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Leaf epidermis images for robust 
identification of plants
Núbia Rosa da Silva1,2, Marcos William da Silva Oliveira1,2, Humberto Antunes de Almeida Filho2, 
Luiz Felipe Souza Pinheiro3, Davi Rodrigo Rossatto4, Rosana Marta Kolb3 & 
Odemir Martinez Bruno1,2

This paper proposes a methodology for plant analysis and identification based on extracting texture 
features from microscopic images of leaf epidermis. All the experiments were carried out using 32 
plant species with 309 epidermal samples captured by an optical microscope coupled to a digital 
camera. The results of the computational methods using texture features were compared to the 
conventional approach, where quantitative measurements of stomatal traits (density, length and 
width) were manually obtained. Epidermis image classification using texture has achieved a success 
rate of over 96%, while success rate was around 60% for quantitative measurements taken manually. 
Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of 
stomata, analysing samples from the same species grown in different environments. Texture methods 
were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in 
the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%. 
Results from the comparison between the computational approach and the conventional quantitative 
measurements lead us to discover how computational systems are advantageous and promising in 
terms of solving problems related to Botany, such as species identification.

Green plants (Viridiplantae) are among the most important living beings in the natural world. They are multi-
cellular photosynthetic eukaryotic organisms forming a clade that includes flowering plants, conifers and other 
gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and green algae1, providing most of the world’s 
photosynthetically fixed carbon2, and are the basis of all life on earth. According to O.W. Archibold3, 11 major 
types can be recognized forming the majority of earth ecosystems: tropical forests, tropical savannas, arid regions 
(deserts), Mediterranean ecosystems, temperate forest ecosystems, temperate grasslands, coniferous forests, tun-
dra (both polar and high mountain), terrestrial wetlands, freshwater ecosystems and coastal/marine systems. 
In South America, forests and savannas predominate4, and in the Brazilian territory, the Cerrado is included as 
one of the most important tropical savannas5. Its geographical reach accounts for 22% of the country’s land area 
(extending marginally into Paraguay and Bolivia), and is the second most important ecosystem in South America, 
after the Amazon Forest. The World Wide Fund for Nature called it the biologically richest savanna in the world, 
with about 12,000 plant species, 44% of which are endemic, according to6,7. Additionally, the Cerrado has been 
considered a hot-spot, suffering from severe deforestation and agricultural use8.

Due to its incredible plant diversity, which is reflected in a great diversity of morphological structures9,10, the 
Cerrado ecosystem presents itself as a great opportunity to test methods and approaches to provide new tools 
for plant identification. To date, the main approach used to identify any plant species is by using morphological 
traits11. This approach is widely based on morphological traits of reproductive organs that are not always found 
in the plant, such as flowers and fruits12. Alternatively, in recent years, some computational approaches have been 
proposed to identify species based on images of leaves that are often available throughout the year in tropical and 
subtropical regions of the world13–18. Such methods are able to differentiate the species based on leaf image prop-
erties, where texture is the main analyzed feature.
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Generally, texture is associated to the feel of different materials to human touch. Texture image analysis is 
based on visual interpretation of this feeling19. By this fact, this descriptor indicates smoothness, coarseness and 
regularity in images20. In computational analysis of plant images, assessing texture of leaf surface is related to 
different characteristics of the plant, e.g. presence and type of trichomas, stomata types, etc., producing different 
patterns that can be identified. The application of such methods has been used in leaf cross-sections (analyzing 
internal structures) or on the leaf surface (where subsamples of the entire scanned leaf were analyzed)13–18,21.

Another possibility to be explored in computational methods is analysing the leaf epidermal surface by its dis-
sociation22. The dissociation process is normally used to infer structural patterns such as size, position and density 
of stomata, as well the distribution and shape of epidermal cells and characteristics of the cuticle, such as striation 
patterns22,23. These traits provide important information for plant identification and can even provide important 
taxonomic characteristics for phylogeny assembly24–27. When analysing the epidermis surface, the anatomical 
procedures are relatively simple compared to the preparation of transversal cuts28, as the process to obtain the leaf 
surface is done in less than 12 hours, and many samples can be processed at the same time29. Furthermore, the 
full leaf is not needed to identify the plant. Nevertheless, few studies have assessed the morphometry, anatomical 
structure and texture of leaf epidermis images with identification purposes. In30, dissociated samples of leaf epi-
dermis were used, however only one species was analyzed.

The aim of this paper is to present an innovative use of microscopic images of leaf epidermis: by extract-
ing texture features and classifying the species by analysing these characteristics. Computational methods are 
advantageous because they can provide many useful features to identify species31. The feature extraction process 
was carried out using three different methods: Fourier descriptors, corrosion-inspired texture analysis and local 
binary patterns and the classification was done using two classifiers: k-Nearest Neighbors and linear discriminant 
analysis.

In order to show the importance of using computational methods to help identify plant species, the same 
species used in the previous experiments were classified using morphological characteristics. They were obtained 
manually by quantitative measurements using a light photomicroscope and the AxioVision microscope software 
from Zeiss. The analysed traits were the stomata density, the guard cell length and the stomatal complex width. 
A third set of experiments was conducted in order to verify if the texture based approaches and the conventional 
method using quantitative measurements are invariant to plasticity. Phenotypic plasticity is the morphological 
and physiological response of individuals to changes in the environment32. Factors such as climate change, land 
use change, invasiveness and resource limitation may cause morphological intraspecies differences, playing an 
important role when identifying species. To verify the robustness of plant identification methods to handle the 
variability of plasticity, we also analyzed the texture features of leaves from the same species growing in distinct 
environmental conditions.

Materials and Methods
Epidermal images acquirement system.  Leaves were collected from representative woody species of the 
Cerrado (Table 1) in the IBGE Ecological Reserve (15°56′​42.04′​′​S, 47°52′​43.74′​′​W) and in the Águas Emendadas 
Ecological Reserve (15°33′​56.84′​′​S, 47°36′​04.22′​′​W), both in Brasília, Federal District, Brazil. Authorities from 
both ecological reserves issued permits to conduct scientific research on the samples. The abaxial surfaces of the 
epidermis were obtained from three or four leaves (one per individual) of each species. From each collected leaf, 
a sample of approximately 1 cm2 was removed from the leaf ’s middle region, between the margin and midrib. 
Dissociation of the leaf epidermis was performed using a 1:1 solution of glacial acetic acid and hydrogen peroxide 
at 60 °C for 12 hours, or the time required to completely decouple the epidermis (modified from29). After this 
procedure, the abaxial surface of the epidermis was washed in distilled water, stained with safranin and mounted 
in glycerin. The images were captured at 20×​ objective lenses, using a Zeiss Axio Scope A1 optical microscope, 
coupled to a digital camera (Zeiss AxioCam MRc model). Three images per leaf were used for the classification 
procedure. For the experiments using manual measurements, the stomata density, as well the guard cell length 
and the stomatal complex width, were obtained by using the AxioVision software from Zeiss. Stomatal counts 
were made in three fields (defined at random) per individual sampled at 10×​ objective lens. The size of the sto-
mata was measured in at least three different fields, randomly set, totaling 90 stomata. In total, 309 microscopic 
images of epidermal leaf surfaces were obtained from 32 woody plants that are commonly found on our studied 
vegetation sites (Table 1).

Feature extraction for classification.  Image texture can be defined as a function of the spatial variation 
in pixel intensities (gray level values). These textural properties can be extracted from the image and mapped 
on the form of a feature vector that will represent this image in a process called feature extraction. Afterwards, 
the texture patterns of each image need to be recognized to identify which texture pattern they belong to, which 
leads to a problem of texture classification. For this purpose, the texture patterns of all images under analysis are 
submitted to a classifier, which predicts the classes in each image considering T1 images for training and T2 images 
for testing.

Previous to feature extraction, some procedures can be used to enhance the image. For example, external 
interference could lead to obtaining dark, noisy or bright images, preventing capturing the original character-
istics. Therefore, these procedures minimize the changes caused by these external interferences. The epidermis 
images obtained for this experiment underwent a staining procedure, which led to obtaining images with the 
original colour change of the leaves. For this reason, we converted the images to grayscale and then adopted a pro-
cedure for contrast enhancement to ensure there was no interference of the color samples in the feature extraction 
process. This procedure is described later on.

Three types of feature descriptors were used to describe each epidermis image, which are Fourier33–35 with 
two approaches for feature representation: circular angular and circular, Corrosion-Inspired Texture Analysis36 
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and Local Binary Pattern37. All these methods are described immediately after the description of the enhance-
ment procedure. We carried out the classification using k-Nearest Neighbors and linear discriminant analysis 
classifiers.

Image Enhancement.  In this procedure, histogram stretching was used to increase the image contrast. Let an 
image f(x, y), the enhanced image g(x, y) is obtained by

=
−

−
g x y f x y f x y

f x y f x y
( , ) ( , ) min( ( , ))

max( ( , )) min( ( , ))
2 ,

(1)
bpp

where bpp is the number of bits per pixel of the image f(x, y). In our application, the image has 256 gray levels and 
bpp =​ 8. In the enhanced image g(x, y), 1% of data is saturated at low and high intensities of the original image.

Fourier Descriptors.  Fourier descriptors, proposed originally by Cosgriff in 196033, are a representation of a 
periodic signal through the coefficients of a finite combination of complex sinusoidal ordered by their frequen-
cies. Coefficients of the sum of sines and cosines are obtained from the discrete Fourier transform (DFT). Since 
the image is at the frequency domain, complex values can be used as feature descriptors to represent an object or 
texture34,35. Lower frequency coefficients are shifted to extremities of the spectrum. Thus, a shift operation needs 
to be carried out, which moves the origin of the Fourier transform to the central coordinates at the frequency 
domain. Low frequency components describe the most relevant information of the behavior of a signal. On the 
other hand, high frequency components are related to abrupt changes and noise.

Fourier Circular-Angular.  After the shift operation, F(u, v) is partitioned into 64 sectors using eight circular 
rings and eight angles equally spaced over the image. Circular rings were calculated using radii equal to 3, 6, 9, 12, 

Species (Family)

Baccharis linearifolia (Lam.) Pers. (Asteraceae)

Byrsonima laxiflora Griseb. (Malpighiaceae)

Calophyllum brasiliense Cambess. (Clusiaceae)

Campomanesia velutina (Cambess.) O. Berg (Myrtaceae)

Clusia criuva Cambess. (Clusiaceae)

Copaifera langsdorffii Desf. (Fabaceae)

Cupania vernalis Cambess. (Sapindaceae)

Duguetia furfuracea (A.St.-Hill.) Saff. (Annonaceae)

Eriotheca candolleana (K. Schum.) A. Robyns (Malvaceae)

Esenbeckia pumila Pohl. (Rutaceae)

Gaylussacia brasiliensis (Spreng.) Meisn. (Ericaceae)

Guapira noxia (Netto) Lundell (Nyctaginaceae)

Hymenaea stigonocarpa Mart. ex Hayne (Fabaceae)

Ilex affinis Gardner (Aquifoliaceae)

Matayba guianensis Aubl. (Sapindaceae)

Maytenus floribunda Reissek (Celastraceae)

Miconia cuspidata Naudin (Melastomataceae)

Miconia chamissois Naudin (Melastomataceae)

Myrsine guianensis (Aubl.) Kuntze (Myrsinaceae)

Myrsine ferruginea (Ruiz & Pav.) Spreng. (Myrsinaceae)

Ouratea hexasperma (A.St.-Hill.) Baill. (Ochnaceae)

Plenckia populnea Reissek (Celastraceae)

Pseudobombax longiflorum (Mart. & Zucc.) A.Robyns (Malvaceae)

Roupala montana Aubl. (Proteaceae)

Rourea induta Planch. (Connaraceae)

Salacia crassifolia (Mart. ex Schult.) G. Don (Celastraceae)

Symplocos mosenii Brand (Symplocaceae)

Symplocos nitens (Pohl) Benth. (Symplocaceae)

Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae)

Tapirira guianensis Aubl. (Anacardiaceae)

Virola sebifera Aubl. (Myristicaceae)

Xylopia sericea A.St.-Hil. (Annonaceae)

Table 1.   List of species from which we obtained the leaf epidermis images.
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15, 18, 21 and 24 pixels of distance. A total of 64 descriptors were given by the sum of the absolute values of each 
sector of the spectrum.

Fourier Circular.  G circular rings using radii equal to 1, 2, …​, ⌊ ⌋ ⌊ ⌋min M N( /2 , /2 ), where the image has 
M ×​ N pixel size, are calculated over F(u, v) after the shift operation. For each circular ring, the sum of all the 
absolute values of the spectrum from the origin to the circular ring is performed obtaining G descriptors for each 
image. As the images obtained in this experiment have sizes of 2080 ×​ 1540 pixels, 769 descriptors are generated 
per image.

Corrosion-Inspired Texture Analysis.  Corrosion-Inspired Texture Analysis (CITA)36 is a feature descriptor based 
on concepts from the process of metal pitting corrosion modeling and cellular automata. In this approach, a 
texture image is considered as a metal surface and thus represents the initial state of the cellular automaton. Each 
pixel in the image is considered as a cell of the automaton and, therefore 256 initial states are considered, which 
correspond to 256 gray levels of the image. The gray levels represent the depth of corrosion in a given surface, 
where 0 means no corrosion, and 255 means the greatest depth of corrosion. An update rule based on the analysis 
of the central pixel/cell and its neighborhood is set to update the state of each cell at time t +​ 1.

Let an image be considered as a grid I of size N ×​ M. Each cell (i, j), where i ∈​ [1, N] and j ∈​ [1, M], is updated 
at time t +​ 1 according to the level of depth calculated from the difference between the state of the central cell and 
the lowest state value within its neighborhood at time t.

= − ˜d s I t s N c t( , ) min( ( ( ), )), (2)i j i j i j, , ,

where s(Ii,j, t) is the state of the central cell Ii,j and s̃ N c t( ( ), )i j,  is the set of states of the cells in the neighborhood 
of Ii,j.

Thus, the state of the cell Ii,j at time t +​ 1 is updated according to:
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where v is a surface roughness parameter, C is the level of corrosion to be applied, considering di,j and the pitting 
power parameter γ ∈​ [0, 1]. γ is the resistance of the metal to corrosion in a certain environmental condition.

γ γ= 
 − 

C d d( , ) (255 ) , (4)i j i j, ,

where α⌊ ⌋ is the floor of α.
This process is performed T times. For each iteration, the cumulative mass of corroded metal of the CA-based 

model is used to construct the texture descriptor of size T for each image. In this context, 200 iterations were used 
to classify the image epidermis and the parameters were set up as v =​ 2 and γ =​ 0.05. With these parameters, 200 
CITA descriptors were generated.

Local Binary Pattern.  Local Binary Pattern (LBP)37 is an operator of grayscale texture that characterizes the 
spatial structure of local binary patterns in the image in a circular neighborhood at any spatial resolution. This 
approach suggests the image consists of micro-patterns. Given a central pixel in the image, a number of patterns 
is computed by comparing its value with the pixels of its neighborhood:
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where gc is the gray level of the central pixel, gp the gray level of the neighbor p, P is the number of neighbors and 
R is the radius of the neighborhood. Let an image of size N ×​ M pixels, the LBP pattern of each pixel (i, j), 

∈ ∈i N j M[1, ], [1, ], is determined and a histogram of these patterns is calculated to represent the texture image. 
Consequently, a feature vector with 256 positions (the same number of gray levels) is generated for each image.

Experiments and Results
Texture analysis vs traditional methods.  Following the procedure described in the Materials and 
Methods section, 300 samples of size 2080 ×​ 1540 pixels distributed over 32 distinct woody species (see Table 1 
for details) were obtained. Figures 1 and 2 show two samples of epidermis images of the same species per row. In 
the first figure, images with intra species similarity are shown, i.e., there is no significant variation of the images 
obtained from one individual to another. However, this is not the case for all species, as shown in Fig. 2, where 
wide variations in images of the same species (when considering different individuals) can be seen. This context 
makes the classification problem even more challenging.

Three texture descriptors were used to describe the images and subsequently perform the classification, which 
were Fourier, CITA and LBP descriptors. For the Fourier descriptors two approaches were used. The first one 
used only the Fourier circular descriptors, while the second one used the concatenated vectors of Fourier circular 
and Fourier circular-angular. The number of descriptors obtained varied from 200 to 833, therefore the Principal 
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Component Analysis (PCA), a technique to reduce the dimensionality, was used for all the feature descriptors 
so that a smaller number of features could be used. PCA is an orthogonal linear transformation that converts 
a number of possibly correlated variables into a set of values of uncorrelated variables called principal compo-
nents38. The first principal component has the greatest variance in the data, the second principal component and 
succeeding components have the highest variability in descending order.

A supervised classification was performed to assign each sample to a plant species. This process is called 
supervised because the species of the training set are known and the aim is to use a function to classify a new 
observation in one of the given species. A validation scheme termed stratified 6-fold cross-validation39 was used. 
The set of samples was equally divided into six mutually exclusive subsets and samples of five subsets were used 
for training, and samples of one set were used for testing. This procedure was performed 6 times alternating the 
testing subset so that all samples were classified. In the end, the success rate for the data set was calculated. This 
procedure was executed 10 times to obtain the standard deviation.

To classify the samples, two classifiers were used: k-Nearest Neighbor (k-NN)40,41, with k =​ 1 (experiments 
with k =​ 1, 3, 5 and 7 were carried out. For the analysed data, k =​ 1 obtained the best performance. k-NN for k =​ 1 
is also called nearest neighbor algorithm), and Linear Discriminant Analysis (LDA)42. k-NN associates a class 

Figure 1.  Samples of epidermal images with low variation in images of the same species (row). From top to 
bottom: Ilex affinis, Myrsine guianensis, Handroanthus impetiginosus and Xylopia sericea.
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to a sample according to the most repeated class of the surrounding neighborhood. LDA maximizes the ratio of 
between-class variance and within-class variance achieving the maximal separability. These procedures for classi-
fication were applied to the set of epidermal images and high probabilities of correct classification were obtained 
performing 96.6% of success rate using Fourier descriptors. All the results were compared in Tables 2 and 3 for 
k-NN and LDA, respectively.

Moving on further, the proposed method was compared to the traditional approach, where quantitative meas-
urements were obtained manually from the epidermis images. The following features were considered: stomata 
density, the guard cell length and the stomatal complex width. The same 32 species and 300 samples used for 
the computational experiments were also used for the morphological experiment, as well the stratified 6-fold 
cross-validation scheme. The results using quantitative measurements are 61.33% with k-NN and 58.47% with 
LDA. For each of the texture methods, the three descriptors obtained manually (density, length and width) were 
added to the texture feature vector to verify the impact of using both features together for plant species recogni-
tion. It can be observed in Tables 2 and 3 that morphological characteristics may increase up to 10% success rate 
when combining both features.

Figure 2.  Samples of epidermal images with wide variations in images of the same species (row). From top 
to bottom: Miconia cuspidata, Tapirira guianensis, Symplocos mosenii and Guapira noxia.
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The effect of plasticity on identification.  Plasticity is an important characteristic that makes it difficult 
to conventionally identify plant species because the individuals from the same species, which grow in different 
vegetation formations with different environmental factors, can present different morphological features43. The 
database used for the experiments contains 300 images from 32 species, including six samples of Tapirira guianen-
sis species grown in a gallery forest environment. The results presented in Tables 2 and 3 at column ‘% T. g.’ show 
the identification success rate of the Tapirira guianensis species grown in a gallery forest environment.

To verify if the approaches used in this work (the computational method and the traditional method) are 
invariant to plasticity, nine images of Tapirira guianensis species grown in a marsh camp environment were added 
to the database making a total of 309 images. For this new dataset, two approaches were considered. Firstly, 
images of Tapirira guianensis grown in a gallery forest and in marsh camp environment were placed together in 
the database and classified using a stratified 6-fold cross-validation scheme (Column ‘% T. g. joint’ in Tables 2 and 
3). Secondly, the nine samples of Tapirira guianensis species grown in a marsh camp environment were consid-
ered as the test set and the 300 images of the database were considered as the training set (Column ‘% T. g. split’ 
in Tables 2 and 3). The first approach analyses the increase in the morphological variability, when samples of the 

Feature

k-NN

300 images 309 images

# % (±std) % T. g. # % (±std) % T. g. joint % T. g. split

Fourier Circular +​ Circular-Angular 20 96.00 (±​0.05) 100 20 94.17 (±​0.06) 80 33

Fourier Circular +​ Circular-Angular +​ Quantitative 23 98.67 (±​0.03) 100 23 96.76 (±​0.05) 80 44

Fourier Circular 19 95.00 (±​0.06) 83 19 93.20 (±​0.06) 67 33

Fourier Circular +​ Quantitative 22 97.33 (±​0.04) 100 22 95.79 (±​0.05) 80 44

CITA 19 74.33 (±​0.12) 100 21 74.11 (±​0.12) 80 44

CITA +​ Quantitative 22 84.67 (±​0.09) 100 24 84.14 (±​0.09) 80 44

LBP 29 70.00 (±​0.13) 67 33 72.49 (±​0.13) 80 78

LBP +​ Quantitative 32 80.67 (±​0.11) 100 36 81.88 (±​0.10) 87 56

Quantitative (Density +​ Length +​ Width) 3 61.33 (±​0.15) 100 3 57.61 (±​0.15) 33 44

Table 2.   Classification accuracy of 32 plant species. The results are described by the number of PCA 
components (#), success rate and standard deviation (std) using Fourier, CITA and LBP feature descriptors and 
k-NN as classifiers. Moreover, the results are presented in two modes. The first one shows the success rate for 
300 images, in which images of Tapirira guianensis only from the gallery forest are used. The second one, labeled 
as ‘309 images’, shows the results including nine images of Tapirira guianensis from a marsh camp to draw a 
comparison of the classification rate with samples of the same species which grew in different environments. 
The success rate of identifying the Tapirira guianensis species using stratified 6-fold cross validation is shown in 
the columns ‘% T. g.’ and ‘% T. g. joint’, respectively, for 300 and 309 images and the column ‘% T. g. split’ shows 
the result considering the nine images of Tapirira guianensis from the marsh camp as the testing set and the 
remaining 300 images as the training set.

Feature

LDA

300 images 309 images

# % (±std) % T. g. # % (±std) % T. g. joint % T. g. split

Fourier Circular +​ Circular-Angular 45 96.60 (±​1.27) 100 46 94.92 (±​0.63) 89 67

Fourier Circular +​ Circular-Angular +​ Quantitative 48 97.43 (±​0.39) 100 49 96.28 (±​0.53) 89 67

Fourier Circular 31 95.83 (±​0.63) 100 40 94.63 (±​0.79) 92 67

Fourier Circular +​ Quantitative 34 97.43 (±​0.49) 100 43 96.34 (±​0.82) 92 67

CITA 64 78.13 (±​1.35) 83 55 78.93 (±​1.82) 86 56

CITA +​ Quantitative 67 86.87 (±​1.31) 83 58 85.28 (±​2.38) 86 44

LBP 87 82.83 (±​1.39) 70 80 83.43 (±​1.23) 83 89

LBP +​ Quantitative 90 91.10 (±​1.44) 70 83 88.71 (±​1.90) 83 100

Quantitative (Density +​ Length +​ Width) 3 58.47 (±​1.02) 100 3 55.28 (±​0.62) 36 0

Table 3.   Classification accuracy of 32 plant species. The results are described by the number of PCA 
components (#), success rate and standard deviation (std) using Fourier, CITA and LBP feature descriptors and 
the LDA as classifiers. Moreover, the results are presented in two modes. The first one shows the success rate for 
300 images, in which images of Tapirira guianensis only from the gallery forest are used. The second one, labeled 
as ‘309 images’, shows the results including nine images of Tapirira guianensis from the marsh camp to draw a 
comparison of the classification rate with samples of the same species which grew in different environments. 
The success rate of identifying the Tapirira guianensis species using stratified 6-fold cross validation is shown 
in columns ‘% T. g.’ and ‘% T. g. joint’, respectively, for 300 and 309 images and the column ‘% T. g. split’ shows 
the result considering the nine images of Tapirira guianensis from the marsh camp as the testing set and the 
remaining 300 images as the training set.
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same species grown in another environment are added. The second one analyses the direct effect of plasticity on 
the identification methodology. In this case, for successful identification, methods must be able to observe char-
acters that are less biased for the growing environment. Considering only samples of Tapirira guianensis from 
the gallery forest, the recognition rate was 100% using the traditional method. However, when adding samples 
obtained from Tapirira guianensis grown in a marsh camp, which increases the variability due to the plasticity 
(‘309 images’, column ‘% T. g. joint’, Tables 2 and 3), the success rate using the traditional methodology fell sharply, 
while the texture descriptors remained robust, maintaining the high success rate of the Tapirira guianensis species 
identification.

Considering the experiment where the samples from the two grown environments were split, training with 
samples grown in a gallery forest and testing using samples grown in a marsh camp (‘309 images’, column  
‘% T. g. joint’, Tables 2 and 3), the results of the traditional approach showed a high decrease. It changed from 
100% to 44% of success rate assessed by the k-NN classifier and to 0% estimated by the LDA classifier. On the 
other hand, in the case of the k-NN classifier, the texture descriptors had a high decrease, achieving a success rate 
less than 50%. Taking into account the LDA classifier, the results were better, showing 67% of success rate for most 
of the texture descriptors. The exception of this decrease was the LBP method, which had a high success rate for 
both classifiers, achieving 78% for k-NN and 89% when using the LDA, and 100% of success when combined with 
the traditional method using the LDA.

Discussion
Analysing morphological and anatomical traits has helped to discriminate species for a long time23,43. In this con-
text, information about leaf epidermis features (distribution pattern of epidermal cells, types of trichomes and sto-
mata, shape of guard cells and cuticular ornamentation) have been quite useful for taxonomical approaches44–46. 
However, these features could be limited to discriminating a large number of species. Considering this, computa-
tional analysis of the epidermis texture provides many suitable descriptors for plant discrimination, which shows 
it is a promising approach in this task.

In our study, four different approaches were used to obtain information about leaf epidermis to classify spe-
cies, two of which were related to feature extraction based on Fourier transform. Both of these showed the best 
results. Furthermore, CITA and LBP feature descriptors were used, also proving to be effective to identify plant 
species. All the tests were carried out using both k-NN and LDA classifiers and similar results were obtained in 
most of the cases, showing the consistency of the results. Considering the plasticity experiment, columns ‘% T. g. 
joint’ and ‘% T. g. split’ in Tables 2 and 3, it can be observed that the LDA had a much better result than k-NN. The 
k-NN is a very simple classification method that proved to be very useful in most of the applications, while LDA is 
more sophisticated and uses linear transformations to explain the data better. Therefore, when the morphological 
variability between the training and testing sets are high, the result is also dependent on the adopted classifier, 
and the LDA is a better option.

The ability of the Fourier descriptors to concentrate the low frequency components separately from the high 
frequency components enables us to analyse epidermal tissue (regular cells with coating function) separately from 
specialized cells (stomata) and epidermal appendices (trichomes). Thus, attributes of low and high frequency can 
be solely compared between samples and these comparisons are joined to enhance the separation of different 
species and decrease the distance between samples of the same species. Therefore, Fourier descriptors showed the 
best classification rate, achieving a very impressive success rate higher than 96%. CITA and LBP descriptors have 
similar methodologies for texture analysis considering the behavior of central pixel neighborhood for feature 
extraction. CITA considers regions with similar values as belonging to the same local surface and tries to main-
tain these regions throughout the iterations. These regions may be the epidermis tissue and regions within the 
structure of stomata. Furthermore, CITA attempts to erode regions with high abrupt differences so that structures 
on the epidermis can be analysed. Thus, CITA achieves a reasonable result in plant species classification. LBP 
accounts for patterns of neighbors by simply analyzing if they have a value higher or lower than the central pixel 
without considering the difference ratio. When considering the plasticity and a large variability from the training 
and testing sets, the LBP method obtained the best result. Among the texture descriptors evaluated, Fourier and 
LBP descriptors are the best options. The choice between them has to be made according to the variability of the 
samples used in the experiment.

Concerning the comparison between computational methodologies based on texture and the conventional 
approach using manual measurements, significant differences were observed. The methods based on texture fea-
tures were better able to classify the species than just the quantitative data, which are more laborious to obtain. 
Texture methods are able to identify plant species even when the species presents plasticity in their quantitative 
measurements from the epidermis structures. These quantitative values can change according to the environ-
ment, however the texture information remains concise. An analysis using manual measurements considers only 
the shape and density of the stomata, whereas the texture analysis considers spatial orientation and geometric 
arrangement of the stomata, as well as their quantitative characteristics. The orientation of the stomata is an 
important attribute as in certain groups of species, it can be used as an important discriminating attribute, as in 
the case of monocotyledons and pine species. Furthermore, as the identification method based on texture uses the 
entire image of the epidermis, stomata are not segmented, thus epidermal tissue patterns and also other structures 
that might occur in some species, such as trichomes are also considered. The combination of all these features 
allows for a rich analysis, able to provide a strong and unique identity to different plant species.

The texture information of the epidermis when combined with the manual measurements of the stomata 
(density, length and width) enhance the information concerning species identification. When texture and mor-
phological features are used together, the success rate may increase up to 10%. The main advantage of texture 
methods is that it is no longer necessary to segment the stomata. The stomata segmentation process is a dif-
ficult task, as the color and contrast of the stomata varies for each species and, in many cases, an automatic 
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segmentation methodology is not feasible. Considering that the texture method is automatic and can be analysed 
more quickly without manual intervention of the images while maintaining a good success rate, depending on the 
experiment, it can be used without combining it with the quantitative measurements.

Conclusions
The main method used to identify any plant species is based on the morphological analysis. Nevertheless, identi-
fying plant species can become a difficult task for botanists and other researchers not specialized in plant taxon-
omy. In this context, computational approaches have became an important tool to help in the task of identifying 
plant species. Considering the efficiency of the texture descriptors to discriminate plant species by epidermis 
images and the simplicity of this approach, an innovative concept is proposed that can investigate common tex-
ture features extracted from the taxonomic hierarchical levels, which could help taxonomists to classify new 
unknown plant species using a pattern recognition system. These new discrimination strategies associated 
with extracting features of images of leaves can open up new possibilities for classification methods of modern 
taxonomy.
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