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Abstract We report the identification of metastable iso-
meric states of 228Ac at 6.28 keV, 6.67 keV and 20.19 keV,
with lifetimes of an order of 100 ns. These states are pro-
duced by the β-decay of 228Ra, a component of the 232Th
decay chain, with β Q-values of 39.52 keV, 39.13 keV and
25.61 keV, respectively. Due to the low Q-value of 228Ra as
well as the relative abundance of 232Th and their progeny in
low background experiments, these observations potentially
impact the low-energy background modeling of dark matter
search experiments.

a e-mail: yjko@ibs.re.kr
b e-mail: hyunsulee@ibs.re.kr (corresponding author)

1 Introduction

Although numerous astronomical observations support the
conclusion that most of the matter in the universe is invisible
dark matter, an understanding of its nature and interactions
remains elusive [1,2]. The dark matter phenomenon might
be attributable to new particles, such as weakly interacting
massive particles (WIMPs) [3,4]. Tremendous experimental
efforts have been mounted to detect nuclei recoiling from
WIMP-nucleus interactions, but no definitive signal has yet
been observed [5,6]. This motivates searches for new types of
dark matter [7–10] that would produce different experimental
signatures in detectors.

Typically, these dark matter signals can manifest them-
selves as an excess of event rates above a known back-
ground [11–13]. Thus, these searches require a precise under-
standing of the background sources within a detector. Since
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typical dark matter models predict low energy signals below
10 keV, a precise modeling of the background sources in
the low-energy signal regions is crucial. For instance, the
recently observed event excess seen by XENON1T [11] can
be explained not only by new physics interactions but also by
tritium (3H) contamination, which undergoes a low-energy
β-decay (Q-value 18.6 keV, half-life t1/2 = 12.3 years).

Because of their long half-lives and large natural abun-
dances, contamination from 238U and 232Th as well as their
progenies are significant issues for low-background dark
matter search experiments [14,15]. Therefore, an accurate
understanding of their contamination levels and resultant
contributions to detector background is essential. Among
these, 228Ra, which is produced by the α-decay of 232Th,
is of special interest due to the low total Q-value (45.8 keV)
of its decay. Based on data from the National Nuclear Data
Center [16] and the Nuclear Data Sheet [17], 228Ra decays
to 228Ac via β-particle emission [18]. Since all β-decays
from 228Ra are to excited states of 228Ac, the β-particle is
always accompanied by a γ -ray or a conversion electron as
described in the level scheme shown in Fig. 1, which is based
in part on measurements and a model-dependent analysis
as discussed in [18]. Currently, the lifetimes of the excited
states of 228Ac are unknown [16–18]. The odd numbers of
protons and odd numbers of neutrons (odd-odd nuclei) sug-
gest the possibility that these are multi-quasiparticle states
and deformed nuclei that might result in isomeric states [19].
Even though the lifetime of these states have not been pre-
viously measured, Ref. [18] pointed out that no coincident
6.67 keV or 6.28 keV γ lines with 13.5 keV or 26.4 keV γ

lines were observed. This suggests the possible presence of
long-lived isomeric states in 228Ac. If this is the case, the β

emission (e.g., Q = 39.52 keV) and the following emission
(e.g., Q = 6.28 keV) will occur at different times and gener-
ate different signatures in the detector. However, simulation
programs commonly used by dark matter search experiments,
such as Geant4 [20], model this decay with the simultaneous
emission of the β and the accompanying γ or conversion
electron. Failure to account for the isomeric lifetime of the
metastable state can have a significant impact on the back-
ground modeling and interpretation of dark matter search
results.

In this paper, we report the identification of the isomeric
states in 228Ac using the COSINE-100 dark matter search
detector [21]. Due to a low contamination of 228Ra and about
250 ns long scintillation decay time of the NaI(Tl) crystals,
a quantitative evaluation of the lifetime, which is of order
100 ns (O(100 ns)), and the branching fraction for each state
is difficult. However, we have studied how this might influ-
ence the understanding of the background in the low-energy
signal region.

Fig. 1 Nuclear level scheme for 228Ac adapted from Ref. [18]

2 Experiment

COSINE-100 [21] consists of a 106 kg array of eight ultra-
pure NaI(Tl) crystals [22] each coupled to two photomulti-
plier tubes (PMTs). The crystals are immersed in an active
veto detector composed of 2,200 L of a linear alkylben-
zene (LAB)-based liquid scintillator (LS) [23,24]. These
eight crystals are referred to as Crystal1 to Crystal8. Crys-
tal1, Crystal5, and Crystal8 are excluded from this analysis
due to their high background caused by high noise rate (Crys-
tal1) and low light yield (Crystal5 and Crystal8) [25]. Data
obtained between 20 October 2016 and 14 April 2020 are
used for this analysis with a total exposure of 1181 live days.

Signals from PMTs attached at each end of the crystals
are digitized by 500 MHz, 12-bit flash analog-to-digital con-
verters. A trigger is generated when signals with amplitudes
corresponding to one or more photoelectrons occur in both
PMTs within a 200 ns time window. The waveforms from the
PMTs of all crystals are recorded when the trigger condition
is satisfied by at least one crystal. The recorded waveform
is 8µs long starting 2.4µs before occurrence of the trigger.
Detailed descriptions of the COSINE-100 detector and its
data acquisition system are provided elsewhere [21,26].
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Fig. 2 Examples of selected two-pulse candidate events from different
crystals on different dates. (a) and (b) are the signals from the individual
PMTs, (c) displays the summed waveform of the two PMT signals, and

(d) shows the averaged 60 ns bin signals from the summed waveform.
The offline selection of the two-pulse events is performed using the
smoothed waveforms

3 Data analysis

3.1 Two-pulse events

In this analysis, we have studied selected events that contain
two distinct pulses, named “two-pulse events”, within the
8µs long waveforms. The event selection criteria to remove
PMT-induced noise events [27] is applied as a preselection
on candidate events. We have developed an offline selection
algorithm to identify the two-pulse events using the summed
waveforms from the two PMTs of each crystal. These are
smoothed by averaging 30 neighboring time bins into 60 ns
bin-width values. Two-pulse events are identified as those
where, in addition to the initial rising edge of a pulse, there
is a second rising edge of at least 1 keV. The computed mean
decay times in a 300 ns time window starting from each rising
edge are required to be greater than 100 ns. In addition, we
define the asymmetry between two PMT signals as (Q1 −
Q2)/(Q1+Q2)where Q1 and Q2 are charge measured by the
two PMTs. We calculate the asymmetries for two identified
pulses within 300 ns time windows from the rising edges.
The asymmetry for each pulse is required to be less than
0.25. A total of 4258 candidate events from the five crystals
are accepted. Figure 2 shows three examples of the selected
two-pulse candidate events that occurred in three different
crystals.

Because of the low rate for two-pulse events, this initial
selection still contains noisy events that did not originate from
two scintillation occurrences. These include PMT-induced
noise pulses or afterpulses that mimic a second scintillation

occurrence and tail fluctuations due to reflections inside the
crystal as shown in Fig. 4. Further characterization of two-
pulse events provides further discrimination of these noisy
events.

Considering two (fast and slow) decay components of
the scintillating crystals [28,29], we characterize each pulse
using a single rise time (τr ), two decay times (τ f and τs), the
starting time of the pulse (t0), and the ratio of the slow-to-fast
decay components (R):

Fi (t) = 1

τ fi
e−(t−t0i )/τ fi + Ri

τsi
e−(t−t0i )/τsi

−
(

1

τ fi
+ Ri

τsi

)
e(−t−t0i )/τri ,

(1)

Two-pulse events are modeled as F(t) = A1F1(t)+A2F2(t)
where A1 and A2 represent the total charge, proportional to
the energy, of each pulse. Here, we can evaluate the energy of
the first pulse (E1), the second pulse (E2), and �T (t02 − t01 ).
Mean decay times for two pulses calculated from the fit
parameters are required to be greater than 150 ns and less than
400 ns for each pulse. Selected events are required to have
a reduced χ2 less than 4. In total, 2576 events are selected
as the two-pulse events from the 4258 candidate events. Fig-
ures 3 and 4 show examples of the fit results for the two-pulse
candidate events that are categorized as two-pulse events and
noisy events, respectively.

For a quantitative measurement of the isomeric states, we
need to evaluate selection efficiencies that depend on E1, E2,
and �T, and this requires simulated waveforms of the two-
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Fig. 3 The results of fits to the two pulses (lines) for the events in Fig. 2. The energies of each pulse (E1 and E2) and the time difference (�T) are
listed.
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Fig. 4 Examples of two-pulse candidate events that are categorized as noisy events

pulse events. Since photon simulations of the NaI(Tl) crystals
are still being developed for the COSINE-100 experiment, we
briefly report qualitative results based on our observations.
Two-pulse events with small �T, small E1 or E2, and large
E1/E2 ratio are preferentially eliminated by the initial selec-
tion of the candidate events. Furthermore, large E1/E2 ratio
events are still contaminated by events with large tail fluctu-
ations, even though applied selection criteria removed many
of these events. Because of these limitations, we only study
events with individual pulse energies in the range 2−30 keV.

Figure 5a shows a scatter plot of E1 and E2 for the 2–
30 keV energy region, where there is a large population of
the two-pulse events around E2 equal to about 6 keV. The
one dimensional spectrum of E2 is shown in Fig. 5b, where
there is a two-peak structure with peaks centered at around
6 keV and 20 keV. We model the E2 spectrum as two Gaus-
sian functions summed with an exponential background. The
exponential background describes the residual noisy events.
The mean energies of the two peaks are determined to be:
6.11 ± 0.09 keV and 20.6 ± 0.5 keV, respectively, which
closely match the 6.28 keV and 20.19 keV nuclear levels of
228Ac, as indicated in Fig. 1.

Figure 5c shows the E1 spectra for E2 values that are
greater or less than 13 keV. The E2 spectra have energy dis-
tributions with shapes characteristic of mono-energetic emis-
sions, while the E1 spectra have broader energy distributions
that are characteristic ofβ-decay and match the decay scheme
of 228Ra into 228Ac shown in Fig. 1. The data are consistent

with the identification of both the 6.28 keV and 20.19 keV
excited states of 228Ac as metastable isomers with lifetimes
of O(100 ns). To confirm this hypothesis, we simulate the
β spectra of 228Ra using a Geant4-based simulation that is
the same as the one used for background modeling of the
COSINE-100 detectors [22,30]. We model the energy spec-
tra of two β-decays: one with Q = 39.52 keV that decays
into the 6.28 keV state and the other with Q = 25.61 keV that
decays into the 20.19 keV state. These energy spectra are
overlaid in Fig. 5c and show similar behaviors for energies
greater than 5 keV. Some discrepancies can be explained at
low energies due to the low efficiency of the small E1 events.

Distributions of �T are shown in Fig. 5d together with
results from exponential fits for only large �T events. This
is because the two-pulse selection strongly suppress small
�T events. Only events with �T > 600 ns are fitted for the
E2 < 13 keV distributions. Because two-pulse discrimination
is more efficient for large E2 events, E2 > 13 keV events with
�T > 350 ns are fitted. The fitted lifetimes are 299 ± 11 ns
and 115 ± 25 ns for the E2 = 6.28 keV and E2 = 20.19 keV
states, respectively, where only statistical uncertainties are
considered.

3.2 Three-pulse events

If we consider the level scheme of 228Ac as Fig. 1, the
20.19 keV state transits to the 6.67 keV state before decay-
ing to the ground state. Because of O(100 ns) lifetime of the
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Fig. 5 (a) A scatter plot of energy of the second pulse versus the first
pulse (E2 vs E1). (b) The E2 spectrum (points) is modeled with two
Gaussians (dotted and dotted-dashed lines) and an exponential back-
ground contribution (dashed line). (c) The E1 spectra for E2 < 13 keV
(filled circles) and E2 ≥ 13 keV (opened circles) are compared with a

Geant4-based simulation of β spectra with Q = 39.52 keV (red solid
line) and Q = 25.61 keV (blue solid line). (d) The distribution of the
two-pulse time difference, �T, for E2 < 13 keV (red filled circles)
and E2 ≥ 13 keV (blue opened circles). Exponential fits (solid lines) to
obtain the lifetimes are overlaid

20.19 keV state transition, the 20.19 keV to 6.67 keV transi-
tion must have the same lifetime. However, the number of
two-pulse events with E2 > 13 keV is only a few percent of
those with E2 < 13 keV. Considering the relative intensities
of the 228Ra β-decay shown in Fig. 1, the observed isomeric
transition of the 20.19 keV state is only O(1%) of the total
β-decay to the 20.19 keV state. This may indicate that the
6.67 keV state is also an isomeric state. In this case, three
distinct emissions have to occur, but at a rate that cannot
be seen in the current analysis. Only O(1%) of these events
would be accepted as the two-pulse events if the two final
emissions occur so close in time that they cannot be distin-
guished in the NaI(Tl) crystal.

To identify the hypothesis of an isomeric 6.67 keV state,
we have searched for events that contain three distinct pulses,
named “three-pulse events”, within the 8µs window. Similar

selections applied for the two-pulse events are used for the
three-pulse events: F(t) = A1F1(t) + A2F2(t) + A3F3(t)
from Eq. 1. In total, 34 three-pulse events are selected. Fig-
ure 6 shows three examples of the fit results that occurred
in three different crystals. Here, we evaluate the energy of
the first pulse (E1), the second pulse (E2), and the third pulse
(E3) and the time differences between first and second pulses
(�T1), and second and third pulses (�T2). These quantities
are indicated in the figure.

Figure 7a shows the E1 spectrum that is overlaid with
β spectrum with Q = 25.61 keV corresponding to decays
into the 20.19 keV state. Simulations and data show similar
behavior for energies greater than 5 keV. The energy spectra
of the E2 and E3 are presented in Fig. 7b, c, respectively.
A Gaussian function with an exponential background fits
the data well. The mean energies of E2 and E3 are deter-
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Fig. 6 Examples of the fit results for the three-pulse events from different crystals on different dates. The energies of each pulse (E1, E2, and E3)
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Fig. 7 The energies and �T distributions obtained from the three-
pulse events are presented. (a) The E1 spectrum (points) of three-pulse
events is compared with a Geant4-based simulation of β spectra with
Q = 25.61 keV (solid line). (b) The E2 spectrum (points) is modeled
with a Gaussian (dotted line) and an exponential background contri-

bution (dashed line). (c) The E3 spectrum (points) is modeled with
a Gaussian (dotted line) and an exponential background contribution
(dashed line). (d) The distributions of the two-pulse time differences
from the first and second pulses, �T1 (filled circle), and the second and
third pulses, �T2 (open circle), are presented
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Table 1 228Ra contamination in the COSINE-100 crystals measured
using the two-pulse events at 6.28 keV. These measurements are com-
pared with the fit result from the background modeling of the COSINE-
100 detector [30]

(mBq/kg) Two-pulses (this work) Background modeling

C2 0.034 ± 0.010 0.032 ± 0.011

C3 0.017 ± 0.005 0.029 ± 0.010

C4 0.024 ± 0.007 0.012 ± 0.004

C6 0.008 ± 0.002 0.024 ± 0.009

C7 0.007 ± 0.002 0.015 ± 0.006

mined as 13.8 ± 0.4 keV and 6.70 ± 0.37 keV, respectively.
The obtained energy levels are well matched with 228Ac
level scheme in Fig. 1. Figure 7d shows �T1 and �T2 dis-
tributions. We observe O(100 ns) lifetime not only for the
20.19 keV state but also for the 6.67 keV state.

3.3 Consistency check of 228Ra decays

As a cross-check of the 228Ac isomer hypothesis, we evaluate
the level of 228Ra contamination in the NaI(Tl) crystals by
measuring the rate of the two-pulse events with E2 around
6.28 keV. We select 6.28 keV state events by a requirement of
E2 < 13 keV in Fig. 5b. In order to account for the selection
inefficiencies, we performed an extrapolation of the model-
ing in Fig. 5c, d for low-energy and small �T events. Here,
we assume a relative β intensity of the 6.28 keV state as 10 %
according to data in Fig. 1. Table 1 summarizes the measured
228Ra activities for the crystals that are compared with the
results obtained from the standard background modeling of
the COSINE-100 data [30]. The consistency of the results
for the 228Ra contamination supports the interpretation that
the observed two-pulse events originate from 228Ra decays
to isomeric excited states of 228Ac.

We have also evaluated the time dependent rate for the
two-pulse events shown in Fig. 8. A decreasing rate of two-
pulse events is evident and an exponential fit with R(t) =
A exp(−t/τ) is overlaid. Because initial purification of NaI
powder [31,32] and decomposition of impurities from the
crystal growing process [15], amounts of 232Th and 228Ra
can be in non-equilibrium depending on their chemical prop-
erties. A similar non-equilibrium status between 238U and
226Ra was previously observed in the NaI(Tl) crystal [15].
If crystallization effectively removes 232Th but not 228Ra,
the initial 228Ra activity will be reduced with a lifetime of
3028 days that is consistent with the measured rate decrease
with τ = 2724 ± 903 days in Fig. 8. This also supports the
interpretation that the observed two-pulse events originate
from 228Ra decays.

Based on the two- and three-pulse events measured in the
COSINE-100 data, we conclude that the excited states of
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Fig. 8 Time dependent event rates of the selected two-pulse events
from the five crystals are modeled with an exponential decay component

228Ac at the 6.28 keV, 6.67 keV, and 20.19 keV are isomers
with lifetimes of O(100 ns).

4 Impact on dark matter searches

Internal contamination of dark matter detectors by 228Ra can
introduce low-energy events by its β-decay and subsequent
emission (total Q-value 45.8 keV). Our observation shows
that Q = 39.52 keV, 39.13 keV, and 25.61 keV βs and sub-
sequent isomeric 6.28 keV, 6.67 keV, and 20.19 keV emis-
sions occur with O(100 ns) time differences. Depending
on the specific characteristics and data analysis methods
of an experiment, the β and the following emissions from
228Ac could be identified as two separate events due to their
O(100 ns) time separation. In the case of the COSINE-100
detector, we measure the energy deposited in our detectors
by integrating the signal over a 5µs time window, resulting
in the β particle and the following emission being treated
as a single event [12,33]. Therefore, the background model-
ing using the existing Geant4-based simulation is sufficient
for our current analysis [22,30]. However, if one uses fast
response detectors, such as organic scintillators that have a
less than 50 ns decay time [34], the coincident β and γ or
conversion electron with O(100 ns) time difference could be
identified as separate events. In the extreme case, this could
result in only the first pulses being properly accounted for
while the delayed pulses would be ignored because of being
too close to a previous event.

We have estimated the impact of these isomeric states of
228Ac using a Geant4-based simulation, with the result shown
in Fig. 9 for three different cases: (1) all isomeric decays are
merged with electrons in the β-decay, (2) only the β-decay
electrons for the three isomeric states are observed, and (3)
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Fig. 9 228Ra decay spectra from Geant4-based simulation assuming a
few different cases of experiments measuring 228Ac isomeric decays.
Case (1) considers that all isomeric decays in the three excited states are
merged with the initial electrons from the β-decay. Case (2) considers
that only the initial electrons are accounted. Case (3) is half of the case
(1) and (2)

50% events are merged and the other accounts only the initial
electrons. Here, we use the energy resolution of the COSINE-
100 detector and assume a 100 % detection efficiency for our
convenience. In case (1), electron energies from the β emis-
sions are merged with the following mono-energetic γ or
conversion electron emissions (6.28 keV, 6.67 keV, 20.19 keV
and 33.1 keV) and there are almost no events below 6 keV that
can be seen in Fig. 9. If the isomeric emissions are perfectly
distinguished with the initial electrons from β-decay and the
following isomeric emissions are not used as like the case
(2), only β spectra from decays into the three isomeric states
are shown. In this case, large populations in the low energy
signal region are presented as one can see in Fig. 9. Case (3)
is mixture of the cases (1) and (2) but, it also accounts for
13.52 keV isomeric emission summed with the initial elec-
trons while the isomeric 6.67 keV decays are distinguished.
The mixture of cases (1), (2), and (3) would be different for
each experiment depending on the detector performance and
the analysis technique. Therefore, the impact of these isomer
states should be studied by each dark matter search experi-
ment.

5 Conclusion

In conclusion, we have identify the isomers at 6.28 keV,
6.67 keV, and 20.19 keV states in 228Ac from the β-decay
of 228Ra with the COSINE-100 detector. Their lifetimes are
measured to be 299 ± 11 ns and 115 ± 25 ns for 6.28 keV and
20.19 keV, respectively, although only statistical uncertain-
ties are obtained. Due to the low Q-values of these β-decays,
these isomeric states have the potential to impact the back-

ground modeling of the dark matter search experiments in
the low-energy signal region. Thus, a dedicated experiment
to measure the nuclear structure of 228Ac is highly desirable.
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