
SVM 85.845 69.797 103.146
MLP 91.971 73.474 112.544
KNN 86.344 72.969 101.106
Logistic Regression 82.631 65.084 99.746
Naive Bayes 79.247 69.547 88.131
XGBoost 79.903 73.474 86.163

VII. CONCLUSION

This study presented an approach for IoT malware detection
using static and dynamic features from the binaries. By ana-
lyzing a diverse collection of 5,169 binaries, we demonstrated
that leveraging multiple sources of the sample (file structure,
strings, and syscall-related indicators) significantly boosts de-
tection performance.

Among the seven classifiers tested, Random Forest achieved
the highest accuracy at 99.33%. Although it is not the fastest
(with a mean classification time of approximately 82ms) it
still provides near real-time predictions suitable for many IoT
scenarios. Despite slight performance variations across models
such as KNN, Logistic Regression, and Naive Bayes, the
consistently strong results underscore the viability of these
algorithms for practical IoT security.

Future directions include refining the feature extraction
process to capture more elaborate anti-analysis or obfuscation
techniques, as well as incorporating additional architectures
and malware samples to enhance model generalization. By
releasing our dataset and methodology to the broader com-
munity, we hope to inspire further research and foster im-
provements in safeguarding IoT and ICS ecosystems against
evolving malware threats.

ACKNOWLEDGMENTS

This research is part of the STARLING project funded
by FAPESP proc. 21/06995-0. It was partially spon-
sored by CNPq grant #405940/2022-0 and CAPES grant
#88887.954253/2024-00.

REFERENCES

[1] X. Yang, L. Shu, Y. Liu, G. P. Hancke, M. A. Ferrag, and K. Huang,
“Physical security and safety of iot equipment: A survey of recent ad-
vances and opportunities,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 7, pp. 4319–4330, 2022.

[2] M. Kumar, K. Dubey, and R. Pandey, “Evolution of emerging com-
puting paradigm cloud to fog: applications, limitations and research
challenges,” in 11th Confluence. IEEE, 2021, pp. 257–261.

[3] J. Mohanty, S. Mishra, S. Patra, B. Pati, and C. R. Panigrahi, “Iot
security, challenges, and solutions: a review,” Progress in Advanced
Computing and Intelligent Engineering: Proceedings of ICACIE 2019,
Volume 2, pp. 493–504, 2021.

[4] C. H. M. Souza and C. H. Arima, “A hybrid approach for
malware detection in sdn-enabled iot scenarios,” Internet Technology
Letters, vol. 7, no. 6, p. e534, 2024. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/itl2.534

[5] S. Kumar and B. Chandavarkar, “Analysis of mirai malware and its
components,” in Machine Learning, Image Processing, Network Security
and Data Sciences: Select Proceedings of 3rd International Conference
on MIND 2021. Springer, 2023, pp. 851–861.

[6] T. McIntosh, T. Susnjak, T. Liu, D. Xu, P. Watters, D. Liu, Y. Hao, A. Ng,
and M. Halgamuge, “Ransomware reloaded: Re-examining its trend,
research and mitigation in the era of data exfiltration,” ACM Computing
Surveys, vol. 57, no. 1, pp. 1–40, 2024.

[7] E. Goncharov, “ICS and OT Threat Predictions for 2024,” Kaspersky
Lab, Tech. Rep., 2024.

[8] G. E. R. T. (GERT), “Incident response analyst re-
port 2024,” Kaspersky Lab, Tech. Rep., 2025. [On-
line]. Available: https://content.kaspersky-labs.com/fm/site-editor/33/
3318ec849851138088d24f26d236f469/source/irreport.pdf

[9] F. Salahdine, T. Han, and N. Zhang, “Security in 5g and beyond recent
advances and future challenges,” Security and Privacy, vol. 6, no. 1, p.
e271, 2023.

[10] M. Gopinath and S. C. Sethuraman, “A comprehensive survey on
deep learning based malware detection techniques,” Computer Science
Review, vol. 47, p. 100529, 2023.

[11] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa,
and A. A. H. Elnour, “Malware detection issues, challenges, and future
directions: A survey,” Applied Sciences, vol. 12, no. 17, p. 8482, 2022.

[12] C. H. Souza, T. Pascoal, E. P. Neto, G. B. Sousa, F. S. Filho,
D. M. Batista, and F. S. Dantas Silva, “Sdn-based solutions
for malware analysis and detection: State-of-the-art, open issues
and research challenges,” Journal of Information Security and
Applications, vol. 93, p. 104145, 2025. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2214212625001826

[13] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, 2019.

[14] J. Wu, Y. Wang, M. Sun, X. Xu, and Y. Song, “Towards a framework for
developing verified assemblers for the elf format,” in Asian Symposium
on Programming Languages and Systems. Springer, 2023, pp. 205–224.

[15] I. Tahir and S. Qadir, “Machine learning-based detection of iot malware
using system call data,” in 2024 4th International Conference on Digital
Futures and Transformative Technologies (ICoDT2), 2024, pp. 1–8.

[16] C.-W. Tien, S.-W. Chen, T. Ban, and S.-Y. Kuo, “Machine learning
framework to analyze iot malware using elf and opcode features,” Digital
Threats: Research and Practice, vol. 1, no. 1, pp. 1–19, 2020.

[17] A. Ravi and V. Chaturvedi, “Static malware analysis using elf features
for linux based iot devices,” in 2022 35th International Conference
on VLSI Design and 2022 21st International Conference on Embedded
Systems (VLSID), 2022, pp. 114–119.

[18] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the
quality of machine learning explanations: A survey on methods and
metrics,” Electronics, vol. 10, no. 5, p. 593, 2021.

