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Abstract – Within the superfield approach, we discuss the two-dimensional noncommutative
super-QED. Its all-order finiteness is explicitly shown.
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Noncommutative field theories have attracted a great
deal of interest during the last ten years. One of their
key characteristic consists in the UV/IR mixing [1] which
generates a new type of divergences which can break the
perturbative expansion. It is known that the supersymme-
try improves the situation, both in the four-dimensional
case [2–5] and in the three-dimensional one [6,7]. A
recent paper [8] raised the interest in the two-dimensional
noncommutative Yang-Mills theory. Therefore, a natural
question is: what is the situation in the supersymmetric
extension of this theory? This paper is devoted to this
problem.
The action of the two-dimensional noncommutative

supersymmetric quantum electrodynamics (QED) is
(following the notations of [9])

S =
1

2g2

∫
d4zWα ∗Wα, (1)

where

Wβ =
1

2
DαDβAα− i

2
[Aα,DαAβ ]− 1

6
[Aα, {Aα, Aβ}] (2)

is a superfield strength constructed from the spinor super-
potential Aα. Hereafter it is implicitly assumed that all
commutators and anticommutators are Moyal ones. We
note that in the two-dimensional space-time, the noncom-
mutativity matrix is Θµν ≡Θεµν , where εµν is the two-
dimensional Levi-Civita symbol. Here we used the fact
that the structure of the superfields in two and three
dimensions is the same (cf. [9,10]).

(a)E-mail: petrov@fisica.ufpb.br

The action in eq. (1) is invariant under the infinitesimal
gauge transformations

δAα =DαK − i[Aα,K] . (3)

After gauge fixing, the total action of the noncommutative
supersymmetric QED reads

Stotal = S+SGF +SFP , (4)

where SGF is the gauge fixing term,

SGF =− 1

4ξg2

∫
d4z(DαAα)D

2(DβAβ), (5)

and SFP is the corresponding action for the Faddeev-
Popov ghosts,

SFP =
1

2g2

∫
d4z(c′DαDαc+ ic′ ∗Dα{Aα, c}). (6)

From eq. (4), one obtains the propagator for the gauge
fields,

〈Aα(−p, θ1)Aβ(p, θ2)〉 = 1
i
g2
[
− D

2DβDα

2p4

+ξ
D2DαDβ

2p4

]
δ12, (7)

and the propagator for the ghost fields,

〈c′(−k, θ1)c(k, θ2)〉= ig2D
2

k2
δ12 , (8)
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Fig. 1: Contributions to the two-point function of Aα from the pure gauge sector.

where δ12 ≡ δ2(θ1− θ2) is the usual Grassmannian delta
function. Finally, the interaction part of the classical
action in the pure gauge sector is

Sint =
1

g2

∫
d4z
[
− i
4
DγDαAγ ∗ [Aβ ,DβAα]

− 1
12
DγDαAγ ∗ [Aβ , {Aβ , Aα}]

−1
8
[Aγ ,DγA

α] ∗ [Aβ ,DβAα]

+
i

12
[Aγ ,DγA

α] ∗ [Aβ , {Aβ , Aα}]

+
1

72
[Aγ , {Aγ , Aα}] ∗ [Aβ , {Aβ , Aα}]

]
, (9)

from which the interacting vertices for the perturbative
calculations may be read directly.
The possible divergences of the theory are specified by

the superficial degree of the divergence (for details see [6])

ω= 1− 1
2
Vc− 2V0− 3

2
V1−V2− 1

2
V3− 1

2
ND, (10)

where Vi is the number of purely gauge vertices involving
i supercovariant derivatives, Vc is the number of gauge-
ghost vertices, and ND is the number of spinor derivatives
acting on the external fields. It is easy to see that the
theory is super-renormalizable, with only (logarithmically)
divergent graphs which are those with V3 = 2, or V2 = 1, or
Vc = 2. They contribute to the one-loop two-point function
of Aα field and are depicted in fig. 1.
In these graphs, a cut in a ghost line corresponds to the

factor Dα acting on the ghost propagator. A trigonometric
factor eik∧l− eil∧k = 2i sin(k∧ l), where k∧ l≡ kµlνΘεµν ,
originates from each commutator. By denoting the contri-
butions of the graphs in fig. 1 by I1a, I1b, and I1c, respec-
tively, after some D-algebra transformations we arrive at

I1a =
1

2
ξ

∫
d2p

(2π)2
d2θ1

∫
d2k

(2π)2
sin2(k∧ p)
k2

×Aβ(−p, θ1)Aβ(p, θ1)+ · · · , (11)

I1b =
1

2
(1− ξ)

∫
d2p

(2π)2
d2θ1

∫
d2k

(2π)2
sin2(k∧ p)
k2

×Aβ(−p, θ1)Aβ(p, θ1)+ · · · , (12)

I1c = −1
2

∫
d2p

(2π)2
d2θ1

∫
d2k

(2π)2
sin2(k∧ p)
k2

×Aβ(−p, θ1)Aβ(p, θ1)+ · · · , (13)

where the ellipsis stands for the finite parts. Hence, the
total one-loop two-point function of the gauge superfield,
given by I1 = I1a+ I1b+ I1c, is free from both UV and
UV/IR infrared singularities.
We already mentioned that divergences are possible

only for V2 = 1, or V3 = 2, or Vc = 2. It is easy to see
that two-loop graphs satisfying these conditions are just
vacuum ones whereas higher-loop graphs cannot satisfy
these conditions at all. Therefore, there are no UV and
UV/IR infrared divergences beyond one-loop and, as a
consequence, the theory is finite at any loop order. The
generalization for the non-Abelian case (where Aα(z) =
Aaα(z)T

a, with T a being the generators of the gauge group
in the fundamental representation) is straightforward, and
by repeating the three-dimensional calculations, we have
again, as in three and four dimensions, that at

tr(TaTbTaTc) = 2tr(TaTbTd)tr(TaTcTd) (14)

all one-loop divergences explicitly cancel, while the
higher-loop ones simply do not arise, i.e. the pure
two-dimensional gauge theory is completely finite!
We next study the interaction of the spinor gauge field

with matter. To this end we add to eq. (4) the action of
the N scalar matter superfields φa, with a= 1, . . . , N .

Sm =

∫
d4z
[
− φ̄a(D2−m)φa

+
g

2
([φ̄a, A

α] ∗Dαφa−Dαφ̄a ∗ [Aα, φa])

+
g2

2
[φ̄a, A

α] ∗ [Aα, φa]
]
. (15)

The free propagator of the scalar superfields is

〈φ̄a(−k, θ1)φb(k, θ2)〉= iδabD
2+m

k2+m2
δ12. (16)

and the superficial degree of divergence when matter fields
are present can be shown to be equal to

ω = 1− 1
2
Vc− 2V0− 3

2
V1−V2− 1

2
V3− 1

2
Eφ

−1
2
V 1φ −V 0φ −

1

2
ND , (17)

where, as before, Vi is the number of pure gauge vertices
with i spinor derivatives, Eφ is the number of exter-
nal scalar lines, ND is the number of spinor derivatives
associated to external lines, V 1φ is the number of triple
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Fig. 2: Contributions to the two-point function of Aα from the
matter sector.

vertices involving matter, and V 0φ is the number of quar-
tic vertices involving matter. We note that the superfi-
cial degree of divergence of any supergraph in the two-
dimensional theory is evidently less by one than the super-
ficial degree of divergence of the same supergraph in the
three-dimensional theory. It is straightforward to show
that the graphs with non-zero number of external matter
legs, possessing Eφ � 2 together with V 1φ > 0 or V 0φ > 0,
are finite.
It remains to study the graphs with zero number of

external matter legs. The leading nontrivial UV divergence
for them is presented by the graphs with two external
Aα legs which are superficially UV logarithmic divergent.
They are depicted in fig. 2.
Their contribution can be found in the same way as

in [6], so here we merely quote the result,

I4 = 2N

∫
d2p

(2π)2
d2θ

∫
d2k

(2π)2
sin2(k∧ p)

(k2+m2) [(k+ p)2+m2]

×(kγβ −mCγβ)
[
(D2Aγ(−p, θ))Aβ(p, θ)

+
1

2
DγDαAα(−p, θ)Aβ(p, θ)

]
. (18)

This result is finite, which leads to the conclusion that the
theory is finite. The non-Abelian case does not essentially
differ and again the theory is finite when the matrices for
the generators of the gauge group satisfy (14).
We explicitly proved the finiteness of the two-

dimensional noncommutative supersymmetric QED. We
found that the proof of its finiteness does not essentially
differ from the three-dimensional studies [6,7], and
the finiteness is caused by the lower dimension of the
space-time. However, in the two-dimensional case, all
divergences vanish already in the one-loop order and so
the theory is all-loop finite.

Nevertheless, it is interesting to know that there is a
strong argument in favour of the two-loop (and hence all-
loop) finiteness of the three-dimensional noncommutative
supersymmetric QED. Indeed, it follows from [6,7] that the
only potentially divergent structure in two loops looks like∫
d5zAαAα. However, the appearance of such a correction
is forbidden by the gauge invariance, which allows only
terms with at least two derivatives acting on the external
fields. Such a contribution is evidently finite due to (17).
By analogy with [11], one can expect that the term∫
d5zAαAα would vanish at least in some specific gauge.
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