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Published: 24 May 2016 : features from microscopic images of leaf epidermis. All the experiments were carried out using 32
. plant species with 309 epidermal samples captured by an optical microscope coupled to a digital

camera. The results of the computational methods using texture features were compared to the
conventional approach, where quantitative measurements of stomatal traits (density, length and
width) were manually obtained. Epidermis image classification using texture has achieved a success
rate of over 96%, while success rate was around 60% for quantitative measurements taken manually.
Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of
stomata, analysing samples from the same species grown in different environments. Texture methods
were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in
the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%.
Results from the comparison between the computational approach and the conventional quantitative
measurements lead us to discover how computational systems are advantageous and promising in
terms of solving problems related to Botany, such as species identification.

Green plants (Viridiplantae) are among the most important living beings in the natural world. They are multi-
cellular photosynthetic eukaryotic organisms forming a clade that includes flowering plants, conifers and other
gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and green algae', providing most of the world’s
photosynthetically fixed carbon?, and are the basis of all life on earth. According to O.W. Archibold?, 11 major
types can be recognized forming the majority of earth ecosystems: tropical forests, tropical savannas, arid regions
(deserts), Mediterranean ecosystems, temperate forest ecosystems, temperate grasslands, coniferous forests, tun-
dra (both polar and high mountain), terrestrial wetlands, freshwater ecosystems and coastal/marine systems.
In South America, forests and savannas predominate®, and in the Brazilian territory, the Cerrado is included as
one of the most important tropical savannas’. Its geographical reach accounts for 22% of the country’s land area
(extending marginally into Paraguay and Bolivia), and is the second most important ecosystem in South America,
after the Amazon Forest. The World Wide Fund for Nature called it the biologically richest savanna in the world,
with about 12,000 plant species, 44% of which are endemic, according to®”. Additionally, the Cerrado has been
considered a hot-spot, suffering from severe deforestation and agricultural use®.

Due to its incredible plant diversity, which is reflected in a great diversity of morphological structures”!’, the
Cerrado ecosystem presents itself as a great opportunity to test methods and approaches to provide new tools
for plant identification. To date, the main approach used to identify any plant species is by using morphological
traits'!. This approach is widely based on morphological traits of reproductive organs that are not always found
in the plant, such as flowers and fruits!?. Alternatively, in recent years, some computational approaches have been
proposed to identify species based on images of leaves that are often available throughout the year in tropical and
subtropical regions of the world'*~'8. Such methods are able to differentiate the species based on leaf image prop-
erties, where texture is the main analyzed feature.
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Generally, texture is associated to the feel of different materials to human touch. Texture image analysis is
based on visual interpretation of this feeling'®. By this fact, this descriptor indicates smoothness, coarseness and
regularity in images®. In computational analysis of plant images, assessing texture of leaf surface is related to
different characteristics of the plant, e.g. presence and type of trichomas, stomata types, etc., producing different
patterns that can be identified. The application of such methods has been used in leaf cross-sections (analyzing
internal structures) or on the leaf surface (where subsamples of the entire scanned leaf were analyzed)!>-1821,

Another possibility to be explored in computational methods is analysing the leaf epidermal surface by its dis-
sociation®”. The dissociation process is normally used to infer structural patterns such as size, position and density
of stomata, as well the distribution and shape of epidermal cells and characteristics of the cuticle, such as striation
patterns®*?. These traits provide important information for plant identification and can even provide important
taxonomic characteristics for phylogeny assembly?*~?”. When analysing the epidermis surface, the anatomical
procedures are relatively simple compared to the preparation of transversal cuts?, as the process to obtain the leaf
surface is done in less than 12 hours, and many samples can be processed at the same time?. Furthermore, the
full leaf is not needed to identify the plant. Nevertheless, few studies have assessed the morphometry, anatomical
structure and texture of leaf epidermis images with identification purposes. In*, dissociated samples of leaf epi-
dermis were used, however only one species was analyzed.

The aim of this paper is to present an innovative use of microscopic images of leaf epidermis: by extract-
ing texture features and classifying the species by analysing these characteristics. Computational methods are
advantageous because they can provide many useful features to identify species®. The feature extraction process
was carried out using three different methods: Fourier descriptors, corrosion-inspired texture analysis and local
binary patterns and the classification was done using two classifiers: k-Nearest Neighbors and linear discriminant
analysis.

In order to show the importance of using computational methods to help identify plant species, the same
species used in the previous experiments were classified using morphological characteristics. They were obtained
manually by quantitative measurements using a light photomicroscope and the AxioVision microscope software
from Zeiss. The analysed traits were the stomata density, the guard cell length and the stomatal complex width.
A third set of experiments was conducted in order to verify if the texture based approaches and the conventional
method using quantitative measurements are invariant to plasticity. Phenotypic plasticity is the morphological
and physiological response of individuals to changes in the environment®. Factors such as climate change, land
use change, invasiveness and resource limitation may cause morphological intraspecies differences, playing an
important role when identifying species. To verify the robustness of plant identification methods to handle the
variability of plasticity, we also analyzed the texture features of leaves from the same species growing in distinct
environmental conditions.

Materials and Methods

Epidermal images acquirement system. Leaves were collected from representative woody species of the
Cerrado (Table 1) in the IBGE Ecological Reserve (15°56'42.04''S, 47°52/43.74"W) and in the Aguas Emendadas
Ecological Reserve (15°33/56.84"'S, 47°36/04.22"' W), both in Brasilia, Federal District, Brazil. Authorities from
both ecological reserves issued permits to conduct scientific research on the samples. The abaxial surfaces of the
epidermis were obtained from three or four leaves (one per individual) of each species. From each collected leaf,
a sample of approximately 1 cm? was removed from the leaf’s middle region, between the margin and midrib.
Dissociation of the leaf epidermis was performed using a 1:1 solution of glacial acetic acid and hydrogen peroxide
at 60 °C for 12 hours, or the time required to completely decouple the epidermis (modified from?®). After this
procedure, the abaxial surface of the epidermis was washed in distilled water, stained with safranin and mounted
in glycerin. The images were captured at 20 x objective lenses, using a Zeiss Axio Scope Al optical microscope,
coupled to a digital camera (Zeiss AxioCam MRc model). Three images per leaf were used for the classification
procedure. For the experiments using manual measurements, the stomata density, as well the guard cell length
and the stomatal complex width, were obtained by using the AxioVision software from Zeiss. Stomatal counts
were made in three fields (defined at random) per individual sampled at 10 x objective lens. The size of the sto-
mata was measured in at least three different fields, randomly set, totaling 90 stomata. In total, 309 microscopic
images of epidermal leaf surfaces were obtained from 32 woody plants that are commonly found on our studied
vegetation sites (Table 1).

Feature extraction for classification. Image texture can be defined as a function of the spatial variation
in pixel intensities (gray level values). These textural properties can be extracted from the image and mapped
on the form of a feature vector that will represent this image in a process called feature extraction. Afterwards,
the texture patterns of each image need to be recognized to identify which texture pattern they belong to, which
leads to a problem of texture classification. For this purpose, the texture patterns of all images under analysis are
submitted to a classifier, which predicts the classes in each image considering T, images for training and T, images
for testing.

Previous to feature extraction, some procedures can be used to enhance the image. For example, external
interference could lead to obtaining dark, noisy or bright images, preventing capturing the original character-
istics. Therefore, these procedures minimize the changes caused by these external interferences. The epidermis
images obtained for this experiment underwent a staining procedure, which led to obtaining images with the
original colour change of the leaves. For this reason, we converted the images to grayscale and then adopted a pro-
cedure for contrast enhancement to ensure there was no interference of the color samples in the feature extraction
process. This procedure is described later on.

Three types of feature descriptors were used to describe each epidermis image, which are Fourier®*->> with
two approaches for feature representation: circular angular and circular, Corrosion-Inspired Texture Analysis®®
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Baccharis linearifolia (Lam.) Pers. (Asteraceae)

Byrsonima laxiflora Griseb. (Malpighiaceae)

Calophyllum brasiliense Cambess. (Clusiaceae)

Campomanesia velutina (Cambess.) O. Berg (Myrtaceae)

Clusia criuva Cambess. (Clusiaceae)
Copaifera langsdorffii Desf. (Fabaceae)
Cupania vernalis Cambess. (Sapindaceae)

Duguetia furfuracea (A.St.-Hill.) Saff. (Annonaceae)

Eriotheca candolleana (K. Schum.) A. Robyns (Malvaceae)

Esenbeckia pumila Pohl. (Rutaceae)

Gaylussacia brasiliensis (Spreng.) Meisn. (Ericaceae)

Guapira noxia (Netto) Lundell (Nyctaginaceae)

Hymenaea stigonocarpa Mart. ex Hayne (Fabaceae)

Ilex affinis Gardner (Aquifoliaceae)

Matayba guianensis Aubl. (Sapindaceae)

Maytenus floribunda Reissek (Celastraceae)

Miconia cuspidata Naudin (Melastomataceae)

Miconia chamissois Naudin (Melastomataceae)

Myrsine guianensis (Aubl.) Kuntze (Myrsinaceae)

Myrsine ferruginea (Ruiz & Pav.) Spreng. (Myrsinaceae)

Ouratea hexasperma (A.St.-Hill.) Baill. (Ochnaceae)

Plenckia populnea Reissek (Celastraceae)

Pseudobombax longiflorum (Mart. & Zucc.) A.Robyns (Malvaceae)

Roupala montana Aubl. (Proteaceae)

Rourea induta Planch. (Connaraceae)

Salacia crassifolia (Mart. ex Schult.) G. Don (Celastraceae)

Symplocos mosenii Brand (Symplocaceae)

Symplocos nitens (Pohl) Benth. (Symplocaceae)

Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae)

Tapirira guianensis Aubl. (Anacardiaceae)

Virola sebifera Aubl. (Myristicaceae)

Xylopia sericea A.St.-Hil. (Annonaceae)

Table 1. List of species from which we obtained the leaf epidermis images.

and Local Binary Pattern®”. All these methods are described immediately after the description of the enhance-
ment procedure. We carried out the classification using k-Nearest Neighbors and linear discriminant analysis
classifiers.

Image Enhancement. In this procedure, histogram stretching was used to increase the image contrast. Let an
image f(x, y), the enhanced image g(x, y) is obtained by

fGoy) = min(f(xp)) o
max(f (x, y)) — min(f (x, y)) ’ (1)

where bpp is the number of bits per pixel of the image f(x, y). In our application, the image has 256 gray levels and
bpp = 8. In the enhanced image g(x, y), 1% of data is saturated at low and high intensities of the original image.

glx, y) =

Fourier Descriptors. Fourier descriptors, proposed originally by Cosgriff in 1960, are a representation of a
periodic signal through the coefficients of a finite combination of complex sinusoidal ordered by their frequen-
cies. Coefficients of the sum of sines and cosines are obtained from the discrete Fourier transform (DFT). Since
the image is at the frequency domain, complex values can be used as feature descriptors to represent an object or
texture®**. Lower frequency coefficients are shifted to extremities of the spectrum. Thus, a shift operation needs
to be carried out, which moves the origin of the Fourier transform to the central coordinates at the frequency
domain. Low frequency components describe the most relevant information of the behavior of a signal. On the
other hand, high frequency components are related to abrupt changes and noise.

Fourier Circular-Angular.  After the shift operation, F(u, v) is partitioned into 64 sectors using eight circular
rings and eight angles equally spaced over the image. Circular rings were calculated using radii equal to 3, 6, 9, 12,
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15, 18, 21 and 24 pixels of distance. A total of 64 descriptors were given by the sum of the absolute values of each
sector of the spectrum.

Fourier Circular. G circular rings using radii equal to 1, 2, ..., min(|M/2|, [ N/2|), where the image has
M x N pixel size, are calculated over F(u, v) after the shift operation. For each circular ring, the sum of all the
absolute values of the spectrum from the origin to the circular ring is performed obtaining G descriptors for each
image. As the images obtained in this experiment have sizes of 2080 x 1540 pixels, 769 descriptors are generated
per image.

Corrosion-Inspired Texture Analysis. ~Corrosion-Inspired Texture Analysis (CITA)* is a feature descriptor based
on concepts from the process of metal pitting corrosion modeling and cellular automata. In this approach, a
texture image is considered as a metal surface and thus represents the initial state of the cellular automaton. Each
pixel in the image is considered as a cell of the automaton and, therefore 256 initial states are considered, which
correspond to 256 gray levels of the image. The gray levels represent the depth of corrosion in a given surface,
where 0 means no corrosion, and 255 means the greatest depth of corrosion. An update rule based on the analysis
of the central pixel/cell and its neighborhood is set to update the state of each cell at time ¢+ 1.

Let an image be considered as a grid I of size N x M. Each cell (4, ), where i € [1, N] and j € [1, M], is updated
at time £+ 1 according to the level of depth calculated from the difference between the state of the central cell and
the lowest state value within its neighborhood at time .

dij= s, t) — min(N(c;)), 1)), 2)
where s(I;, £) is the state of the central cell I;; and (N (c;, ) t)is the set of states of the cells in the neighborhood
of I;;.

Thus, the state of the cell I;; at time £+ 1 is updated according to:

(sUip D+ Cldyy ) 516255 > dy >

I —
st sip ) Jifd,; < vord,; > 255, 3)

pt+ 1)

where v is a surface roughness parameter, C is the level of corrosion to be applied, considering d;; and the pitting
power parameter 7y € [0, 1]. v is the resistance of the metal to corrosion in a certain environmental condition.

Cld; > v) =255 — d; ), (4)

where | ] is the floor of a.

This process is performed T times. For each iteration, the cumulative mass of corroded metal of the CA-based
model is used to construct the texture descriptor of size T for each image. In this context, 200 iterations were used
to classify the image epidermis and the parameters were set up as v=2 and y=0.05. With these parameters, 200
CITA descriptors were generated.

Local Binary Pattern. Local Binary Pattern (LBP)¥ is an operator of grayscale texture that characterizes the
spatial structure of local binary patterns in the image in a circular neighborhood at any spatial resolution. This
approach suggests the image consists of micro-patterns. Given a central pixel in the image, a number of patterns
is computed by comparing its value with the pixels of its neighborhood:

P-1
LBPp g = Y s(g, — 802"
p=0 (5)

Lx>0

W=l x <0 6)

where g, is the gray level of the central pixel, g, the gray level of the neighbor p, P is the number of neighbors and
R is the radius of the neighborhood. Let an image of size N x M pixels, the LBP pattern of each pixel (i, j),
i € [1,N],j € [1, M], is determined and a histogram of these patterns is calculated to represent the texture image.
Consequently, a feature vector with 256 positions (the same number of gray levels) is generated for each image.

Experiments and Results

Texture analysis vs traditional methods. Following the procedure described in the Materials and
Methods section, 300 samples of size 2080 x 1540 pixels distributed over 32 distinct woody species (see Table 1
for details) were obtained. Figures 1 and 2 show two samples of epidermis images of the same species per row. In
the first figure, images with intra species similarity are shown, i.e., there is no significant variation of the images
obtained from one individual to another. However, this is not the case for all species, as shown in Fig. 2, where
wide variations in images of the same species (when considering different individuals) can be seen. This context
makes the classification problem even more challenging.

Three texture descriptors were used to describe the images and subsequently perform the classification, which
were Fourier, CITA and LBP descriptors. For the Fourier descriptors two approaches were used. The first one
used only the Fourier circular descriptors, while the second one used the concatenated vectors of Fourier circular
and Fourier circular-angular. The number of descriptors obtained varied from 200 to 833, therefore the Principal
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Figure 1. Samples of epidermal images with low variation in images of the same species (row). From top to
bottom: Ilex affinis, Myrsine guianensis, Handroanthus impetiginosus and Xylopia sericea.

Component Analysis (PCA), a technique to reduce the dimensionality, was used for all the feature descriptors
so that a smaller number of features could be used. PCA is an orthogonal linear transformation that converts
a number of possibly correlated variables into a set of values of uncorrelated variables called principal compo-
nents®. The first principal component has the greatest variance in the data, the second principal component and
succeeding components have the highest variability in descending order.

A supervised classification was performed to assign each sample to a plant species. This process is called
supervised because the species of the training set are known and the aim is to use a function to classify a new
observation in one of the given species. A validation scheme termed stratified 6-fold cross-validation®® was used.
The set of samples was equally divided into six mutually exclusive subsets and samples of five subsets were used
for training, and samples of one set were used for testing. This procedure was performed 6 times alternating the
testing subset so that all samples were classified. In the end, the success rate for the data set was calculated. This
procedure was executed 10 times to obtain the standard deviation.

To classify the samples, two classifiers were used: k-Nearest Neighbor (k-NN)4!, with k=1 (experiments
with k=1, 3, 5and 7 were carried out. For the analysed data, k=1 obtained the best performance. k-NN for k=1
is also called nearest neighbor algorithm), and Linear Discriminant Analysis (LDA)*. k-NN associates a class
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Figure 2. Samples of epidermal images with wide variations in images of the same species (row). From top
to bottom: Miconia cuspidata, Tapirira guianensis, Symplocos mosenii and Guapira noxia.

to a sample according to the most repeated class of the surrounding neighborhood. LDA maximizes the ratio of
between-class variance and within-class variance achieving the maximal separability. These procedures for classi-
fication were applied to the set of epidermal images and high probabilities of correct classification were obtained
performing 96.6% of success rate using Fourier descriptors. All the results were compared in Tables 2 and 3 for
k-NN and LDA, respectively.

Moving on further, the proposed method was compared to the traditional approach, where quantitative meas-
urements were obtained manually from the epidermis images. The following features were considered: stomata
density, the guard cell length and the stomatal complex width. The same 32 species and 300 samples used for
the computational experiments were also used for the morphological experiment, as well the stratified 6-fold
cross-validation scheme. The results using quantitative measurements are 61.33% with k-NN and 58.47% with
LDA. For each of the texture methods, the three descriptors obtained manually (density, length and width) were
added to the texture feature vector to verify the impact of using both features together for plant species recogni-
tion. It can be observed in Tables 2 and 3 that morphological characteristics may increase up to 10% success rate
when combining both features.
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Fourier Circular + Circular-Angular 20 | 96.00 (£0.05) 100 20 | 94.17 (£0.06) 80 33
Fourier Circular + Circular-Angular + Quantitative | 23 | 98.67 (4:0.03) 100 23 | 96.76 (£0.05) 80 44
Fourier Circular 19 | 95.00 (£0.06) 83 19 | 93.20 (£0.06) 67 33
Fourier Circular + Quantitative 22 | 97.33(10.04) 100 22 | 95.79 (£0.05) 80 44
CITA 19 | 74.33 (£0.12) 100 21 74.11 (£0.12) 80 44
CITA + Quantitative 22 84.67 (+0.09) 100 24 | 84.14(40.09) 80 44
LBP 29 | 70.00 (£0.13) 67 33 | 72.49 (£0.13) 80 78
LBP + Quantitative 32 80.67 (+0.11) 100 36 | 81.88(40.10) 87 56
Quantitative (Density + Length 4+ Width) 3 61.33 (0.15) 100 3 57.61 (£0.15) 33 44

Table 2. Classification accuracy of 32 plant species. The results are described by the number of PCA
components (#), success rate and standard deviation (std) using Fourier, CITA and LBP feature descriptors and
k-NN as classifiers. Moreover, the results are presented in two modes. The first one shows the success rate for
300 images, in which images of Tapirira guianensis only from the gallery forest are used. The second one, labeled
as 309 images, shows the results including nine images of Tapirira guianensis from a marsh camp to draw a
comparison of the classification rate with samples of the same species which grew in different environments.
The success rate of identifying the Tapirira guianensis species using stratified 6-fold cross validation is shown in
the columns ‘% T. g’ and ‘% T. g. joint, respectively, for 300 and 309 images and the column ‘% T. g. split’ shows
the result considering the nine images of Tapirira guianensis from the marsh camp as the testing set and the
remaining 300 images as the training set.

Fourier Circular + Circular-Angular 45 | 96.60 (£1.27) 100 46 | 94.92 (+0.63) 89 67
Fourier Circular + Circular-Angular + Quantitative | 48 | 97.43 (+0.39) 100 49 | 96.28 (+0.53) 89 67
Fourier Circular 31 | 95.83(40.63) 100 40 | 94.63 (£0.79) 92 67
Fourier Circular + Quantitative 34 | 97.43(+0.49) 100 43 | 96.34 (+0.82) 92 67
CITA 64 | 78.13 (£1.35) 83 55 | 78.93 (+1.82) 86 56
CITA + Quantitative 67 | 86.87 (£1.31) 83 58 | 85.28 (£2.38) 86 44
LBP 87 | 82.83(%1.39) 70 80 | 83.43 (+1.23) 83 89
LBP + Quantitative 90 | 91.10 (+1.44) 70 83 | 88.71(£1.90) 83 100
Quantitative (Density + Length + Width) 3 58.47 (+1.02) 100 3 55.28 (+0.62) 36 0

Table 3. Classification accuracy of 32 plant species. The results are described by the number of PCA
components (#), success rate and standard deviation (std) using Fourier, CITA and LBP feature descriptors and
the LDA as classifiers. Moreover, the results are presented in two modes. The first one shows the success rate for
300 images, in which images of Tapirira guianensis only from the gallery forest are used. The second one, labeled
as ‘309 images, shows the results including nine images of Tapirira guianensis from the marsh camp to draw a
comparison of the classification rate with samples of the same species which grew in different environments.
The success rate of identifying the Tapirira guianensis species using stratified 6-fold cross validation is shown

in columns ‘% T. g’ and ‘% T. g. joint, respectively, for 300 and 309 images and the column ‘% T. g. split’ shows
the result considering the nine images of Tapirira guianensis from the marsh camp as the testing set and the
remaining 300 images as the training set.

The effect of plasticity on identification. Plasticity is an important characteristic that makes it difficult
to conventionally identify plant species because the individuals from the same species, which grow in different
vegetation formations with different environmental factors, can present different morphological features®>. The
database used for the experiments contains 300 images from 32 species, including six samples of Tapirira guianen-
sis species grown in a gallery forest environment. The results presented in Tables 2 and 3 at column ‘% T. g’ show
the identification success rate of the Tapirira guianensis species grown in a gallery forest environment.

To verify if the approaches used in this work (the computational method and the traditional method) are
invariant to plasticity, nine images of Tapirira guianensis species grown in a marsh camp environment were added
to the database making a total of 309 images. For this new dataset, two approaches were considered. Firstly,
images of Tapirira guianensis grown in a gallery forest and in marsh camp environment were placed together in
the database and classified using a stratified 6-fold cross-validation scheme (Column ‘% T. g. joint’ in Tables 2 and
3). Secondly, the nine samples of Tapirira guianensis species grown in a marsh camp environment were consid-
ered as the test set and the 300 images of the database were considered as the training set (Column ‘% T. g. split’
in Tables 2 and 3). The first approach analyses the increase in the morphological variability, when samples of the
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same species grown in another environment are added. The second one analyses the direct effect of plasticity on
the identification methodology. In this case, for successful identification, methods must be able to observe char-
acters that are less biased for the growing environment. Considering only samples of Tapirira guianensis from
the gallery forest, the recognition rate was 100% using the traditional method. However, when adding samples
obtained from Tapirira guianensis grown in a marsh camp, which increases the variability due to the plasticity
(309 images;, column ‘% T. g. joint, Tables 2 and 3), the success rate using the traditional methodology fell sharply,
while the texture descriptors remained robust, maintaining the high success rate of the Tapirira guianensis species
identification.

Considering the experiment where the samples from the two grown environments were split, training with
samples grown in a gallery forest and testing using samples grown in a marsh camp (‘309 images, column
‘% T. g. joint, Tables 2 and 3), the results of the traditional approach showed a high decrease. It changed from
100% to 44% of success rate assessed by the k-NN classifier and to 0% estimated by the LDA classifier. On the
other hand, in the case of the k-NN classifier, the texture descriptors had a high decrease, achieving a success rate
less than 50%. Taking into account the LDA classifier, the results were better, showing 67% of success rate for most
of the texture descriptors. The exception of this decrease was the LBP method, which had a high success rate for
both classifiers, achieving 78% for k-NN and 89% when using the LDA, and 100% of success when combined with
the traditional method using the LDA.

Discussion

Analysing morphological and anatomical traits has helped to discriminate species for a long time?**. In this con-
text, information about leaf epidermis features (distribution pattern of epidermal cells, types of trichomes and sto-
mata, shape of guard cells and cuticular ornamentation) have been quite useful for taxonomical approaches*-.
However, these features could be limited to discriminating a large number of species. Considering this, computa-
tional analysis of the epidermis texture provides many suitable descriptors for plant discrimination, which shows
it is a promising approach in this task.

In our study, four different approaches were used to obtain information about leaf epidermis to classify spe-
cies, two of which were related to feature extraction based on Fourier transform. Both of these showed the best
results. Furthermore, CITA and LBP feature descriptors were used, also proving to be effective to identify plant
species. All the tests were carried out using both k-NN and LDA classifiers and similar results were obtained in
most of the cases, showing the consistency of the results. Considering the plasticity experiment, columns ‘% T. g.
joint and ‘% T. g split’ in Tables 2 and 3, it can be observed that the LDA had a much better result than k-NN. The
k-NN is a very simple classification method that proved to be very useful in most of the applications, while LDA is
more sophisticated and uses linear transformations to explain the data better. Therefore, when the morphological
variability between the training and testing sets are high, the result is also dependent on the adopted classifier,
and the LDA is a better option.

The ability of the Fourier descriptors to concentrate the low frequency components separately from the high
frequency components enables us to analyse epidermal tissue (regular cells with coating function) separately from
specialized cells (stomata) and epidermal appendices (trichomes). Thus, attributes of low and high frequency can
be solely compared between samples and these comparisons are joined to enhance the separation of different
species and decrease the distance between samples of the same species. Therefore, Fourier descriptors showed the
best classification rate, achieving a very impressive success rate higher than 96%. CITA and LBP descriptors have
similar methodologies for texture analysis considering the behavior of central pixel neighborhood for feature
extraction. CITA considers regions with similar values as belonging to the same local surface and tries to main-
tain these regions throughout the iterations. These regions may be the epidermis tissue and regions within the
structure of stomata. Furthermore, CITA attempts to erode regions with high abrupt differences so that structures
on the epidermis can be analysed. Thus, CITA achieves a reasonable result in plant species classification. LBP
accounts for patterns of neighbors by simply analyzing if they have a value higher or lower than the central pixel
without considering the difference ratio. When considering the plasticity and a large variability from the training
and testing sets, the LBP method obtained the best result. Among the texture descriptors evaluated, Fourier and
LBP descriptors are the best options. The choice between them has to be made according to the variability of the
samples used in the experiment.

Concerning the comparison between computational methodologies based on texture and the conventional
approach using manual measurements, significant differences were observed. The methods based on texture fea-
tures were better able to classify the species than just the quantitative data, which are more laborious to obtain.
Texture methods are able to identify plant species even when the species presents plasticity in their quantitative
measurements from the epidermis structures. These quantitative values can change according to the environ-
ment, however the texture information remains concise. An analysis using manual measurements considers only
the shape and density of the stomata, whereas the texture analysis considers spatial orientation and geometric
arrangement of the stomata, as well as their quantitative characteristics. The orientation of the stomata is an
important attribute as in certain groups of species, it can be used as an important discriminating attribute, as in
the case of monocotyledons and pine species. Furthermore, as the identification method based on texture uses the
entire image of the epidermis, stomata are not segmented, thus epidermal tissue patterns and also other structures
that might occur in some species, such as trichomes are also considered. The combination of all these features
allows for a rich analysis, able to provide a strong and unique identity to different plant species.

The texture information of the epidermis when combined with the manual measurements of the stomata
(density, length and width) enhance the information concerning species identification. When texture and mor-
phological features are used together, the success rate may increase up to 10%. The main advantage of texture
methods is that it is no longer necessary to segment the stomata. The stomata segmentation process is a dif-
ficult task, as the color and contrast of the stomata varies for each species and, in many cases, an automatic
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segmentation methodology is not feasible. Considering that the texture method is automatic and can be analysed
more quickly without manual intervention of the images while maintaining a good success rate, depending on the
experiment, it can be used without combining it with the quantitative measurements.

Conclusions

The main method used to identify any plant species is based on the morphological analysis. Nevertheless, identi-
fying plant species can become a difficult task for botanists and other researchers not specialized in plant taxon-
omy. In this context, computational approaches have became an important tool to help in the task of identifying
plant species. Considering the efficiency of the texture descriptors to discriminate plant species by epidermis
images and the simplicity of this approach, an innovative concept is proposed that can investigate common tex-
ture features extracted from the taxonomic hierarchical levels, which could help taxonomists to classify new
unknown plant species using a pattern recognition system. These new discrimination strategies associated
with extracting features of images of leaves can open up new possibilities for classification methods of modern
taxonomy.
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