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 A B S T R A C T

Study Region: Passaúna catchment, Paraná State, Brazil.
Study Focus: This study assessed the impacts of projected climate change on streamflow 
(𝑄) regimes and dynamics in the study area, a key drinking water source for the Curitiba 
Metropolitan Region (3.7 million people). Dry and wet 𝑄 regimes were analyzed using 3-
, 6-, and 12-month accumulation periods through a non-parametric approach. Changes in 𝑄
extremes — drought and flood flows — were evaluated using a frequency-based method. Daily 
𝑄 was simulated by a Long Short-Term Memory (LSTM) network and the lumped conceptual 
Hydrological Model 2 (HyMod2), both forced with bias-corrected CMIP6 historical (1980–2013) 
and future (2015–2100) climate scenarios.
New Hydrological Insights: Agreement was observed between hydrological models (𝐾𝐺𝐸 = 
0.83; 𝑁𝑆𝐸 = 0.79), though both showed limitations in simulating extreme flows. Projections 
indicate no statistically significant changes in drought flow duration and severity across future 
scenarios. In contrast, wet regimes are expected to intensify, with durations increasing by 
up to two months in the mid and far future under SSP5-8.5. Flood flows show a consistent 
positive trend, with the 100-year event projected to increase by 26% under SSP2-4.5 and 
52% under SSP5-8.5. Findings suggest a shift toward wetter conditions and more frequent 
floods, highlighting the importance of considering adaptive reservoir operation and resilient 
infrastructure planning in the Passaúna catchment.

1. Introduction

Since a part of the scientific community has recognized that the stationarity of hydrometeorological processes is no longer 
valid (Milly et al., 2008; Bartiko et al., 2017; Foufoula-Georgiou et al., 2015), projecting future streamflow regimes becomes crucial 
for water resource management. In a global warming context, concerns over the adverse impacts of climate change drive scientific 
efforts to illuminate how the nonstationarity of streamflow will affect water availability and demand. The imbalance between these 
factors leads to water scarcity (Van Loon and Van Lanen, 2013). Ensuring access to drinking water is a key objective of the United 
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Nations’ Sustainable Development Goals (SDGs) in the 2030 Agenda (United Nations, 2015). Hence, underscoring comprehensive 
assessments of streamflow regimes under climate change is vital in the role of water availability (Gudmundsson et al., 2021).

While studies argue that the hydrological cycle is not intensifying (Koutsoyiannis, 2020), others demonstrate that changes are 
expected for the future (Ficklin et al., 2022; Wang et al., 2023) due to climate change by altering the rate of water fluxes to and 
from the terrestrial surface. For instance, in regions of Brazil (Chagas et al., 2022), the United States (Brunner et al., 2020), and 
China (Liu et al., 2024), climate change is expected to drive significant shifts in future streamflow regimes, contributing to more 
frequent and severe extremes, such as droughts and floods. Some studies indicate that the likelihood of severe precipitation events 
is increasing, disrupting streamflow patterns and elevating flood risks (e.g., Tabari, 2020; Asadieh and Krakauer, 2017). In Brazil, 
100-year precipitation events are projected to intensify by 17% under moderate climate change scenarios and by 31% under the 
most extreme projections (Ballarin et al., 2024b). Furthermore, the transition between drought and flood events is expected to occur 
more abruptly, amplifying hydrological variability and its associated challenges (Rezvani et al., 2023).

Besides flood risk, intensified droughts induced by climate change are a major concern. Droughts put pressure on ecosys-
tems (Zhang et al., 2021), water and food supplies (Scanlon et al., 2023), hydroelectric production, and tourism. Globally, droughts 
have exhibited a trend of intensifying conditions and are projected to increase in frequency and intensity in the future (Wang 
et al., 2021). Southwestern South America, Mediterranean Europe, and Northern Africa may experience unprecedented hydrological 
drought conditions within the next 30 years under a climate change scenario (Satoh et al., 2022). In Brazil, projections indicate an 
increase in meteorological drought frequency and severity, driven by higher evapotranspiration rates, fewer wet days, and reduced 
precipitation exceeding evaporation (Ballarin et al., 2024a).

Recurrent droughts have led to water crises in some Brazilian megacities, where millions of people rely on surface water 
reservoirs. These droughts have resulted in social unrest and economic losses in metropolitan areas that depend heavily on surface 
water reservoirs. For instance, the São Paulo Metropolitan Region (SPMR) nearly ran out of water in 2015 due to a severe 
meteorological drought and antecedent soil moisture conditions (Melo et al., 2016). Gesualdo et al. (2019) showed increasing levels 
of water insecurity for the SPMR toward the 21st century under climate change scenarios. Similarly, another severe meteorological 
drought triggered water scarcity in the Curitiba Metropolitan Region (CMR). The Curitiba Metropolitan Region (CMR) avoided 
running dry due to water use restrictions implemented by the Paraná Sanitation Company (SANEPAR) between March 2020 and 
January 2022.

While broader-scale global assessments offer valuable insights, a critical gap remains in understanding the specific impacts 
of climate change on the hydrological regimes of individual catchments, especially those vital for urban water supply. Here, the 
objective is to bridge this gap by assessing the projected changes in hydrological dynamics and regimes in the Passaúna catchment, 
a vital drinking water source for the CRM. This catchment supplies fresh water to 690,000 inhabitants and has already experienced 
severe droughts in recent years.

The research questions addressed here are as follows: (1) How is climate change expected to impact the long-term mean 
streamflow wet and dry regimes in the Passaúna catchment over the 21st century? (2) What are the projected changes in 
hydrological extremes (floods and droughts) under different climate scenarios? (3) How will these changes affect water and 
catchment management? Answering these questions offers valuable insights to support water managers in adapting to projected 
future scenarios.

2. Study area

The Passaúna catchment was selected as the study area (Fig.  1) because it supplies fresh water to the CMR. This catchment is 
a critical water source and has experienced severe hydrological droughts recently, facing water scarcity. We are concerned about 
whether projected climate change will intensify such droughts in the future. While other megacities in Brazil, such as the SPMR (∼21
million people), may also be of interest, this is the first study to address the impacts of climate change on the drinking water source 
of the CMR. The Passaúna catchment, covering 218 km2 with an average elevation of 942 m a.m.s.l, comprises the municipalities 
of Curitiba, Araucária, Campo Largo, Campo Magro, and Almirante Tamandaré in Paraná State, southeastern Brazil.

The Passaúna River is regulated by the Passaúna Dam upstream. The water reservoir has a surface area of 895 ha and a current 
volume of 69.3 hm3, with the spillway level at 887.2 m a.m.s.l (Hilgert et al., 2019). The Passaúna reservoir supplies water to nearly 
690,000 people. The CMR Water Supply System includes the Iguaçu system (3.3 m3/s), the Iraí reservoir (2.6 m3/s), the Passaúna 
reservoir (1.8 m3/s), and the Miringuava reservoir (0.9 m3/s).

The annual mean rainfall ± standard deviation between 1979 and 2010 was 1456 ± 239 mm, with minimum and maximum values 
of 916 and 1944 mm/year, respectively. The average minimum temperatures range between 12 and 13 ◦C, while the maximum 
temperatures range between 22 and 23 ◦C. According to Köppen’s climate classification, the climate is temperate oceanic or humid 
mesothermal (Cfb) (Alvares et al., 2013).

Land use and land cover are dominated by agriculture and pasture (48%, mostly agriculture), followed by native forest (32%), 
non-vegetated areas (15%, mostly urban areas), surface water (4%), and non-native forest (1%). Since 1985, urban areas have 
expanded significantly in the southern catchment, particularly towards the downstream reservoir and around the western inlet of 
the Passaúna River reservoir.
2 
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Fig. 1. Location of the study area, land use and land cover for the year 2021, and river gauge. Land use and land cover data were obtained from the MapBiomas 
Project — Collection 7.0 (Mapbiomas, 2023). The study area was delineated using the Copernicus Digital Elevation Model at 30-m resolution.

3. Data sources

3.1. Measured datasets

Quantitative daily datasets of precipitation (𝑃 ), potential evapotranspiration (𝑃𝐸𝑇 ), and streamflow discharge (𝑄) from ten 
catchments were used over the 1986–2010 period (Table  1). The location of the ten catchments is presented in Figure S1. 
Furthermore, several static attributes of these catchments were also used as follows: catchment mean slope, percentage covered 
by broad-leaved or needle-leaved forests, percentage covered by grasslands or areas with sparse (<15%) vegetation, percentage 
covered by artificial surfaces or urban areas, subsurface porosity and permeability of the catchment, and percentage of soil texture 
(sand, silt, and clay).

It is important to note that the observed quantitative and static attributes of ten catchments, including the study area, were used 
to train and test a Long Short-Term Memory (LSTM) model, while only quantitative data from the Passaúna catchment were used 
to calibrate and validate a conceptual hydrological model.

The datasets came from the Catchment Attributes and Meteorology for Large-sample Studies — Brazil (CAMELS-BR), which 
provides hydrometeorological and static data for hundreds of Brazilian catchments (Chagas et al., 2020). Daily 𝑃𝐸𝑇  data were 
derived from the Global Land Evaporation Amsterdam Model (GLEAM), version 3.3a, at a 0.25◦ × 0.25◦ spatial resolution (Martens 
et al., 2017). Daily 𝑃  data were sourced from the Multi-Source Weighted-Ensemble Precipitation (MSWEP), version 2.2, available 
within CAMELS-BR (Beck et al., 2019). Daily streamflow (𝑄) data were obtained from the Brazilian National Water and Sanitation 
Agency (ANA), with the Passaúna catchment corresponding to river gauge station code 65024000.

3.2. Climate change dataset

A bias-corrected CLIMate change dataset for Brazil (CLIMBra) was used as input in trained (or calibrated) hydrological models 
to predict changes in future 𝑄 regimes over the 2015–2100 period (Table  1). CLIMBra provides gridded data at a 0.25◦ ×
0.25◦ resolution and includes six bias-corrected climate variables (precipitation, maximum and minimum air temperature, solar 
radiation, near-surface wind speed, and relative humidity) derived from ten different General Circulation and Earth System Models 
(GCMs/ESMs): MRI-ESM2, EC-EARTH3, CMCC-ESM2, INM-CM4-8, NorESM2-MM, MPI-ESM1.2-HR, INM-CM5, ACCESS-ESM1-5, 
3 
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Table 1
Summary of the observed and projected climate change datasets.
 Dataset Source Spatial resolution Period  
 Daily Precipitation (𝑃 ) MSWEP (CAMELS-BR) (Beck 

et al., 2019)
0.25◦ × 0.25◦ 1986–2010  

 Potential Evapotranspiration 
(𝑃𝐸𝑇 )

GLEAM v3.3a (CAMELS-BR) 
(Martens et al., 2017)

0.25◦ × 0.25◦ 1986–2010  

 Streamflow (𝑄) National Water and Sanitation 
Agency (ANA)

– 1986–2010  

 Static attributes CAMELS-BR (Chagas et al., 
2020)

– –  

 Climate Projections (SSP2-4.5 and 
SSP5-8.5)

CLIMBra (Bias-Corrected 
CMIP6 GCMs/ESMs) (Ballarin 
et al., 2023b; Cannon et al., 
2015; O’Neill et al., 2016)

0.25◦ × 0.25◦ 1980–2013 (historical period) and 
2015–2100 (future period)

 

 General Circulation Models 
(GCMs/ESMs)

MRI-ESM2, EC-EARTH3, 
CMCC-ESM2, INM-CM4-8, etc 
(CMIP6)

0.25◦ × 0.25◦ 2015–2100  

IPSL-CM6 A, and MIROC6. The models’ simulations were developed under the Coupled Model Intercomparison Project Phase 6 
(CMIP6) context and were selected based on the availability of the variables required to run the hydrological simulations. The 
entire year of 2015 was excluded from the projected future simulation because the LSTM input sequences used a time step of 270 
days, and the conceptual hydrological model a warm-up period of 360 days.

CLIMBra’s bias correction was performed using the Quantile Delta Mapping (QDM) method (Ballarin et al., 2023b; Cannon 
et al., 2015), using a Brazilian gridded dataset (i.e., Xavier et al., 2016). Here, two Shared Socioeconomic Pathways (SSPs) were 
considered (O’Neill et al., 2016): (1) the middle-of-the-road scenario (SSP2-4.5) and (2) the fossil-fueled development scenario (SSP5-
8.5). The impacts of these scenarios were analyzed across three time frames: the immediate future (2015–2040), the mid-century 
future (2041–2070), and the late-century future (2071–2100).

SSPs enhance the utility of Global Climate Models (GCMs) by outlining a range of possible future socioeconomic developments. 
These scenarios help researchers explore how human activities might influence greenhouse gas emissions and the global climate 
system. Together, GCMs and SSPs are an integrated framework that supports an understanding of potential climate futures and aids 
policymakers in evaluating the likely consequences of climate change across different sectors (Anwar et al., 2024).

4. Methods

An overview of the methodological framework adopted in this study is presented in Fig.  2. Initially, the observed datasets (Table 
1) were used to calibrate and train two types of hydrological models, respectively: a theory-driven and a data-driven model. Once 
calibrated and trained, both models were forced with climate change projections of 𝑃  and 𝑃𝐸𝑇  derived from the CLIMBra dataset. 
The resulting 𝑄 simulations under historical and future climate scenarios were analyzed to characterize wet and dry regimes, flood 
and drought flows.

The performance of the conceptual hydrological model during the validation period was compared to that of the LSTM during 
the test period to assess whether the choice between a theory-driven and a data-driven modeling approach affects the results related 
to 𝑄 dynamics and regimes. This comparison was designed to test the hypothesis that the consistency of findings may not depend on 
the underlying hydrological model structure. It was further hypothesized that structural differences between the models would not 
constitute the dominant source of uncertainty in the simulations. The comparison was solely evaluated for the Passaúna catchment.

4.1. Conceptual hydrological model

The Hydrological Model 2, HyMod2 (Roy et al., 2017) — an updated version of the HyMod (Boyle, 2001; Wagener et al., 2001), 
a lumped, parsimonious, conceptual rainfall-runoff model — was selected as the benchmark hydrological model to simulate 𝑄. The 
key difference between the two models lies in the structural modifications related to the parameterization of the evapotranspiration 
process. The model is driven using daily 𝑃  and 𝑃𝐸𝑇  data to generate estimates of actual evapotranspiration (Roy et al., 2017).

HyMod2 consists of two main components: the excess rainfall (runoff generation) component and the routing (runoff routing) 
component. The excess rainfall component estimates runoff based on soil moisture storage using a saturation-excess mechanism. 
Spatial variability in catchment soil storage capacity is represented by a Pareto distribution, characterized by the maximum 
soil moisture storage capacity, 𝐶max (in units of mm). 𝐶max is calculated based on the maximum indicator height (𝐻𝑚𝑎𝑥) and a 
dimensionless shape parameter (𝑏), which describes the heterogeneity of soil moisture capacity across the catchment.

The resulting excess rainfall is then partitioned into quick- and slow-flow via the 𝛼 parameter. The routing module routes each 
pathway through linear reservoir cascades: a series of identical reservoirs (𝑁𝑞) for quick-flow (or surface runoff), each of one 
governed by the routing coefficient (𝑘𝑞), and a single reservoir for slow-flow (or baseflow), governed by the routing coefficient 
(𝑘𝑠). These two flow components are then summed to produce the 𝑄 at the catchment outlet. Finally, HyMod2 accounts for 
an Evapotranspiration-Resistance (ER) term for the soil moisture. There are three parameters to describe ER: the maximum ER 
4 
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Fig. 2. Overview of the research protocol.

factor (𝐾𝑚𝑎𝑥), the fractional multiplier defining the lower resistance (𝛾), and the exponent controlling the nonlinearity of the 
resistance-to-storage relationship (𝐵𝐸).

In summary, HyMod2 simulates 𝑄 using nine parameters: 𝐻max and 𝑏 for the excess rainfall component, 𝛼, 𝑘𝑠, and 𝑘𝑞 for the 
routing component, and 𝐾𝑚𝑎𝑥, 𝛾, and 𝐵𝐸 for ER. HyMod2 may be considered a simple yet effective model because: (1) it requires 
only a small number of parameters; (2) it does not depend on topographic or land use data; and (3) it is driven solely by 𝑃  and 
𝑃𝐸𝑇 .

The original HyMod (Boyle, 2001) has been used in the Brazilian territory. For instance, to reproduce the hydrology at the basin 
scale and analyze the outcomes of reservoir expansion in terms of water security (Meira Neto et al., 2024). Furthermore, to assess 
the impact of climate change on water security of the Cantareira Water Supply System (Gesualdo et al., 2019) in the SPMR. Satgé 
et al. (2021) evaluated the performance of the ECMWF-SEAS5 global precipitation product for predicting 𝑄 regimes in a tropical 
river basin in Brazil.

4.2. Data-driven deep learning model

Artificial Neural Networks (ANNs) originated within the field of Artificial Intelligence (AI), based on the idea that computational 
models inspired by the structure of the human brain could learn and improve through experience. ANNs serve as the foundational 
architecture for various specialized neural network types, including Recurrent Neural Networks (RNNs). RNNs extend traditional 
ANNs by incorporating recurrent connections that allow information to persist across sequences, making them suitable for time-
dependent data. However, standard RNNs often struggle to learn long-term dependencies due to issues like vanishing and exploding 
gradients. To overcome these challenges, Long Short-Term Memory (LSTMs) networks were developed as an advanced form of RNN. 
LSTMs incorporate gating mechanisms that control the flow of information and enable the model to retain relevant data over longer 
sequences (Hochreiter and Schmidhuber, 1997; Kratzert et al., 2019a).

An LSTM unit comprises a memory cell and a set of control gates—namely, input, forget, and output gates. The memory cell 
maintains information over time through weighted activation functions, while the gates regulate the flow of information into, within, 
and out of the cell. These gates determine which information should be retained, updated, or discarded at each time step. The main 
components of an LSTM network include: (a) the hidden state, which influences decisions on memory updates; (b) the input state, 
formed by combining the hidden state and current input; (c) the cell (internal) state, responsible for carrying long-term information; 
(d) the input gate, which governs how much new information is stored; (e) the forget gate, which decides which past information 
to discard; and (f) the output gate, which determines the information passed to the next hidden state and output layer. For a more 
detailed description, see Kratzert et al. (2018).
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Fig. 3. Representation of the five 𝑘-fold cross-validation strategy for hydrological simulation using LSTM model.

Here, an LSTM algorithm was selected for simulating 𝑄 at the Passaúna catchment. The LSTM came from the NeuralHydrology 
API (Kratzert et al., 2018), which applies LSTMs as a generalized rainfall-runoff model. LSTM network stands out as a good choice 
for hydrological modeling, particularly for simulating catchment processes such as rainfall-runoff transformation. LSTMs have been 
successfully applied in numerous hydrological studies, demonstrating their robustness and reliability across diverse catchments and 
climatic conditions (Kratzert et al., 2018, 2019a; Xu et al., 2023; Wang et al., 2024).

First, LSTM model was trained using observed 𝑃 , 𝑃𝐸𝑇 , 𝑄, and static attributes (Table  1) of the ten catchments (Fig. S1). Including 
static attributes enhances the model’s ability to capture the underlying dynamics of the time series data by providing essential 
contextual information (Kratzert et al., 2019b). LSTM model was trained using data from all ten catchments; that is, one set of 
parameters was optimized to generalize across the ten catchments. Training a single LSTM model on multiple catchments offers 
several advantages: (1) it enhances generalization by exposing the model to diverse hydrological conditions; (2) allows it to learn 
from a larger dataset; and (3) leverages shared patterns across catchments to improve predictive accuracy (Kratzert et al., 2024). 
Finally, the trained LSTM was run for the Passaúna catchment using the bias-corrected climate change as input to simulate historical 
and future periods.

4.2.1. LSTM hyper-parameters
Hyperparameters are crucial in designing and optimizing LSTMs, acting as tunable settings that dictate how a model learns from 

data. They define the model’s structure, such as the number of hidden layers and the activation functions used, and significantly 
impact the efficiency and accuracy of model training (Yu and Zhu, 2020). The number of hidden/cell states, dropout rate, and length 
of the input sequence were determined by conducting a grid search over a range of parameter values. Specifically, the following 
parameter values were investigated: hidden states (64, 128, 192, and 256), dropout rate (0.0, 0.2, 0.4, and 0.5), and length of the 
input sequence (90, 180, 270, and 365 days).

Here, LSTM architecture consisted of 128 memory cells and a single fully connected layer with a dropout rate of 0.5. The LSTM 
was designed to predict daily 𝑄 values using meteorological forcing data from the previous 270 days and the forcing data of the 
target day. Additionally, a batch size of 256 samples was used with a learning rate of 1 × 10−4, 100 training epochs, and the Mean 
Squared Error (𝑀𝑆𝐸) as the loss function.

4.2.2. LSTM cross-validation strategy
Following Goodfellow et al. (2016), a training strategy for the LSTM was implemented by partitioning the data into three subsets: 

training, validation, and test datasets over the 1986–2010 period. The 𝑘-fold cross-validation strategy (varying 𝑘 between 1 and 5) 
was used to partition the dataset for each catchment into training (70%), validation (10%), and test (20%) sets (Fig.  3).

For each of the five folds, LSTM was trained on a sequence of years, while a single year was designated for validation, and the 
remaining years were used for testing. This approach ensured that the model was trained on a diverse dataset while validating and 
testing its performance on separate, unseen data. By systematically shifting the training and validation periods across the folds, 
the robustness of LSTM evaluation were enhanced. The optimal 𝑘-fold configuration was selected based on the mean Kling–Gupta 
efficiency, 𝐾𝐺𝐸 (Gupta et al., 2009), highest score considering the ten catchments during the test period.
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4.3. Assessment of HyMod2 and LSTM performance

Evaluating hydrological model performance plays a critical role in the processes of calibrating and validating. The performance 
of the LSTM and HyMod2 models during the training (or calibration) and testing (or validation) periods was evaluated by comparing 
observed and simulated 𝑄. No single indicator adequately captures model behavior across all flow dynamics. Hence, a set of five 
metrics was applied to hydrological model evaluation.

Models’ performance was evaluated using a combination of error and efficiency metrics. Root Mean Squared Error (𝑅𝑀𝑆𝐸) 
was used to quantify the mean error. The Nash–Sutcliffe Efficiency, 𝑁𝑆𝐸 (Nash and Sutcliffe, 1970), and the 𝐾𝐺𝐸 were applied 
as goodness-of-fit measures to assess the agreement between observed and simulated 𝑄. To evaluate models’ performance under 
hydrological extremes, the percent bias for the top 2% of peak-flows (𝐹𝐻𝑉 ) and the bottom 30% of low-flows (𝐹𝐿𝑉 ) (Yilmaz 
et al., 2008) were used. These indicators reflect the models’ skill to simulate extreme high- and low-flow regimes (referred to here 
as flood and drought flows, respectively). Positive values of 𝐹𝐻𝑉  and 𝐹𝐿𝑉  indicate overestimation, while negative values indicate 
underestimation.

4.4. Future dry and wet regimes

Hydrological dry and wet regimes were identified using the non-parametric approach proposed by Ukkola et al. (2020). 
This approach, which resembles the widely used Standardized Precipitation Index (𝑆𝑃𝐼), introduced by Mckee et al. (1993) for 
meteorological droughts, does not require any prior assumptions regarding data distribution. The identification of drought regimes 
involves three core steps. First, daily 𝑄 series are accumulated into 𝑥-day running totals. In this study, 𝑥 = 3, 6, and 12 months were 
used to capture hydrological variations over seasonal and annual scales, accounting for the soil moisture memory effect (Orth and 
Seneviratne, 2012). Second, the 15th percentile of the accumulated values is calculated separately for each calendar month during 
the historical baseline period (1980–2010). This percentile threshold is then used to identify drought events, defined as periods 
when the monthly accumulation falls below this reference value. The same approach was also applied to identify meteorological 
droughts by using 𝑃  instead of 𝑄.

The same procedure was applied to identify wet regimes, with wet events defined as months in which accumulated flows exceeded 
the 85th percentile threshold. The selected drought percentile approximately corresponds to a 𝑆𝑃𝐼 value of −1, which is widely 
adopted for identifying drought conditions (Ukkola et al., 2020). The same principle is applied to wet regimes, where the 85th 
percentile approximates an 𝑆𝑃𝐼 of +1. To ensure consistent comparison across time periods, the 15th and 85th percentiles calculated 
for the historical period (1980–2010) were used as fixed reference thresholds for identifying dry and wet regimes in both historical 
and future climate scenarios.

Following the definition proposed by Ballarin et al. (2024a), the duration of dry and wet regimes is defined as the period between 
the onset and cessation of a specific event. For instance, a dry regime event is characterized by consecutive months in which the 
3-, 6-, or 12-month running accumulation series falls below the corresponding monthly 15th percentile. In contrast, wet regimes 
are defined using the 85th percentile threshold. The severity of each event is computed as the cumulative deviation of the running 
accumulation series from the respective threshold (i.e., the 15th or 85th percentile for dry and wet regimes, respectively).

4.5. Drought and flood flows

To further investigate potential changes in extreme hydrological regimes, namely drought and flood flows, the framework 
proposed by Chagas et al. (2022) was adopted. Specifically, annual series of the minimum 7-day streamflow (𝑄7min) and the 
maximum daily streamflow (𝑄max) were used to represent drought and flood flows, respectively. This approach complements the 
previous analysis of dry and wet regimes based on longer accumulation periods and soil moisture memory effects. By incorporating 
short-term extremes, the framework provides a more refined understanding of hydrological variability, which is particularly 
relevant for assessing rapid-onset events that critically affect water resources management, ecosystem resilience, and infrastructure 
vulnerability.

For drought flows, projected changes in 𝑄7min were computed between the historical period and the near-, mid-, and far-future 
periods, with assessments of both statistical significance and temporal trends. Projected changes in flood flows were analyzed using 
a frequency-based statistical approach. Following Zaghloul et al. (2020), two alternative statistical distributions — Burr Type III 
(BrIII) and Burr Type XII (BrXII) — were adopted to evaluate changes in design flood events for a range of return periods (up 
to 100 years) across historical and projected scenarios. While other distribution could be used, such as the Generalized Extreme 
Value (GEV) distribution—a widely used and highly flexible distribution (Coles, 2001), recent studies suggest that the Burr family 
offers advantages in specific hydrological contexts (Zaghloul et al., 2020; Ballarin et al., 2022). For instance, the upper bound of the 
GEV distribution (in its Weibull form, when the shape parameter assumes negative values) can constrain projections of physically 
unbounded flood magnitudes, especially for long return periods. In contrast, Burr distributions have no upper bound and include 
two shape parameters, allowing independent control over lower and upper tail heaviness.

The flexibility improves Burr distributions robustness in capturing complex tail behavior, a critical aspect in the assessment of 
extreme flood events (Papalexiou and Koutsoyiannis, 2012). Moreover, Burr distributions exhibit asymptotic behavior comparable 
to that of the GEV but avoid theoretical assumptions — such as block maxima drawn from an infinite sample — that are seldom met 
in practice. The distributions were fitted using the L-Moments method, and their suitability was evaluated through the L-Moments 
ratio diagram (Hosking, 1990; Vogel and Fennessey, 1993). For a detailed comparison of the strengths and limitations of the GEV, 
see Zaghloul et al. (2020).
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Fig. 4. Daily streamflow discharge variability across catchments during the 1986–2010 period. Catchments with higher (a), moderate (b), and lower (c) streamflow 
discharge. The Passaúna catchment is identified by code 65024000 in panel (b).

5. Results and discussion

5.1. Statistics of streamflow discharge

Although the ten catchments are geographically close (Fig. S1), their 𝑄 regimes differ markedly (Fig.  4). The first group of 
catchments exhibits highly variable 𝑄, with median values ranging from 5 to 39 m3/s (Fig.  4a). Catchments in this group present 
interquartile ranges from 3 to 67 m3/s.

The second group demonstrates moderate variability, with median 𝑄 values between 2 and 5 m3/s (Fig.  4b) and the interquartile 
range extends from 1 to 9 m3/s (Fig.  4b) The third group displays more uniform 𝑄 distributions, with median values ranging from 
0.4 to 0.6 m3/s (Fig.  4c). 𝑄 values for this group range from 0.3 to 0.8 m3/s based on interquartile statistics (Fig.  4c). Overall, 
across all catchments, the long-term mean monthly 𝑄 generally decreases from May to September and increases from October to 
March during the 1986–2010 observed period (Fig. S2).

5.2. Comparison between HyMod2 and LSTM

Fig.  5 presents a comparative assessment of observed and simulated 𝑄, using HyMod2 and LSTM, for the Passaúna catchment. 
HyMod2 is considered the benchmark model. Additionally, based on the findings of Onyutha (2024), we take care to perform a fair 
comparison between the models by using 𝐾𝐺𝐸 as the objective function. It is worth noting that LSTM was applied with 𝑘-fold = 1 
(see Fig.  3) exclusively for comparison with HyMod2, as it shares the same validation period.

During the validation period, the HyMod2 exhibits agreement with observed data, effectively capturing overall daily 𝑄 dynamics 
(Fig.  5a), including rising and recession limbs, as indicated by high goodness-of-fit values (𝐾𝐺𝐸 = 0.86 and 𝑁𝑆𝐸 = 0.77).

While both 𝐾𝐺𝐸 and 𝑁𝑆𝐸 indicate a high goodness-of-fit, they capture different aspects of the agreement between simulated and 
observed 𝑄. The 𝐾𝐺𝐸 combines correlation, bias, and variability components. In contrast, the 𝑁𝑆𝐸 is more sensitive to peak-flows 
and large errors, particularly penalizing deviations during flood events. The 𝑅𝑀𝑆𝐸 = 0.50 mm/day indicates a reasonably low 
average error against observed 𝑄.

Despite its satisfactory overall performance, HyMod2 performs poorly under extreme conditions, significantly underestimating 
drought flows (𝐹𝐿𝑉 = −429.87%) and overestimating flood flows (𝐹𝐻𝑉 = 38.80%). These results indicate systematic biases in 
simulating the lower 30% and upper 2% of the observed flow distribution, respectively (Fig.  5a). The HyMod2 parameters during 
calibration period are shown in Table S1.

LSTM model yields lower agreement with observed flows (𝐾𝐺𝐸 = 0.75 and 𝑁𝑆𝐸 = 0.64) during the test period (Fig.  5b) 
compared to HyMod2. On the other hand, the 𝑅𝑀𝑆𝐸 remains nearly unchanged at 0.63 mm/day. Notably, LSTM strongly 
overestimates flood flows (𝐹𝐻𝑉 = 92.56%), while drought flows are better predicted (𝐹𝐿𝑉 = 69.45%) than HyMod2, indicating a 
shift in behavior relative to HyMod2. This result suggests a reduction in underprediction during drought periods, albeit at the cost 
of amplifying flood flows.

Figure S3 presents the comparison between observed and simulated 𝑄 during the LSTM test period for each of the ten 
catchments. The LSTM model demonstrates generally good performance, with 𝐾𝐺𝐸 values frequently approaching 0.70, except 
in two catchments (Fig. S3c,f), where performance was lower (𝐾𝐺𝐸 ≅ 0.40). However, limitations are evident, particularly in the 
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Fig. 5. Comparison between observed and simulated streamflow (𝑄) for the Passaúna catchment over the 2006–2010 period. (a) HyMod2 during the validation 
period. (b) LSTM during the test period (𝑘-fold = 1). (c) Scatterplot comparing HyMod2 and LSTM 𝑄 outputs. HyMod2 is considered the benchmark model. (d) 
quantile–quantile plot. 𝑄𝐻𝑦𝑀𝑜𝑑2 and 𝑄𝐿𝑆𝑇𝑀 are the simulated streamflow by HyMod2 and LSTM, respectively, using observed data as input.

representation of low- and high-flow. The results indicate variability in LSTM performance across the catchments, suggesting that its 
sensitivity to local hydrological conditions may be influenced by the quality of the input data. This behavior can also be attributed 
to differences in physical and anthropogenic catchment characteristics, limitations in training data (e.g., short or biased records), 
and model configuration choices, all of which affect the ability to generalize and simulate extremes.

The comparison between the simulated 𝑄 of both models shows a high agreement (𝐾𝐺𝐸 = 0.83 and 𝑁𝑆𝐸 = 0.79), with a 
relatively low 𝑅𝑀𝑆𝐸 of 0.45 mm/day, indicating that both models produce broadly similar streamflow dynamics overall (Fig. 
5c). Despite the strong overall agreement between HyMod2 and LSTM, the 𝐹𝐿𝑉 = 94.23% and 𝐹𝐻𝑉 = 38.66% reveal important 
differences in how each model simulates extreme flows (Fig.  5c). The high positive 𝐹𝐿𝑉  value indicates that LSTM underestimates 
drought flows when compared to HyMod2, which may be attributed to HyMod2 representation of subsurface processes, such as soil 
moisture storage and groundwater contribution. Conversely, the 𝐹𝐻𝑉 = 38.66% indicates that the LSTM overestimates flood flows 
relative to HyMod2 (Fig.  5c).

The quantile–quantile analysis (Fig.  5d) confirms close adherence between simulated and observed distributions (𝑅𝑀𝑆𝐸 =
0.21 mm/day and 𝑀𝐴𝐸 = 0.17). The high agreement, especially in the middle part of the distribution, shows that both models 
generate similar 𝑄 values under overall flow dynamics. However, deviations occur at the lower and upper tails of the distribution, 
revealing persistent differences in how each model handles extreme flows (Fig.  5c,d).
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5.3. Limitations in the models’ performance

To be clear, similar results for dry and wet regimes (Fig. S4), as well as for drought (Fig. S5) and flood flows (Fig. S6), were 
obtained using outputs from both HyMod2 and LSTM. The comparison between these models reveals complementary strengths and 
limitations in simulating 𝑄 dynamics. While traditional performance metrics such as 𝑁𝑆𝐸 and 𝐾𝐺𝐸 indicate strong agreement, 
additional metrics like 𝐹𝐻𝑉  and 𝐹𝐿𝑉  — which focus on extreme flows — highlight persistent differences in their ability to simulate 
such conditions (Fig.  5c,d). HyMod2 demonstrated better performance in simulating flood flows, whereas LSTM exhibited simulation 
skill during drought conditions.

It is important to emphasize that the LSTM did not perform poorly; rather, it showed systematic deviations under extreme 
flow conditions. Although LSTMs have demonstrated potential in capturing overall characteristics such as long-term memory, 
nonlinearity, seasonality, and time lags in hydrological time series (Yang et al., 2019; Nearing et al., 2021), they may struggle 
to simulate extreme flows (Anwar et al., 2024) accurately. Some studies have demonstrated that pure LSTM models outperform a 
conceptual model, the Sacramento Model, in predicting peak flows (Frame et al., 2022).

Given the lack of consensus on this topic and contrasting performances on our modeling results, both LSTM and HyMod2 were 
used here to assess whether model structure significantly influences the projection of dry and wet regimes, including drought and 
flood flows, under future climate scenarios. The results for dry, wet, drought, and flood conditions presented hereafter were obtained 
using LSTM outputs based on 𝑘-fold = 5. This strategy was selected because it yielded the highest overall median 𝐾𝐺𝐸 of 0.71, 
including the best individual performance (𝐾𝐺𝐸 = 0.82) for the Passaúna catchment (Table S2).

It is also worth noting that the LSTM model, implemented here as a single-layer neural network with a variable number of units, 
was easier to configure and train than the HyMod2, which requires extensive calibration and parameterization of physical processes. 
Consequently, this simplicity made LSTM more accessible in data-scarce environments, such as the ten catchments.

5.4. Future dry and wet regimes

The results of duration and severity indicate contrasting projected dynamics for dry and wet regimes in the Passaúna catchment 
(Fig.  6). Additional results for other accumulation intervals (3 and 12 months) (Fig. S7 and S8) and future periods (near and 
mid-century) (Fig. S9 and S10) are provided in the Supporting Material. No significant changes are projected for the dry regime 
regarding long-term drought duration and severity (Fig.  6a,b). For drought duration, there is considerable variability among CMIP6 
simulations, mainly under the SSP5-8.5 scenario. In both scenarios, approximately half of the CMIP6 models project a reduction 
in drought duration. A similar pattern is observed for drought severity. Although the CMIP6 multi-model ensemble mean indicates 
slight increases under both scenarios, these changes are not statistically significant (Mann–Whitney U test, 𝑝-value = 0.05).

In contrast, the wet regime shows positive changes in both duration and severity, particularly under SSP5-8.5 (Fig.  6d,e). Despite 
the high inter-model variability, the multi-model mean projects increases of approximately 0.5 and 2 months in wet regime duration, 
and 10 and 33 mm in 6-month wet accumulation for SSP2-4.5 and SSP5-8.5, respectively. These results are consistent across 
accumulation intervals, indicating that both wet regime duration and severity are expected to increase in the far future for 3-, 
6-, and 12-month accumulations. The contrasting trends between projected drought and wet conditions can be partially attributed 
to expected changes in monthly and annual 𝑄 (Fig.  6c,f). According to CMIP6 projections, monthly 𝑄 is expected to increase in the 
far future under both scenarios, particularly from April to December (Fig.  6c), leading to higher annual 𝑄 by the end of the century 
(Fig.  6f).

The results for both wet and dry regimes focus on projected changes in the long-term mean duration and severity. To further 
assess variability, the standard deviation of dry and wet regimes duration and severity was compared between historical and far 
future (Fig. S11 and S12). No significant changes are projected in the variability of drought duration and severity, indicating that 
future droughts are likely to retain statistical properties (mean and standard deviation) similar to those of the historical period. In 
contrast, wet regimes (Fig. S11 and S12) show substantial changes, particularly under the SSP5-8.5 scenario, with increases in both 
duration and severity. These findings suggest that future wet regimes in the Passaúna catchment may become more intense and 
variable, with a higher likelihood of extreme wet regime.

Notably, similar patterns of projected changes in dry and wet regimes were observed using 𝑄 simulated by the HyMod2 (Fig. S4). 
This consistency suggests that the choice of hydrological model does not substantially influence the projected changes, indicating 
that model structure is not the primary source of uncertainty. As supported by previous studies, the dominant source of uncertainty 
in climate change impact assessments on hydrology typically stems from climate simulations themselves (e.g., Chen et al., 2011; 
Her et al., 2019).

When evaluating dry and wet regimes from a meteorological rather than hydrological perspective — using 𝑃  instead of 𝑄 — a 
marked increase in the severity of both regimes is evident (Fig.  7). However, no significant change is projected for the duration of dry 
regimes. This pattern may be attributed to the projected increase in water availability in southern Brazil, driven by expected rises 
in both moderate and extreme precipitation events (Ballarin et al., 2024b, 2023a). Nevertheless, these increases do not mitigate 
the severity of meteorological droughts due to shifts in the temporal distribution and seasonality of 𝑃 , which are anticipated to 
intensify dry regimes even under higher overall rainfall (Ballarin et al., 2024a). Such intensification was likely not reflected in 
the hydrological analysis because of streamflow’s memory effect, which buffers the influence of meteorological droughts through 
enhanced storage and delayed response.
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Fig. 6. Relative changes in the long-term mean duration and severity of dry (a, b) and wet (d, e) regimes between the historical and far future (2070–2100) 
periods under the SSP2-4.5 and SSP5-8.5 scenarios for the Passaúna catchment, based on a 6-month accumulation interval. Box plots show the CMIP6 multi-model 
spread, with the gray dot indicating the multi-model mean. Panels (c) and (f) display projected monthly and annual long-term streamflow (𝑄) under historical and 
SSP2-4.5 and SSP5-8.5 scenarios. Shaded areas represent the CMIP6 multi-model range (minimum to maximum), and solid lines correspond to the multi-model 
mean.

Fig. 7. Same as Fig.  6, but based on a meteorological perspective using precipitation (𝑃 ) instead of streamflow (𝑄). Relative changes refer to the duration and 
severity of dry (a,b) and wet (d,e) periods derived from 𝑃 data. Panels (c) and (f) show projected monthly and annual long-term 𝑃 under historical and SSP2-4.5 
and SSP5-8.5 scenarios. Box plots and shaded areas represent the CMIP6 multi-model ensemble.
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Fig. 8. Projected changes in future drought and flood flows. (a–b) Annual time series of 𝑄7min and 𝑄max for the historical (1980–2013) and future (2015–2100) 
periods under the SSP2-4.5 and SSP5-8.5 scenarios. Shaded areas represent the CMIP6 multi-model spread (minimum to maximum), and solid lines show the 
multi-model mean. (c) Violin plots of 𝑄7min for the near (2015–2040), middle (2040–2070), and far future (2070–2100) periods compared to the historical 
baseline. Each violin depicts the CMIP6 multi-model distribution; black lines indicate the interquartile range and white dots the median. The red dashed line 
denotes the historical multi-model mean. (d) Quantiles of 𝑄max estimated using the BrIII distribution for the historical and far future periods under SSP2-4.5 
and SSP5-8.5. Shaded areas indicate the CMIP6 multi-model spread, and solid lines show the multi-model mean.  (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

5.5. Drought and flood flows

As expected from the preceding meteorological–hydrological analysis, projections for the Passaúna catchment indicate no 
substantial changes in drought flows but increased flood flows throughout the 21st century (Fig.  8). For drought flows (𝑄7min), 
both SSP2-4.5 and SSP5-8.5 scenarios show no significant changes across all future periods (Mann–Kendall trend test, 𝑝 = 0.05; Fig. 
8c). These findings are consistent with earlier results indicating increased water availability and no significant shift in dry regimes 
(Fig.  6). In contrast, projections for flood flows (𝑄max) indicate substantial increases, with a statistically significant upward trend 
observed under both scenarios (Mann–Kendall trend test, 𝑝 = 0.05).

To further assess the implications of these changes in 𝑄max for hydraulic infrastructure design, the BrIII distribution were fitted 
— which outperformed BrXII based on L-moment ratio diagnostics (Fig. S13–S16) — to estimate design quantiles for return periods 
up to 100 years (Fig.  8d). For the far future, the 100-year design flood is projected to increase by approximately 26% under SSP2-4.5 
and 52% under SSP5-8.5 relative to the historical period.

These projections align with previous studies that anticipate enhanced precipitation and extreme flooding in the region by 
century’s end (e.g., Medeiros et al., 2022). For earlier future periods, changes are less pronounced: no significant increases are 
projected for the near future under either scenario (Fig. S17), while increases of 19% (SSP2-4.5) and 30% (SSP5-8.5) are projected 
for the middle future. Similar results were obtained using the traditional GEV distribution for simulated 𝑄 using the HyMod2, 
underscoring the robustness of the findings (Fig. S18). These results highlight a challenging future, particularly concerning intensified 
wet regimes and flood risk.

Besides assessing the suitability of the evaluated models using the L-Moments ratio diagram — a method widely used to test a set 
of probability distributions to describe extreme events or characterize sample properties (e.g., Peel et al., 2001; Salinas et al., 2014; 
Godoy et al., 2024; Zaerpour et al., 2024; Zaghloul et al., 2020) — the performance of the probability distribution models in terms of 
errors metrics, such as 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and goodness-of-fit test (Kolmogorov–Smirnov, KS, test) were also compared. These additional 
analyses supported our main conclusions. For instance, the GEV and BurrIII distributions obtained quite similar performance when 
applied to the historical bias-corrected simulations for all evaluated climate models (mean 𝑅𝑀𝑆𝐸: GEV = 0.48 m3/s; Burr Type III 
= 0.51 m3/s; 𝑀𝐴𝐸: GEV = 0.29 m3/s; Burr Type III = 0.30 m3/s), and their suitability was confirmed by the KS test.
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The choice to use the Burr Type III distribution is supported by the arguments presented in Papalexiou and Koutsoyiannis (2012) 
and Zaghloul et al. (2020). For instance, unlike the GEV distribution, which may have lower (or worse, upper) bounds depending 
on the shape parameter, the Burr Type III distribution is defined over the interval (0,∞), making it consistent with the potential 
range of streamflow values. It also has analytical expressions that are as simple as those of the GEV distribution, as well as a similar 
asymptotic behavior (i.e., it is a power-type distribution), making it suitable for modeling heavy tails. Furthermore, it is not a 
limiting extreme value distribution, and thus it does not require the assumption that maxima are extracted from an infinitely large 
sample, which clearly does not hold.

5.6. Limitations in extreme future scenarios

Although analyses point toward a wetter future in the Passaúna catchment, several caveats should be considered. First, climate 
model projections carry inherent uncertainties, particularly regarding the simulation of extreme events, which are often inadequately 
represented (Mishra et al., 2014; Sherwood et al., 2010). Indeed, climate models inherently carry uncertainties, not only due to 
their coarse spatial resolution — which limits their ability to capture local-scale climate processes — but also because they rely 
on parameterizations to represent complex or poorly understood physical processes. To address this, we adopted a widely accepted 
protocol involving bias correction and the use of a multi-model ensemble of CMIP6 projections (Addor et al., 2014; Muerth et al., 
2013; Teutschbein and Seibert, 2012), which provides a range of plausible future climates. Nonetheless, bias-corrected datasets may 
still contain residual errors or unrealistic values (Casanueva et al., 2020; Santos et al., 2025).

Second, although machine learning models such as LSTM generally outperform traditional hydrological models in streamflow 
simulation (Kratzert et al., 2019a; Arsenault et al., 2023), they may struggle to capture extreme low- and high-flows due to their 
underrepresentation in training data. To assess uncertainty from the hydrological model structure, the analyses using HyMod2-
derived streamflow series were carefully performed. Results remained consistent across both dry and wet regime analyses and in 
the projection of extremes, reinforcing the applicability of machine learning models for flood frequency analysis (Arsenault et al., 
2023; Martel et al., 2024).

Finally, despite bias correction, substantial variability among CMIP6 models was observed, indicating that the choice of climate 
model inputs can significantly affect hydrological projections (Santos et al., 2025). Decision-makers should therefore account for this 
variability when designing adaptive measures. This variability reinforces findings from previous studies, which highlight climate 
model inputs as the dominant source of uncertainty in hydrological assessments under climate change (Chen et al., 2011; Her et al., 
2019).

5.7. Implications to adaptive measures

This section presents the broader applicability of results and their relevance to regions facing similar climatic and hydrological 
challenges. Given the extended operational lifespans of dams, such as the Passaúna dam, evaluating climate change adaptation 
measures is essential (Bhaduri et al., 2016). Expanding storage capacity, increasing the number of dams, and adapting operational 
strategies may be necessary to mitigate vulnerabilities in water resource systems under projected climate scenarios (Ehsani et al., 
2017).

In this context, results highlight a critical dynamics in hydrological regimes for the Passaúna catchment; while hydrological 
drought severity remains stable, flood risks are projected to increase significantly. It is important to emphasize that a non-significant 
increase in duration and severity in drought regime does not imply the absence of droughts, but rather indicates no significant 
change in their duration and or severity during the future period. In fact, recent droughts have posed significant challenges for 
water management in the Passaúna catchment. In this context, although evaporation losses were not the focus of this study, future 
adaptation strategies should also account for potential storage losses due to reservoir evaporation, even in temperate regions (e.g., 
Zhang et al., 2017).

The shifts in hydrometeorological patterns affect the design capacity and operational performance of dams, requiring adjustments 
to spillway management, flood storage allocation, and reservoir release policies to align with future hydrological conditions. As noted 
by Ehsani et al. (2017), water managers must balance competing priorities, such as maintaining reservoir storage for both flood and 
drought resilience while ensuring sufficient downstream water supply. Consequently, the Passaúna Dam’s ability to mitigate floods 
and sustain water availability during dry regimes will be increasingly challenged.

The findings suggest that the 100-year flood event could increase by nearly 52% under the SSP5-8.5 scenario, posing significant 
challenges to adaptation measures. For instance, the effectiveness of reservoir operation as a potential adaptation strategy to 
mitigate climate change impacts should be addressed in future studies. However, previous studies have shown that relying solely 
on reservoir operation as an adaptation strategy under climate change will be insufficient to manage future floods, underscoring 
the need for complementary measures (Padiyedath Gopalan et al., 2021). Therefore, other adaptation measures for the Passaúna 
catchment may be considered, such as enhancing floodplain zoning through Payment for Environmental Services (PES). In Brazil, 
Payment for Ecosystem Services (PES) programs have well-defined objectives, primarily focused on water-related services. The most 
common goals include enhancing water discharge (91.25%) and improving water quality (85.00%). Additionally, many programs 
aim to promote vegetation growth (43.75%) and reduce sediment loads (36.25%), while a smaller proportion (21.25%) also targets 
socioeconomic benefits (Mamedes et al., 2023). The recovery of Passaúna catchment vegetation, particularly around river springs, 
dams, and flood-prone croplands, could be a key component of vegetation growth promotion.
13 
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As flood risks increase, croplands and natural vegetation in flood-prone areas of the Passaúna catchment are likely to face 
greater vulnerability, leading to significant crop loss, soil degradation, and disruption of local food production systems. Furthermore, 
increased flooding may elevate tree mortality due to prolonged inundation of floodplains, potentially disrupting moisture recycling 
and altering local and regional hydrological processes (Staal et al., 2018). Brazil is among the top ten countries with the highest 
cropland exposure to flooding (Zhang et al., 2023). To mitigate these risks, a combination of structural and non-structural strategies 
is essential. Physical measures such as flood walls and river training structures can protect croplands from inundation, while 
afforestation in upstream areas can reduce runoff and enhance water retention. Additionally, financial instruments like flood 
insurance provide a safety net for affected farmers, facilitating faster recovery from flood events. Integrating nature-based solutions, 
such as wetland restoration and green infrastructure, can further strengthen flood resilience while delivering co-benefits for 
biodiversity and water quality. Implementing these measures in the Passaúna catchment could enhance agricultural sustainability 
and reduce long-term flood impacts.

Another innovative approach to flood management is the concept of Flood Drainage Rights (FDR), a governance framework that 
establishes legal rights and responsibilities for regions to drain floodwaters into river reaches (Zhang et al., 2022). FDR ensures 
equitable and efficient floodwater management by balancing upstream and downstream needs during flood events. In the Yellow 
River Watershed in China, for example, FDR has been implemented to allocate flood drainage responsibilities among provinces based 
on hydrological capacity and historical flood patterns (Zhang et al., 2022). Under this system, upstream regions must manage excess 
water within predetermined quotas, preventing downstream flooding and minimizing economic and environmental damages. A 
similar framework could benefit the Passaúna catchment, where increasing flood frequency and intensity pose growing challenges for 
water managers. By defining clear floodwater management responsibilities between upstream and downstream areas, an FDR-based 
approach could enhance coordination among stakeholders, reduce flood damage, and improve resilience.

6. Conclusion

This study presents a comprehensive assessment of climate change impacts on hydrological regimes in the Passaúna catchment, 
a critical water source for the Curitiba Metropolitan Region, Brazil. Both LSTM and HyMod2 rainfall–runoff models demonstrated 
agreement with observed streamflow patterns, with low average errors indicating reliable performance under average flow 
conditions. However, limitations were identified in the simulation of extreme events: HyMod2 performed better for flood flows, 
whereas LSTM exhibited superior skill in capturing drought flows. Nevertheless, wet and dry regimes, as well as drought and flood 
flows, did not exhibit significant sensitivity to model structure.

Thus, the results of models’ performance highlight the need for improved model representation of hydrological extremes. 
Some limitations might be attributed to the scarcity of ground-based observations in the study area. Consequently, we relied on 
global remote sensing-based products. While these datasets provide extensive spatial and temporal coverage, they also introduce 
uncertainties, especially under extreme hydroclimatic conditions.

Main findings indicate that the projections reveal contrasting shifts between dry and wet regimes. That is, no significant changes 
in dry regime under future climate scenarios and increased wet regime. While drought flows duration and severity are not expected 
to undergo substantial changes under future climate scenarios, the severity and duration of flood flows are projected to increase, 
particularly under SSP5-8.5 toward the end of the century. For example, the 100-year design flood is projected to increase by up 
to 52% under SSP5-8.5. Such trends are consistent across time scales, statistical methods, and hydrological modeling frameworks, 
reinforcing the robustness of flood hazard projections.

Despite the robustness of the methodological approach — including multi-model ensembles, bias correction, and the comparison 
of two structurally distinct hydrological models — uncertainties persist. These are primarily associated with the variability inherent 
in climate projections and, to a lesser extent, with differences in model performance for hydrological extremes. The results provide 
actionable insights for decision-makers, such as the Paraná Sanitation Company, as the projected increase in flood magnitudes 
underscores the importance of adaptive reservoir management and infrastructure resilience planning.
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