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Abstract: This paper explores the growing integration of Inverter-Based Resources (IBRs)
into power systems and their effects on fault diagnosis strategies. Notably, the technical
literature lacks assessments of the impacts and proposals for solutions for phasor-based
fault location tasks, considering faults occurring within wind power plants, i.e., in their
collector systems. In this context, this study evaluates the performance of six state-of-the-art
phasor-based fault location methods, which are tested through simulations in a realistic
wind farm modeled using PSCAD software. These simulations cover a wide range of fault
scenarios, including variations in fault types, resistances, inception angles, locations, and
wind farm generation levels. The proposed methodology, which combines the various
fault location methods tailored to specific fault types, results in a substantial improvement,
achieving an average fault location error of 1.89%, reflecting a 92% reduction in error
compared to conventional methods. Additionally, the approach consistently maintains low
fault location errors across collector busbars, regardless of circuit topology, highlighting its
robustness, adaptability, and potential for widespread implementation in fault diagnosis
systems within wind farms.

Keywords: fault location; inverter-based resources; wind farm collectors; wind power plant

1. Introduction
The energy matrix of power systems has been shifting, driven by global agreements on

renewable energy. In this context, renewable sources such as solar and wind energy have
become prominent in recent years [1]. Unlike conventional generators, most renewable
sources use inverters for grid connection, which impacts voltage and current behavior
during faults. Therefore, studying these so-called Inverted-based Resources (IBRs) has
become a focal point in numerous research areas on power systems, including the fault
location task, which is the focus of this paper.

Among the various fault location methods found in the literature, the phasor-based,
traveling wave-based, and Artificial Intelligence (AI)-based methods stand out. Phasor-based
methods can be categorized into single-ended and double-ended approaches, both of
which utilize voltage and current phasors for fault distance estimation [2]. Considering
single-ended methods, impedance-based [3], reactance-based [4], and the Takagi method
with its zero- and negative-sequence variations [5] stand out. These approaches are
meant to minimize the fault location error, as the fault resistance significantly impacts
their performance. Double-ended methods, such as those proposed by Preston and
Radojevic [6], Girgis [7], He [8], and Johns and Jamali [9], offer higher accuracy but require
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measurements from both terminals, increasing implementation costs and exposing the
system to communication risks.

Traveling wave-based methods leverage the propagation time of waves to estimate
the fault distance [10–12]. Analogous to phasor-based methods, there are variations for
one-terminal and two-terminal methods. These methods generally offer high accuracy and
are less impacted by fault resistance variation [10]. For double-ended methods, accuracy is
minimally affected by the presence of IBRs. However, these methods require high sampling
rate meters, and the IBR interconnection topologies tend to influence the single-ended
methods’ operation [12].

Alternatively, Artificial Intelligence (AI) methods can estimate the region of
fault occurrence or perform a regression to determine the fault distance [13]. These
methods operate effectively at lower sampling rates and adapt to complex system
dynamics. However, AI-based techniques face significant challenges, such as the need
for parameterization, prior training, and reconfiguration in response to system topology
changes or varying levels of IBR penetration [14].

In the literature addressing the impacts of IBRs on fault location methods, for example,
ref. [15] proposes an impedance-based fault location approach that incorporates an
energy storage system to correct the fault current contributed by IBRs, enabling accurate
identification of faulty sections within a distribution system. A two-terminal-based approach
to locating faults in IBR-predominant microgrids is presented in [16], whereas a three-terminal
approach is applied in [17]. In addition, AI-based fault location methods are found in the
state of the art for grid-connected IBRs. The authors in [18–21] demonstrate AI-based fault
location strategies for wind farm interconnection lines. Phasor-based proposals have also
emerged to select the best method for each type of fault [22].

Moreover, recent complementary approaches have been explored to address the
challenges posed by renewable energy systems, particularly in wind farms. For instance,
phase diagram analysis has emerged as a promising nonintrusive, data-driven technique for
early-warning indicators of power cable weaknesses, especially in offshore wind farms [23].
Similarly, IoT-based methods employing real-time voltage and current monitoring enable
continuous and proactive fault detection [24]. Advanced techniques like federated learning
have also shown potential for decentralized and privacy-preserving fault diagnosis in
systems with communication constraints [25].

Despite these advancements, the mentioned methodologies target faults directly
related to the wind turbines, wind farm interconnection lines or distribution systems
and do not fully address the unique challenges of onshore wind farm collector systems,
which feature distinct operational and topological constraints. Thus, the literature still
needs comprehensive studies addressing the challenges of locating faults within onshore
wind farms, particularly in their collector systems.

Therefore, recognizing the importance of this topic within the ongoing energy
transition, this study aims to fill this gap in the literature by providing a detailed analysis
of fault location methods applied specifically within wind farms. In this context, the main
contributions of this study to the state of the art are as follows:

• Conduct pioneering performance analyses for state-of-the-art methods when applied
to locate faults that occur within wind farms;

• Demonstrate, through parametric analyses, the scenarios and operating points where
each conventional fault location method achieves the lowest errors. These analyses
encompass variations in fault type, resistance, and locations, in addition to different
operating points of the wind farm’s IBRs;

• Based on the parametric analyses, propose a multi-method fault location strategy that
significantly reduces the error for the fault location task within wind farms.
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This study is organized as follows. Section 2 presents the test system and the
simulation parameters. Section 3 discusses the assessed state-of-the-art fault location
methods. Then, Section 4 presents the parametric analysis of the methods’ performance.
The proposed methodology is detailed in Section 5, being validated in Section 6. Section 7
summarizes all aspects of the proposed methodology regarding its practical applicability.
Finally, Section 8 draws the conclusions.

2. Test System
Figure 1 presents a schematic overview of the wind farm complex under study. This

real system is located in northeastern Brazil. It has a total capacity of 504 MW and is
generated by 120 Full-Converter wind turbines, each rated at 4.2 MW and operating at
0.72 kV. The turbines are connected to four collector busbars, labeled B1 to B4, operating
at 34.5 kV. The power generated is transferred from the collector busbars to two main
substation transformers (T1 and T2), each with a capacity of 5.15 MW. Each collector busbar
consists of several connection circuits for wind turbines. This study focuses on one circuit
from each collector bus to enable fault analysis at different locations within the circuit,
as illustrated in Figure 1. The remaining circuits are represented by equivalent circuits
based on the methodology described in [26]. The Full-Converter IBR models follow the
specifications outlined in [27,28] and were assumed to operate with a unity power factor.

To create a representative database of simulated fault scenarios for the modeled
wind power plant, a range of fault parameters was established for the simulations. These
parameters were based on common variations in the literature, covering aspects such
as fault types, resistances, locations, inception angles, and wind farm generation levels,
which were included to capture the natural variability in the generation of these systems.
Thus, simulations were performed using PSCAD V5 software, following the parameters
and values specified in Table 1. The fault spots were allocated at 0%, 50%, and 100% of
the detailed circuits’ entrance collector lines, with total lengths of 3.5 km, 1.3 km, 5.8 km,
and 11.5 km, for collector busbars B1, B2, B3, and B4, respectively. The other fault points
were distributed on different buses in each collector system, consisting of shorter conductor
sections varying between 50 and 300 m. As a result, 18,600 fault scenarios were assessed in
this paper’s studies.

Table 1. The parameters and values used to generate the scenarios analyzed.

Parameter Values

Fault location 31 fault locations shown in Figure 1
Fault type AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABC

Fault resistance (Ω) 0.001, 10, 25, 40, 50
Fault inception angle (°) 0, 45, 90

Wind farm generation level (pu) 0.1, 0.25, 0.5, 0.75

Considering the real-world setup, where measurement points (IEDs in Figure 1) are
typically located at the substation, the acquired data consist of measured three-phase
voltage and current signals. Furthermore, it is worth pointing out that the strategic choice
of the different collector circuit topologies as well as the fault and generation parameters
assessed aim to provide a general and extensive study that allows the discussions and
proposals to be extended to other onshore wind farm topologies.
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Figure 1. Single-line test system diagram.

3. State-of-the-Art Fault Location Methods Selected for Assessments
This section outlines the methods chosen for performance evaluations. The assessments

focused on one-terminal fault location methods since using two-terminal methods in the
context of wind farm collector systems would require the insertion of meters at various
points within the wind farm and communication structures between them, which is not the
purpose of this paper.

Table 2 provides an overview of the characteristics of the assessed methods. In this
table,

−→
Vr ,

−→
Ir ,

−−→
Vrnew , and

−−→
Irnew refer to the fault loops depicted in Table 3, ZL1 represents

the positive sequence impedance of the collector line, ∆
−→
Ir denotes the incremental loop

current, and
−→
I0 is the zero-sequence current. Additionally, the subscripts ra, rb, and rc
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in Table 3 correspond to measurements from phases A, B, and C, respectively, while K0
signifies the zero-sequence compensation factor.

Table 2. Evaluated fault location methods.

Method Estimated d Ref.

Impedance (IMPE) d = Re
[−→

Vr /
−→
Ir

ZL1

]
[3]

Reactance (REAC) d =
Im[

−→
Vr−→
Ir
]

Im[ZL1]
[4]

Simple Takagi (TAKS) d = Im[
−→
Vr ∆

−→
I∗r ]

Im[ZL1
−→
Ir ∆

−→
I∗r ]

[5]

Zero-seq. Takagi (TAKZ) d =
Im[

−→
Vr

−→
3I∗0 ]

Im[ZL1
−→
Ir
−→
3I∗0 ]

[5]

Modified zero-seq. Takagi (TAKZnew) d =
Im[

−−−→
Vrnew

−→
3I∗0 ]

Im[ZL1
−−→
Irnew

−→
3I∗0 ]

[22]

Negative-seq. Takagi (TAKN) d =
Im[

−→
Vr

−→
I∗2 ]

Im[ZL1
−→
Ir
−→
I∗2 ]

[29]

Table 3. Fault loop descriptions.

Fault Loop −→
Vr

−→
Ir

−−→
Vrnew

−→
Irnew

AG −→
Vra

−→
Ira + K0

−→
I0 - -

AB −→
Vra-

−→
Vrb

−→
Ira-

−→
Irb

−→
Vra+

−→
Vrb

−→
Ira+

−→
Irb+2K0

−→
I0

The IMPE, REAC, and TAKS methods apply to phase-to-ground (PG), phase-to-phase
(PP), phase-to-phase-to-ground (PPG), and three-phase (PPP) faults. In contrast, the TAKZ
applies only for PG and PPG faults, the TAKZnew only for PPG faults, and TAKN for PG,
PP, and PPG faults.

4. Parametric Performance Analyses
This section presents a performance analysis of the described methods to determine

their effectiveness when varying the fault type, resistance, and location, in addition to the
generation level of the wind power plant. The fault location errors were calculated by using
(1), where dest is the estimated fault distance, dreal is the actual fault distance, and dmax is
the maximum line length of the respective collector circuit.

Error% =
dest − dreal

dmax
× 100% (1)

For the performance analyses of the conventional methods, the impedances in Ω/m of
the entrance overhead lines of each detailed collector circuit, multiplied by the maximum
length of each circuit, were adopted as ZL1 in the equations. This simplification is acceptable
and necessary due to the diversity of conductor types in each wind farm circuit and the fact
that the entrance overhead lines are significantly longer than the other sections, making
their impedances more prevalent.

Boxplots illustrate the results, and the average percentage error is calculated and
incorporated into the figures. The choice to use boxplots is justified since these charts allow
for the visualization of the percentage error distribution obtained for all the evaluated fault
scenarios, divided into quartiles and showing outlier errors, facilitating conclusions on the
evaluated methods’ performance. The percentage error axis is limited to 20% to improve
the visualization of the assessed method’s performance. The decision making processes
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are evaluated using measurements collected 150 ms after the fault inception, allowing for
phasor stabilization and the IBR controls’ response time [30].

Furthermore, given that various factors associated with IBRs, such as the infeed
effect, negative sequence current modulation, and diminished short-circuit currents, have
been thoroughly examined in previous studies [31], and acknowledging that these factors
similarly affect fault locators, the present analysis focuses exclusively on assessing the
method’s errors. The goal is to determine which methods perform best under particular
fault scenarios and varying wind generation conditions.

4.1. Assessments for Different Fault Types

The first parameter analyzed is the fault type, a critical factor that directly affects the
loop current calculations in each fault location method. This analysis considers all fault
types: PG faults involving phases A, B, and C; PP faults (AB, BC, CA); PPG faults (ABG,
BCG, CAG); and PPP faults (ABC). This section aims to present the most effective method
for each fault type.

Figure 2 illustrates the error distribution of each method across fault types, highlighting
that not all methods are equally applicable or adequate for each fault type. For instance,
the TAKZ method exhibits the lowest error rate for PG faults, while the TAKN method
outperforms its counterparts for PP faults. In contrast, the TAKZnew method achieves
the highest accuracy for PPG faults, and the REAC method records the lowest errors for
PPP faults.

Central Quartiles Outliers Average Values Max. & Min. Values

Figure 2. Comparison of fault locator errors varying the fault type: (a) PG, (b) PP, (c) PPG, (d) PPP.
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Specifically, methods that utilize zero- and negative-sequence components are shown
to be particularly effective for fault location in wind farm collector systems when applicable.
This enhanced accuracy in fault location is mainly due to the absence of infeed contributions
from wind turbines to those sequence circuits.

In terms of overall performance, methods involving ground components, especially
the TAKZ and TAKZnew, consistently deliver the lowest mean errors, maintaining values
below 1.5%. However, this advantage diminishes for PP and PPP fault types, where ground
involvement is absent; in these cases, the mean errors are more than double compared to
those observed for PG and PPG faults.

The following sections will explore the effects of fault resistance, fault location,
and wind power penetration level on fault location accuracy. The best fault location
method for each fault type will be employed for these analyses.

4.2. Assessments for Different Fault Resistances

The methods analyzed in this paper depend on the apparent impedance measured at
the busbar, resulting in notable performance variations as fault resistance values change.
This section examines the impact of different fault resistances on fault location task accuracy.

Figure 3 illustrates the percentage errors returned for different fault resistances by the
three best-performing fault location methods for each fault type (PG, PP, PPG, and PPP
faults). The boxplots represent each resistance value along the X-axis, while the Y-axis
shows the error percentages associated with the evaluated method.
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Figure 3. The performance of the three best fault location methods for (a) PG, (b) PP, (c) PPG, and
(d) PPP fault types, assuming fault resistance variations.
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The results clearly show that increased fault resistance leads to increased errors by the
fault location methods. Nevertheless, it should be noted that the TAKZ, TAKN, TAKZnew,
and REAC methods maintain the lowest errors for PG, PP, PPG, and PPP faults, respectively.
This finding validates the analyses and conclusions of the previous section, which indicate
the methods with the best performance for each fault type.

To complement the results of this section, Figure 4 depicts the percentage of errors
returned only by the best-performing method for each fault type. The results reinforce
that the strategic choice of fault location methods makes it possible to maintain lower
errors in this task since the average errors did not exceed 8%, even when considering fault
resistances with high values.

Fault Types:           PG            PPG             PP            PPP

Figure 4. Fault location method’s errors, by fault type, varying fault resistances.

4.3. Assessments for Different Fault Locations

In wind farms, the fault location accuracy is significantly influenced by the fault
position within the circuit. This situation is primarily due to the varying infeed effects of
wind turbines, which can impact the performance of fault location methods.

In this context, the analysis in this section was structured into two parts. The first
focused on the error distribution among the collector busbars, and the second examined the
fault regions, distinguishing between the main overhead lines (longer lines at the entrances
of each circuit) and the buses that connect the wind turbines.

Concerning the first part, the fault location errors are depicted in Figure 5. The X-axis
of this figure was divided into four segments representing the collector buses B1, B2, B3,
and B4. The results reveal a notable correlation between error distribution and the length
of the primary overhead lines. Specifically, Collector B2, which has a shorter entrance
overhead line (2.5 km), exhibits the highest error rates. In contrast, Collector B4, with the
most extended entrance overhead line (11.5 km), demonstrates the lowest error rates.
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Fault Types:           PG             PPG             PP            PPP

Figure 5. Fault locator errors varying collector busbars.

The second part of the analysis, shown in Figure 6, examines the error distribution
across two distinct fault regions within the collector bus. The X-axis categorizes these
regions into the main overhead lines and the secondary lines connecting the wind turbines
to the main line. As depicted in Figure 6, faults in the main overhead lines returned the
lowest error rates, while faults in the secondary lines connecting the wind turbines to the
main line showed the highest error rates. This discrepancy can be attributed to variations in
impedance between the two types of lines and the proximity of faults to the wind turbines.

Fault Types:           PG             PPG             PP            PPP

Figure 6. Fault locator errors varying fault regions.

4.4. Assessments Varying the Penetration Level of the Wind Power Plant

The penetration level of the wind power plant is a crucial variable in wind farms, as it
can significantly influence the performance of fault location methods due to the infeed
current of wind generators. This analysis specifically examines the error distribution across
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four different wind power generation levels: 10%, 25%, 50%, and 75% of the nominal wind
power plant power. In this context, the X-axis represents the varying penetration levels,
while the Y-axis indicates the corresponding percentage error in the fault location task.

As shown in Figure 7, the error rates exhibit a nearly linear increase with higher
wind power penetration levels. This trend mirrors the findings observed in the resistance
analysis and suggests a systematic relationship between penetration levels and fault
location accuracy. The increase in error rates can be attributed to the growing infeed
current from the wind turbines, which impacts the measurements employed by the fault
location methods.

Fault Types:           PG             PPG             PP            PPP

Figure 7. Fault locator errors varying wind power penetration levels.

5. Proposed Methodology
After conducting detailed analyses, and especially based on the results of Figure 2,

some conclusions were drawn:

• In the context of PG faults, the best-performing method was TAKZ, followed by the
TAKN and TAKS methods. When disregarding outliers, errors of less than 3% were
achieved with TAKZ for all the evaluated PG fault scenarios, even when considering
higher resistances;

• When considering PP faults, the best-performing method was TAKN, returning overall
errors of less than 8%, disregarding outliers. The second best method was TAKS,
but with average errors around three times higher than those obtained with TAKN;

• In the case of PPG faults, the TAKZnew method was by far the best-performing method
for this fault type, returning errors of less than 2% when outliers are disregarded;

• In conclusion, for PPP faults, the best-performing method was REAC, returning errors
of less than 11% when disregarding outliers.

Considering all the findings and the presence of a module to classify the faults, this
paper proposes a methodology based on existing phasor-based methods, as illustrated
in Figure 8. The aim is to minimize fault location errors in onshore wind farm collector
systems, representing the main contribution of this work to the state of the art.
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Figure 8. Proposed fault location methodology.

6. Comparative Analysis of the State of the Art and Proposed Methodologies
The proposed methodology’s effectiveness is showcased by analyzing its average

errors compared to all other assessed fault location functions. Therefore, the 18,600 fault
simulations were employed.

Table 4 presents the average percentage errors, by fault type, for all the fault scenarios
and assessed fault location methods. These results show that the average error of the
proposed methodology was 1.89%, reflecting a 92% reduction compared to the TAKS
method, which had the best performance among the assessed methods capable of locating
all types of fault.

Table 4. Average percentage errors for all the fault scenarios.

PG PP PPG PPP ALL

IMPE 554% 662% 2434% 399% 1012%
REAC 58.7% 19.7% 358% 3.07% 110%
TAKS 4.61% 8.84% 66.9% 13.9% 23.6%
TAKZ 0.92% - 16684% - -
TAKN 2.15% 2.99% 81.4% - -

TAKZnew - - 0.60% - -
Proposed 0.92% 2.99% 0.60% 3.07% 1.89%

These results highlight the gains obtained with the multi-method proposal and its
practical applicability since it comprises conventional methods, some typically embedded
in commercial relays, requiring only a reliable fault classification module to select the
best-performing methods.

The average error percentages in the fault location task were also calculated for each
collector busbar separately. Table 5 shows only the methods that locate all fault types to
enable comparison with the proposed methodology. The results show that the proposed
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method reduced error percentages by 87%, 95%, 90%, and 83% for faults on collector
busbars B1, B2, B3, and B4, respectively. These results also show that the conventional
methods had their errors impacted by the topology of the assessed circuit, i.e., discrepant
errors were obtained for each collector busbar. The proposed methodology, in contrast,
maintained average error percentages of less than 3.35%, regardless of the evaluated circuit
topology, proving the stability of the proposal for different circuits and showing its potential
for being applied to other wind farms that may have variations in these topologies.

Table 5. Average percentage errors by collector busbar.

B1 B2 B3 B4

IMPE 992% 2205% 673% 366%
REAC 30.5% 405% 25.2% 16.8%
TAKS 11.8% 67.2% 12.6% 9.17%

Proposed 1.56% 3.35% 1.21% 1.52%

Finally, a comparative analysis was conducted between the methods able to locate all
the fault types, considering different fault resistances. The results are shown in Table 6.
The error percentages returned indicate significant variations in the performance of the
IMPE, REAC, and TAKS methods as the resistance values increase, especially for the
IMPE and REAC methods. Regarding the proposed methodology, in turn, despite the
observed and expected increases in the average percentage errors for the fault location
task, these did not exceed 2.79%, reaffirming the effectiveness and stability of the proposed
methodology for different fault resistance levels.

Table 6. Average percentage errors by fault resistance.

0.001 Ω 10 Ω 25 Ω 40 Ω 50 Ω

IMPE 1.74% 262% 802% 1688% 1688%
REAC 0.80% 10.5% 30.3% 109% 505%
TAKS 0.76% 3.89% 13.3% 36.1% 73.6%

Proposed 0.64% 1.84% 2.01% 2.19% 2.79%

7. Additional Remarks on the Proposed Methodology’s Operation
This section summarizes all aspects of the proposed methodology regarding its

practical applicability in real-world scenarios. Figure 9 outlines all the stages followed by
the methodology to obtain the estimated fault distances.

Estimated 
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Figure 9. A flowchart summarizing the operation of the proposed fault location methodology.
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Initially, the voltage and current signals of the circuit under fault are obtained,
and these signals are processed to obtain the phase and sequence current and voltage
phasors. Determining the faulty circuit in a wind farm can be accomplished using the
protection system itself, which, in most disturbance scenarios, will identify the fault and
disconnect the faulty circuit from operation. Tools dedicated to fault diagnosis can also
be used, such as the one presented in [32], which, besides detecting and classifying the
fault, identifies the faulty circuit by comparing the incremental currents measured at the
terminals of the collector circuits.

After collecting and processing the voltage and current signals, a module is used
to classify the fault type. An ideal fault classification module is assumed to obtain the
results outlined in this paper. This assumption does not have a significant impact on the
conclusions drawn since the literature already provides methodologies with very acceptable
accuracy for classifying faults in systems with IBRs [32–35]. Therefore, although the authors
recognize that incorrect fault classification will have an impact both on the selection of the
best fault location methods and the calculation of fault loop quantities, it is assumed that in
practice, the challenge related to fault classification in systems with IBRs can be addressed
by employing methods available in the current literature [32–35].

Finally, the fault loop quantities are calculated, following the descriptions in
Table 3, and the best equation for estimating the fault distance is selected based on the
proposed methodology.

It is worth noting that, as this is a phasor-based methodology, all the quantities used
for its operation are already obtained from commercial protection devices. In other words,
the proposed methodology can be easily implemented in practical scenarios by creating
additional control logic in the protection devices to direct each fault type to the equation of
the respective best method indicated by the proposed methodology. With the digitalization
of commercial relays, logical elements can often be implemented and configured in the
relay software itself. Therefore, the proposed integration of multiple methods does not
result in high complexity for implementation in practice, nor in the need for hardware
upgrades for operation in existing wind farms.

8. Conclusions
This paper conducted a parametric performance analysis of state-of-the-art

phasor-based fault location methods applied in onshore wind farm collector systems.
Therefore, a realistic wind farm topology was modeled in detail using PSCAD software,
simulating diverse fault scenarios by varying fault and generation parameters.

Boxplots were used to evaluate the percentage of errors and assess the performance
of fault location methods across a wide range of fault scenarios. This approach revealed
the substantial influence of wind farm collector systems’ topologies on the effectiveness
of traditional fault locators, providing insights into which methodologies yield the lowest
percentage of errors for these systems.

The analyses conducted for different fault types revealed that specific methods
performed more satisfactorily for certain fault types, with the TAKZ, TAKN, TAKZnew,
and REAC methods returning the lowest errors for locating PG, PP, PPG, and PPP
faults, respectively.

Afterward, by analyzing different fault resistances, the conclusion was that increasing
this resistance resulted in more significant errors in the fault location task, as expected.
However, it was also noted that strategically choosing the methods according to the fault
type ensured lower errors in this task.

When assessing different fault locations, it was noticed that the errors obtained for
faults on the secondary lines connecting the wind turbines were higher than those obtained
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for faults on the main overhead lines of each collector circuit. This condition was explained
by the variations in impedances between the secondary line connection sections and also
by the proximity of faults to the wind turbines, increasing the influence of these units’ fault
contributions due to the infeed effect on the quantities measured at the circuit terminal.

Finally, analyses varying the wind farm’s generation level showed that the errors in
the fault location task increased with higher wind farm generation levels. This condition
was also attributed to increased infeed current from the wind generators during faults.

Besides providing insights on the performance of existing fault location methods when
applied in onshore wind farm collector systems, these parametric analyses have enabled the
proposal of a new phasor-based fault location strategy (illustrated in Figure 8). As discussed
and validated in this paper, the proposed methodology allowed a 92% reduction in the
average error returned by the best-performing state-of-the-art method, demonstrating its
high potential as a practical and simple solution for locating faults in onshore wind farm
collector systems.
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