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Process tensors are quantum combs describing the evolution of open quantum systems through multiple steps
of quantum dynamics. While there is more than one way to measure how different two processes are, special
care must be taken to ensure quantifiers obey physically desirable conditions such as data-processing inequalities.
Here, we analyze two classes of distinguishability measures commonly used in general applications of quantum
combs. We show that the first class, called Choi divergences, does not satisfy an important data-processing
inequality, while the second one, which we call generalized divergences, does. We also extend to quantum combs
some other relevant results of generalized divergences of quantum channels. Finally, given the properties we
proved, we argue that generalized divergences may be more adequate than Choi divergences for distinguishing
quantum combs in most of their applications. Particularly, this is crucial for defining monotones for resource
theories whose states have a comb structure, such as resource theories of quantum processes and resource theories
of quantum strategies.
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I. INTRODUCTION

Distinguishability measures play a key role in several ap-
plications of quantum information theory. Besides their use
in discrimination tasks, they are also employed for defin-
ing information and correlation quantifiers, which include a
plethora of monotones for quantum resource theories, both
static and dynamic [1,2]. While there is no single way to
define such measures, one must ensure that the proposed
quantities satisfy physically desirable properties, like additiv-
ity for independent systems, non-negativity, continuity, and
contractivity under noisy operations [3,4]. This last property,
also known as data-processing inequality, is especially im-
portant when defining monotones for resource theories, as
it usually implies that any distinguishability measure with
respect to the closest free state will be monotonic under the
free operations of the theory [1,2].

While static and dynamical resource theories have been
largely studied, one could also consider manipulations of
more general objects. In the resource theory of quantum pro-
cesses, for example, the objects are process tensors, which
consist of quantum combs that operationally describe the
evolution of open quantum systems interacting with an ex-
perimenter multiple times during the dynamics [5–7]. The
main advantage of using process tensors to this end is the fact
that they offer a proper definition of quantum Markovianity,
allowing for the investigation of purely quantum properties of
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information flow in general quantum processes [8–23]. For
this reason, process tensors have been used to understand
the role of non-Markovianity in several fields of quantum
theory that had so far mostly been studied under the Markov
assumption, like quantum thermodynamics [24–29], quan-
tum process tomography [30–35], and quantum simulation
[36–42], among others [43–47].

When assessing the influence of non-Markovianity on
other relevant properties of quantum systems, it is, in general,
useful to define non-Markovianity quantifiers. The way this
is usually done is through state distinguishability measures
between the Choi states of process tensors and the closest
Markovian Choi state [7,8,12,21,22,43,45]. This approach,
which uses what we call Choi divergences of quantum combs,
is convenient because it does not require optimizations over
inputs but has the drawback of the distinguishability mea-
sures not being monotonic under noisy manipulations of the
process. This implies, for example, that according to such
measures, it is possible to increase the non-Markovianity of
the process by means of transformations that do not create
correlations between different time steps.

While this drawback does not necessarily compromise
the results that employ these measures, it was most likely
overlooked in earlier analyses. For example, Ref. [8], which
introduced Choi divergences as non-Markovianity quantifiers,
discussed that the distinguishability measure between Choi
states must be contractive to lead to consistent quantifiers, but
the fact that such non-Markovianity quantifiers would still not
be monotonic under local manipulations of the process was
not considered for consistency. The data-processing inequality
for these measures was discussed in only Refs. [7,45], which,
based on the contractivity of Choi divergences under super-
processes, concluded that their monotonicity holds.
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Here, we begin by stating and identifying a gap in Claim
1, an implicit assumption from Ref. [7], and reproduce from
Ref. [3] a counterexample to it. Next, we show how this
assumption propagates to situations pertaining only to process
tensors, giving rise to Claims 2 and 3, both used in Ref. [45].
We also give counterexamples to these claims. Then, we ex-
amine an alternative class of distinguishability measures for
quantum combs, called generalized comb divergences. We
prove some important properties of these divergences, includ-
ing monotonicity under superprocesses. Finally, we discuss
how this property indicates that generalized comb divergences
are suitable distinguishability quantifiers for general applica-
tions of quantum combs, such as resource theories of quantum
processes and quantum strategies [7,45,48].

II. QUANTUM CHANNEL DIVERGENCES

We begin by analyzing the single-time scenario, described
by quantum channels. Let MA→B be a quantum channel from
an input space of density operators D(HA) to an output space
D(HB). The (normalized) Choi state ϒM

AB ∈ D(HA ⊗ HB) of
MA→B is given by

ϒM
AB := (IA ⊗ MA→B)AA, (1)

where AA = | |AA,

|AA = 1√
d

d

i=1

|iiAA (2)

is a maximally entangled state in HA ⊗ HA, and IA is the
identity channel in D(HA). Note that MA→B being trace
preserving implies that its Choi state satisfies

ϒM
A = ĨA, (3)

where ϒM
A = trB[ϒM

AB ] and Ĩ = I/d is the maximally mixed
state. This means that the set C(HA ⊗ HB) of Choi states
forms a strict subset of D(HA ⊗ HB). Thus, quantum states
ρ ∈ D(HA ⊗ HB) with trB[ρ] = ĨA cannot be Choi states of
channels. On the other hand, any quantum state ϒ ∈ D(HA ⊗
HB) satisfying the above condition may be associated with a
channel Mϒ

A→B : D(HA) → D(HB) by

Mϒ
A→B(ρA) = dtrA

[
ρAϒ

TA
AB

]
, (4)

where TA is the partial transpose in the |i basis of HA.
Now consider the task of determining how different two

given quantum channels MA→B and NA→B are. One possible
way to do this is by means of Choi divergences, which consist
of applying state distinguishability measures to the Choi states
ϒM

AB and ϒN
AB [4]. These measures may be any generalized

state divergence, defined as follows [49,50].
Definition 1. Generalized state divergences. A generalized

state divergence D(ρ||σ ) is a mapping from pairs of states
to non-negative real numbers satisfying monotonicity under
quantum channels D(M(ρ )||M(σ )) 6 D(ρ||σ ).

Examples of generalized state divergences are the trace
distance, ||ρ − σ ||1 = tr[|ρ − σ |], and the relative entropy,
S(ρ||σ ) = tr[ρ(log2 ρ − log2 σ )]. We are now set to define
Choi divergences.

Definition 2. Choi divergences of channels. A Choi di-
vergence C̃(M||N ) between channels MA→B and NA→B

is given by any generalized divergence between their Choi
states,

C̃(M||N ) := D

ϒM

AB ||ϒN
AB


. (5)

As they do not require optimization over input states, Choi
divergences are useful for applying properties of the state
divergences and deriving relations for channels, like those of
Ref. [22]. Moreover, some interesting information quantifiers
may be written as particular choices of Choi divergences. An
example of this is the input-output correlation M(M) of a
channel M used in Refs. [22,45],

M(M) = I (A : B)ϒM (6)

= S

ϒM

AB ||ĨA ⊗ MA→B(ĨA)


(7)

= C̃(M||N ), (8)

where N is a channel with σB = MA→B(ĨA) as a fixed output.
Despite these useful aspects, Choi divergences have the key

disadvantage of not satisfying an important data-processing
inequality. As discussed in Ref. [51], the most general
transformations from channels to channels are given by su-
perchannels, which can always be implemented by means
of preprocessing and postprocessing channels connected by
an ancilla. In this sense, one would expect distinguishability
measures of quantum channels to be contractive under the
action of superchannels.

A common misconception here is to assume that the
monotonicity of the state divergence D(ρ||σ ) implies the
monotonicity of the Choi divergence through Eq. (5) [7]. A
possible reasoning to support this is the following.

Claim 1. Consider that any superchannel  over chan-
nels MA→B induces a mapping ̃ : C(HA ⊗ HB) → C(HA ⊗
HB) over the set of Choi states. Since ̃ maps states to states,
it is a quantum channel in C(HA ⊗ HB), and the monotonicity
D(̃(ϒM

AB )||̃(ϒN
AB)) 6 D(ϒM

AB ||ϒN
AB) must hold.

The problem with this reasoning is that despite ̃ being lin-
ear and completely positive, it is not trace preserving or even
trace nonincreasing in general. Even though it preserves the
trace of states in C(HA ⊗ HB), there may be linear operators
over HA ⊗ HB for which it can even increase the trace. This
implies that ̃ is not a channel and the monotonicity does not
hold in general even for divergences between two states in
C(HA ⊗ HB) [52]. We now use a slightly modified version of
an example from Ref. [3] to show the gap in Claim 1.

Example 1. The detailed calculations for this example are
carried out in Appendix A. Consider a qubit channel NA→B

with ĨB as a fixed output, also called a completely depolarizing
channel. Consider also a channel MA→B with Kraus oper-
ators M1 = √

1/2 |0B 0|A, M2 = √
1/2 |1B 0|A, and M3 =

|1B 1|A. The relative entropy between their Choi states is

S

ϒM

AB ||ϒN
AB


= 1

2 . (9)

Now consider the superchannel (E ) = E ◦ R in which
RA→A is a channel with |1 1|A as a fixed output. The channel
̃ induced by  over the set of Choi states is given by

̃(ϒAB) = ĨA ⊗ 2 1|A ϒAB |1A , (10)

which can be directly verified through Eq. (4). This implies
tr[̃(ϒAB)] = 1| ϒA |1, which together with Eq. (3) ensures
̃ preserves the trace of Choi states. This, however, does not
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mean that ̃ is trace preserving or even trace nonincreasing
in general, as required for the monotonicity of the relative
entropy to hold [52]. For example, for the linear operator
QAB := (2 |1 1|A − |0 0|A) ⊗ ĨB we have tr[QAB] = 1 and
tr[̃(QAB)] = 2.

Finally, we notice that the relative entropy between states
ϒM

AB and ϒN
AB increases under the action of ̃, even though

their traces are preserved,

S

̃


ϒM

AB


||̃


ϒN

AB


= 1; (11)

therefore, S(̃(ϒM
AB )||̃(ϒN

AB)) > S(ϒM
AB ||ϒN

AB).
Since Choi divergences are not monotonic under super-

channels, we also consider a different class of divergences,
called generalized channel divergences [50].

Definition 3. Generalized channel divergences. A general-
ized channel divergence D̃(M||N ) between channels MA→B

and NA→B is given by

D̃(M||N ) := sup
ρRA

D(MA→B(ρRA)||NA→B(ρRA)), (12)

where we have an optimization of a generalized state diver-
gence between the outputs of the channels IR ⊗ MA→B and
IR ⊗ NA→B given the same input, where R is an auxiliary
system with dim{R} > dim{A}.

Notice that the maximization in the definition above
implies that generalized channel divergences may be hard
to compute in general, especially when compared to Choi
divergences, which require no optimization. Nevertheless,
Refs. [3,4] showed that generalized channel divergences sat-
isfy the most relevant properties expected for distinguishabil-
ity quantifiers, including monotonicity under superchannels.
This means that they are suitable measures for determining
how different two given quantum channels are, which is espe-
cially relevant in the context of resource theories of quantum
channels [3,53–61].

Importantly, the fact that Choi divergences are not mono-
tonic under superchannels does not deem them useless. The
Hilbert-Schmidt distance for quantum states, for example, is
used in several bounds throughout quantum theory [62], even
though it is not contractive under quantum channels [63].
Similarly, Choi divergences may provide upper and lower
bounds to generalized divergences, as shown in Remark 14
of Ref. [64] (see also Ref. [65]).

III. PROCESS TENSOR DIVERGENCES

We now present the multitime scenario. Here, an experi-
menter performs control operations on a system of interest,
which interacts with an uncontrolled environment between
operations. The control operations may consist of an initial-
state preparation and a sequence of quantum channels on the
system alone, for example. The dynamics is then described
by a process tensor T mapping the control sequence S to
the final state of the system [6]. Considering that the control
operations may be correlated through an ancilla, the most
general structure of both T and S is that of quantum combs
[5], as shown in Fig. 1. To formalize this idea, let Pn be the
set of n-step quantum combs and Sn be the set of combs that
are mapped to system-ancilla states by the elements of Pn. In
our description, process tensors are given by combs in Pn and

FIG. 1. The two-step process tensor T is a quantum comb that
maps the control sequence to the final state of the system. It en-
capsulates the information of everything that is not controlled by
the experimenter, namely, the initial state of the environment and
the two interactions between the system and the environment. The
most general control sequence for this case is given by a comb S
containing the initial state ρ ∈ D(HA ⊗ HR ) of system A and ancilla
R and the operation A : D(HA ⊗ HR ) → D(HA ⊗ HR ).

control sequences by combs in Sn. In Fig. 1, for example, we
have T ∈ P2 and S ∈ S2.

Furthermore, one could consider an alternative situation
where the experimenter has no control over the initial state
of the system, which could even be correlated with the
environment [6]. The process tensor associated with this
dynamics would then carry information about the initial
system-environment state as well as their subsequent interac-
tions, mapping only the control operations to the final state of
the system. Although we do not directly approach this second
type of description here, all of our discussions apply to it with
only small modifications.

Importantly, having a comb structure implies process ten-
sors may also be associated with Choi states. This is done by
inputting half a maximally entangled state at each step of the
process and keeping the other halves and the outputs. A circuit
for implementing this for a two-step process tensor is shown
in Fig. 2. We can also define combs SChoi ∈ Sn implementing
these circuits for n-step processes, such that T (SChoi) = ϒT

for all T ∈ Pn. Similar to Eq. (4) for channels, there is also a
way to obtain the action of combs from their Choi states. For

FIG. 2. Circuit for obtaining the Choi state ϒT of the process
tensor T . First, we prepare the maximally entangled state AA, input
half of it to the first step of the process, and store the other half.
Then, we prepare a second maximally entangled state CC and use
a SWAP operator to input half of it to the second step of the process
and store both the other half and the output of the first step. Finally,
we store the output of the second step of the process. The four-partite
stored state ϒT ∈ D(HA ⊗ HB ⊗ HC ⊗ HD) is the Choi state of the
process tensor T .
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combs T ∈ Pn and S ∈ Sn with Choi states ϒT and ϒS , the
action of T on S is given by the link product [5],

ϒT  ϒS := d∩tr∩[ϒT ϒST∩ ] (13)

= T (S ), (14)

where ∩ is the intersection between the spaces over which
the Choi states are defined, d∩ is its dimension, and T∩ is the
partial transpose in this space.

Moreover, Choi states of n-step process tensors must sat-
isfy a set of n conditions, like that of Eq. (3) for channels
[5]. These conditions reflect not only the fact that the process
tensor is trace preserving but also that it is time ordered,
in the sense that future inputs cannot affect past outputs.
For the Choi state ϒT

ABCD of a two-step process tensor these
conditions are

ϒT
ABC = ϒT

AB ⊗ ĨC, (15)

ϒT
A = ĨA. (16)

This means that, like in the channel case, the set C(HA ⊗
HB ⊗ HC ⊗ HD) of Choi states of two-step process tensors
forms a strict subset of all states D(HA ⊗ HB ⊗ HC ⊗ HD).

Now, we consider the task of distinguishing two process
tensors T ,V ∈ Pn. We begin with a generalization of Choi
divergences to quantum combs.

Definition 4. Choi divergences of combs. A Choi divergence
C̄(T ||V ) between quantum combs T ,V ∈ Pn is given by any
generalized state divergence between their Choi states

C̄(T ||V ) := D(ϒT ||ϒV ). (17)

Given our discussion of the case of channels and consid-
ering that process tensors are multitime generalizations of
channels, we would expect Choi divergences of process ten-
sors to have the same problem as those of quantum channels.
Indeed, we show next that they are not contractive under the
action of superprocesses, the most general mappings from
process tensors to process tensors [7]. Moreover, we discuss
the consequences of this nonmonotonicity for operations and
properties that pertain only to the multitime case, like tempo-
ral coarse graining and non-Markovianity.

A. Choi divergences under temporal coarse graining

One could generalize to process tensors the idea presented
for channels in Claim 1.

Claim 2. [45] Consider that any superprocess Z over pro-
cess tensors T induces a mapping Z̃ over the set of Choi states.
Since Z̃ maps states to states, it is a quantum channel in the
set of Choi states, and the monotonicity D(Z̃(ϒT )||Z̃(ϒV )) 6
D(ϒT ||ϒV ) must hold.

From Example 1 we know the above statement cannot
be true, as quantum channels are a special case of process
tensors. However, we now present a counterexample to Claim
2 with an operation that is possible only in the multitime case.

Example 2. Consider the action of a superprocess G :
P2 → P1 known as temporal coarse graining, which consists
of doing nothing (inputting an identity channel I) between
two consecutive steps of the process. This is shown in Fig. 3,
where a two-step process tensor is mapped to a channel by
means of coarse graining.

FIG. 3. Coarse graining of a two-step process tensor T resulting
in a channel from the first input to the second output. The two-step
process may be described as follows. In the first step, a SWAP gate
exchanges the first input, some qubit state ρ, with the environment
initial state |0, such that the first output is always |0 and ρ is stored
as the new state of the environment. In the second step, there is
first the action of a fully dephasing channel D(·) = 0| · |0 |0 0| +
1| · |1 |1 1|, then a controlled SWAP followed by another SWAP.
This implies that if the second input of the dynamics is |1, the
second output will be the maximally mixed state Ĩ. However, if
the second input of the dynamics is |0, state ρ is swapped back into
the system, such that the second output will be exactly equal to the
first input. Coarse graining this process means using the first output
as the second input. Since the first output is always |0, the second
output of the process will always be ρ. Therefore, the resulting
channel after coarse graining is an identity channel from the first
input to the second output.

Notice that in Fig. 3 the two-step process tensor T has
a Choi state ϒT = |0 0|B ⊗ (|0 0|C ⊗ AD + |1 1|C ⊗
ĨA ⊗ ĨD)/2. Consider also the marginal process T marg, whose
Choi state is the uncorrelated version of ϒT , that is,

ϒT marg = ϒT
A ⊗ ϒT

B ⊗ ϒT
C ⊗ ϒT

D (18)

= ĨA ⊗ |0 0|B ⊗ ĨC ⊗ ĨD. (19)

The Choi divergence given by the relative entropy between
ϒT and ϒT marg

is

I (T ) := S(ϒT ||ϒT marg
), (20)

which was defined in Ref. [45] as the total correlations I of the
process T . We now show that for the process T above I is not
contractive under the action of the temporal coarse-graining
superprocess G.

First, in Appendix B we obtain I (T ) = 1. Note that while
G(T ) is an identity channel, as discussed in Fig. 3, G(T )marg

is a channel with ĨD as a fixed output, which implies

I (G(T )) = S(ϒG(T )||ϒG(T )marg
) (21)

= S(AD||ĨA ⊗ ĨD) (22)

= 2. (23)

Therefore, we have shown that the total-correlations quantifier
I is not monotonic under the action of temporal coarse grain-
ing. Also, since in this particular case G(T )marg = G(T marg),
we have

S(ϒT ||ϒT marg
) < S(ϒG(T )||ϒG(T marg ) ), (24)

which shows that Choi divergences of process tensors are not
contractive under superprocesses in general.
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FIG. 4. Action of a superprocess Z = Z1 ⊗ Z2 on a process ten-
sor T . Z1 and Z2 are uncorrelated superchannels, which implies Z ∈
IQI. This kind of superprocess does not create correlations between
different time steps; therefore, if T is Markovian, then Z(T ) will
definitely also be.

B. Choi divergences as non-Markovianity quantifiers

One of the key advantages of using process tensors to
describe the dynamics of open quantum systems is that it
provides an unambiguous definition of quantum Markovianity
[6,8]. Namely, a process tensor is Markovian if each step of
the dynamics consists of a quantum channel uncorrelated with
the rest, which is equivalent to its Choi state being of product
form. Such a definition allows for a proper quantification of
the non-Markovianity of any given quantum process.

However, the non-Markovianity quantifiers employed so
far consist of Choi divergences between the given process and
the closest Markovian process [7,8,12,21,22,43,45]. Besides
the geometrical aspect of measuring closeness to Markovian
processes, the use of such divergences could be motivated by
its monotonicity under superprocesses that do not create cor-
relations between different time steps. These superprocesses,
called independent quantum instruments (IQI) in Ref. [45],
have the form of uncorrelated local superchannels acting on
each step of the process, as shown in Fig. 4. Extending the
arguments of Claims 1 and 2, a possible reasoning to support
Choi divergences as non-Markovianity quantifiers could be
structured as follows.

Claim 3 [45]. Any superprocess Z ∈ IQI induces a local
mapping Z̃ over the set of Choi states. Since local processing
does not increase global correlations, it follows that

min
V∈Cprod

D(Z̃(ϒT )||Z̃(ϒV )) 6 min
V∈Cprod

D(ϒT ||ϒV ), (25)

where Cprod is the set of product Choi states.
Notice that “local processing does not increase global cor-

relations” is generally implied by the monotonicity of the
correlation measure under the processing [62]. However, from
Example 2 we know this monotonicity does not hold for Choi
divergences of process tensors, already putting Claim 3 into
question. To show Claim 3 is not valid, we now provide an
explicit counterexample to it.

Example 3. Consider the non-Markovianity quantifier N ,
defined as

N (T ) := min
V∈Cprod

S(ϒT ||ϒV ). (26)

Let Z ∈ IQI be the superprocess consisting of preprocessing
the second step with a channel that has |0 as a fixed output.

For the process tensor T from Fig. 3, in Appendix C we
calculate N (T ) = 1. Note that ϒZ(T ) = AD ⊗ ĨBC. Again
in Appendix C we show N (Z(T )) = 2. Therefore, the non-
Markovianity quantifier N may increase under the action of
the local superprocess Z.

IV. GENERALIZED COMB DIVERGENCES

As in the channel case, we turn to generalized divergences
to obtain process tensor distinguishability measures that are
contractive under superprocesses. To this end, we follow the
definitions and results of Ref. [48], where the quantum combs
are called quantum strategies.

Definition 5. Generalized comb divergences. A general-
ized comb divergence D̄(T ||V ) between combs T ,V ∈ Pn is
given by

D̄(T ||V ) := sup
S∈Sn

D(T (S )||V (S )), (27)

where we have an optimization of a generalized state diver-
gence between the outputs of the combs T and V given the
same input.

These divergences were shown to be contractive under the
action of combs in Ref. [48]. We now generalize this result to
contractivity under superprocesses.

Theorem 1. Let Z be a general superprocess acting on
process tensors T ,V ∈ Pn. Then,

D̄(Z(T )||Z(V )) 6 D̄(T ||V ). (28)

Proof. In the most general case we have a superprocess Z :
Pn → Pm. Reference [45] showed that superprocesses have a
dual action for contractions of compatible combs. This means
that for any superprocess Z there is a dual superprocess Z† :
Sm → Sn such that [Z(T )](S ) = T (Z†(S )) for all S ∈ Sm.
Let Z†[Sm] be the image of the set Sm under the action of Z†.
Since Z† maps combs in Sm to combs in Sn, we know that
Z†[Sm] ⊆ Sn. This implies

D̄(Z(T )||Z(V )) = sup
S∈Sm

D([Z(T )](S )||[Z(V )](S )) (29)

= sup
S∈Sm

D(T (Z†(S ))||V (Z†(S ))) (30)

= sup
R∈Z†[Sm]

D(T (R)||V (R)) (31)

6 sup
R∈Sn

D(T (R)||V (R)) (32)

= D̄(T ||V ). (33)

•
Noteworthily, similar divergences have been used for pro-

cess tensors [16,25,28,29], but they all consider a slightly
different class of divergences, which we call classical gener-
alized comb divergences. Before introducing them, we define
classical generalized divergences.

Definition 6. Classical generalized divergences. A clas-
sical generalized divergence DC (p||q) is a mapping from
pairs of probability distributions to non-negative real numbers
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satisfying monotonicity under noisy classical channels
DC (N (p)||N (q)) 6 DC (p||q).

Examples of classical generalized divergences are the
Kullback-Leibler divergence and the trace distance between
probability distributions [62]. Now, we also consider the set
of all objects P ∈ Tn mapping combs in Pn to probability
distributions. Such objects are called testers [5]. We then
define classical generalized comb divergences.

Definition 7. Classical generalized comb divergences. A
classical generalized comb divergence D̄C (T ||V ) between
combs T ,V ∈ Pn is given by

D̄C (T ||V ) := sup
P∈Tn

DC (P (T )||P (V )), (34)

where we have an optimization of a classical generalized
divergence between the output probability distributions t =
P (T ) and v = P (V ) given the same tester.

Using the trace distance as the classical divergence, we
obtain distance between quantum combs defined in Ref. [5]
or strategy r-norms from Ref. [66].

Reference [5] also showed that the action of a tester P ∈
Tn on a comb T ∈ Pn can always be realized by some pos-
itive operator-valued measure (POVM) P performed on state
T (SP ) for some SP ∈ Sn. We now show how this implies the
contractivity of classical generalized comb divergences under
superprocesses.

Theorem 2. Let Z be a general superprocess acting on
process tensors T ,V ∈ Pn. Then,

D̄C (Z(T )||Z(V )) 6 D̄C (T ||V ). (35)

Proof. For every tester P ∈ Tm realizable through a comb
SP ∈ Sm and a POVM P = {Px}, let P̃ be the mapping from
the final state ρ to the probability distribution p obtained
from measuring P, i.e., p(x) = tr[Pxρ], such that P (T ) =
P̃(T (SP )). Then, for every superprocess Z : Pn → Pm we
have

P (Z(T )) = P̃(T (Z†(SP ))) (36)

= P (T ), (37)

where P  ∈ Tn is a tester realizable through the comb
Z†(SP ) ∈ Sn and the same POVM P. This implies

D̄C (Z(T )||Z(V )) = sup
P∈Tm

DC (P (Z(T ))||P (Z(V ))) (38)

= sup
P ∈Z†[Sm]

DC (P (T )||P (V )) (39)

6 sup
P ∈Sn

DC (P (T )||P (V )) (40)

= D̄C (T ||V ). (41)

•
Like in the channel case, Choi divergences of quantum

combs are not useless quantifiers for not being contractive.
The fact that they are easily computable without requiring
optimization over inputs makes them helpful tools in under-
standing relevant properties of quantum processes [22,45].
Also, since there is always a comb SChoi ∈ Sn such that
T (SChoi) = ϒT for all T ∈ Pn, it is immediately clear that
C̄(T ||V ) 6 D̄(T ||V ). Moreover, we now generalize the result
of Ref. [65] to the multitime scenario, showing that Choi

divergences of quantum combs may also be used to establish
an upper bound to generalized comb divergences.

Theorem 3. Let D be a generalized state divergence satis-
fying the direct-sum property,

D

ρ1

XA||ρ2
XA


=



x

pxD

ρ1

A||ρ2
A


(42)

for ρ i
XA = ∑

x px |x x|X ⊗ ρ i
A. Then, for combs T ,V ∈ Pn

with input dimension d it holds that

D̄(T ||V ) 6 d2n−1C̄(T ||V ), (43)

where both the generalized comb divergence D̄ and the Choi
divergence of combs C̄ are defined using the same state diver-
gence D.

Proof. Consider that for combs T ∈ Pn and S ∈ Sn we
have T (S ) ∈ D(HA ⊗ HR ), where A is the output space of T
and R is the output space of S (see Fig. 1). Then, we define the
Choi states ϒT

RA ∈ D(HR ⊗ HA) and ϒS
RR ∈ D(HR ⊗ HR ).

Although HR and HA are not the usual input and output spaces
over which we define Choi states, they are isomorphic to them
(for d := dim{A}, we have dR := dim{R} 6 d2n−1) [5]. Now,
define a channel Z : D(HR) → D(HX ⊗ HR ) as

Z (ωR) := 1

d2n−1
|0 0|X ⊗ ϒS

RR  ωR (44)

+ |1 1|X ⊗


ĨRR − 1

d2n−1
ϒS

RR


 ωR. (45)

The trace preservability of the channel is immediate from
the definition, and its linearity follows from the linearity of
the link product. To ensure it is completely positive, we use the
fact that the link product of positive operators is positive [5]
and that ĨRR − ϒS

RR/d2n−1 is always positive (this is, in fact,
the only reason to add the factor 1/d2n−1 to the definition).

By construction, it follows that

Z

ϒT

RA


= 1

d2n−1
|0 0|X ⊗ T (S ) (46)

+


1 − 1

d2n−1


|1 1|X ⊗ ηRA, (47)

where ηRA is some irrelevant state. The above equation means
that by acting only on R the channel Z steers the Choi
state ϒT

RA of the comb T to the state T (S ) with probability
1/d2n−1.

Now we use the contractivity of the generalized state di-
vergence under the channel Z and the direct-sum property to
show

C̄(T ||V ) = D

ϒT

RA||ϒV
RA


(48)

> D

Z


ϒT

RA


||Z


ϒV

RA


(49)

= 1

d2n−1
D(T (S )||V (S )) (50)

+


1 − 1

d2n−1


D(ηRA||νRA) (51)

> 1

d2n−1
D(T (S )||V (S )). (52)
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Since this holds for any S ∈ Sn, we have

D̄(T ||V ) = sup
S∈Sn

D(T (S )||V (S )) (53)

6 d2n−1C̄(T ||V ). (54)

•
V. CONCLUSIONS

We discussed Choi divergences and generalized diver-
gences as distinguishability measures for process tensors.
Starting from the channel case, we exposed the gap in a
claim that implies the monotonicity of Choi divergences under
superchannels, and then we reproduced an explicit counterex-
ample to it. Next, we showed what problems arise when this
wrong claim is extended to process tensors. Namely, corre-
lation quantifiers defined through Choi divergences do not
satisfy contractivity under superprocesses, which implies, for
example, that a widely used non-Markovianity quantifier may
increase under the action of superprocesses that are local in
time.

To circumvent these issues we turned to generalized diver-
gences, which are known to satisfy important properties for
quantum channels, including monotonicity under superchan-
nels. We then analyzed its generalizations to quantum combs,
namely, generalized comb divergences and classical general-
ized comb divergences, for which we proved the monotonicity
under superprocesses. Finally, we generalized from channels
to combs a relation between the two classes of divergences,
allowing one to use Choi divergences to establish lower and
upper bounds to generalized divergences.

A few questions naturally arise at this point. For example,
how are the results of Refs. [7,8,12,21,22,43,45] impacted
by our results, given that they use Choi divergences as
non-Markovianity quantifiers? Also, if one defines a non-
Markovianity quantifier as a generalized comb divergence to
the closest Markov process, how does this relate to operational
quantities, like the maximum amount of correlations present
in the output of the dynamics under general combs? With such
a definition, would it be possible to establish bounds like those
of Ref. [22]?

Besides these questions regarding general applications of
distinguishability measures, the consequences of our results
are clear in the context of resource theories whose states have
a comb structure, like resource theories of process tensors
and quantum strategies. For once, we could expect quantifiers
defined using Choi divergences to, in general, violate mono-
tonicity under free operations. On the other hand, quantifiers
defined as generalized comb divergences to the closest free
comb will certainly be monotonic under free operations of
any comb resource theory. Therefore, we expect our results to
clarify some misconceptions and provide a viable alternative
approach to process tensor distinguishability measures, hope-
fully leading to a better understanding of important features
of multitime quantum process, especially those relevant to
quantum information-processing tasks.
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APPENDIX A: EXAMPLE 1

Consider a qubit channel NA→B with ĨB as a fixed output,
also called a completely depolarizing channel. The Choi state
for this channel is

ϒN
AB = (IA ⊗ NA→B)AA (A1)

= ĨA ⊗ ĨB. (A2)

Consider also a channel MA→B with Kraus opera-
tors M1 = √

1/2 |0B 0|A, M2 = √
1/2 |1B 0|A, and M3 =

|1B 1|A. Its Choi state is given by

ϒM
AB = (IA ⊗ MA→B)AA (A3)

= 1

2

1

i, j=0

|i  j|A ⊗
3

k=1

Mk |i  j|A M†
k (A4)

= 1

4
(|00 00|AB + |01 01|AB + 2 |11 11|AB).

(A5)

Now we calculate the relative entropy between them,

S

ϒM

AB ||ϒN
AB


= S


ϒM

AB ||ĨA ⊗ ĨB


(A6)

= 2 + S

ϒM

AB ||IA ⊗ IB


(A7)

= 2 − H

ϒM

AB


, (A8)

in which we first used S(ρ||aσ ) = log2 a + S(ρ||σ ) and
log2 2 = 1 and then S(ρ||I) = −H (ρ ), where H (ρ ) =
−tr[ρ log2 ρ] is the von Neumann entropy of ρ. Given
we know from Eq. (A5) that ϒM

AB has eigenvalues λ =
{1/4, 1/4, 1/2}, we have

H

ϒM

AB


= −


λi log2 λi (A9)

= −


1

4
log2

1

4
+ 1

4
log2

1

4
+ 1

2
log2

1

2


(A10)

= 3

2
, (A11)

implying

S

ϒM

AB ||ϒN
AB


= 1

2 . (A12)

Now consider the superchannel (E ) = E ◦ R in which
RA→A is a channel with |1 1|A as a fixed output. The channel
̃ induced by  over the set of Choi states is given by

̃(ϒAB) = ĨA ⊗ 2 1|A ϒAB |1A , (A13)

which we directly verify through Eq. (4),


[
Mϒ

A→B

]
(ρA) = Mϒ

A→B(R(ρA)) (A14)

= Mϒ
A→B(|1 1|A) (A15)

= dtrA
[
|1 1|A ϒ

TA
AB

]
(A16)

= 2 1|A ϒAB |1A (A17)

= ĨA ⊗ 2 1|A ϒAB |1A (A18)
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= d trA[ρA(ĨA ⊗ 2 1|A ϒAB |1A)TA ]

(A19)

= d trA[ρA̃(ϒAB)TA ]. (A20)

Notice that the channel (M) has MA→B(|1 1|A) =
|1 1|B as a fixed output, while (N ) has NA→B(|1 1|A) =
ĨB as a fixed output. This implies their Choi states are
ϒ

(M)
AB = ĨA ⊗ |1 1|B and ϒ

(N )
AB = ĨA ⊗ ĨB. The relative

entropy between them is

S(̃

ϒM

AB


||̃


ϒN

AB


) = S


ϒ

(M)
AB ||ϒ(N )

AB


(A21)

= S(ĨA ⊗ |1 1|B ||ĨA ⊗ ĨB) (A22)

= S(ĨA||ĨA) + S(|1 1|B ||ĨB)

(A23)

= 1; (A24)

therefore, S(̃(ϒM
AB )||̃(ϒN

AB)) > S(ϒM
AB ||ϒN

AB).

APPENDIX B: EXAMPLE 2

For the process with Choi state ϒT
ABCD = |0 0|B ⊗

(|0 0|C ⊗ AD + |1 1|C ⊗ ĨA ⊗ ĨD)/2 we have

I (T ) = S

ϒT

ABCD||ϒT marg

ABCD


(B1)

= S

ϒT

ACD||ϒT marg

ACD


(B2)

= −H

ϒT

ACD


− tr

[
ϒT

ACD log2 ĨACD
]
, (B3)

where we first used the fact that ϒT
ABCD = |0 0|B ⊗

ϒT
ACD implies S(ϒT

ABCD||ϒT marg

ABCD) = S(ϒT
ACD||ϒT marg

ACD ) and then
S(ρ||σ ) = −H (ρ ) + tr[ρ log2 σ ]. Now, to calculate H (ϒT

ACD)
we use the fact that the entropy of a classical-quantum state
is [62]

H

(

i

pi |i i| ⊗ ρi

)
= −



i

pi log2 pi +


i

piH (ρi ),

(B4)
which implies

H

ϒT

ACD


= H


1
2 |0 0|C ⊗ AD + 1

2 |1 1|C ⊗ ĨA ⊗ ĨD


(B5)

= 1 + 1
2 H (AD) + 1

2 H (ĨA ⊗ ĨD) (B6)

= 2 (B7)

since H (AD) = 0 for a pure state and H (ĨA ⊗ ĨD) = 2. For
the other term we have

tr
[
ϒT

ACD log2 ĨACD
]

= tr
[
ϒT

ACD(log2 IACD − 3)
]

(B8)

= −3, (B9)

where we used log2 IACD = 0 (null operator) and tr[ϒT
ACD] =

1. Finally, we obtain

I (T ) = −H

ϒT

ACD


− tr

[
ϒT

ACD log2 ĨACD
]

(B10)

= 1. (B11)

APPENDIX C: EXAMPLE 3

The non-Markovianity quantifier is given by

N (T ) = min
V∈Cprod

S

ϒT

ABCD||ϒV
ABCD


(C1)

= S

ϒT ||ϒT

AB ⊗ ϒT
CD


(C2)

= H

ϒT

AB


+ H


ϒT

CD


− H


ϒT

ABCD


, (C3)

where we first used the fact that the uncorrelated state closest
to any state in relative entropy is the product of its marginals
and then the definition of the quantum mutual information
[62]. Since the Choi state is ϒT

ABCD = |0 0|B ⊗ (|0 0|C ⊗
AD + |1 1|C ⊗ ĨA ⊗ ĨD)/2, we have ϒT

AB = ĨA ⊗ |0 0|B
and ϒT

CD = ĨCD, implying

N (T ) = H (ĨA ⊗ |0 0|B) + H (ĨCD) − H

ϒT

ABCD


(C4)

= 1 + 2 − 2 (C5)

= 1, (C6)

where we used H (ϒT
ABCD) = 2 from Appendix B.

Given the action of the superprocess Z, the Choi state is
ϒ

Z(T )
ABCD = AD ⊗ ĨBC. Then we have ϒT

AB = ĨAB and ϒT
CD =

ĨCD, implying

N (Z(T )) = H (ĨAB) + H (ĨCD) − H (AD ⊗ ĨBC) (C7)

= 2 + 2 − 2 (C8)

= 2. (C9)
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