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One-class edge classification
through heterogeneous
hypergraph for causal discovery

Marcos Paulo Silva G6lo™ & Ricardo Marcondes Marcacini™

Causal discovery from event pairs is essential for understanding complex real-world phenomena.
Large language models (LLMs) have shown strong capabilities in capturing the semantics of events
and inferring plausible cause-effect relations from text. However, they typically process each event
pair in isolation and struggle to model the global event structure, which limits their ability to capture
interdependencies among multiple events. Graph-based methods offer a structural alternative by
explicitly modeling connections between events, but they often lack relational expressiveness, as
relations are treated as implicit edges rather than as entities. Homogeneous hypergraphs address
this by representing relations as nodes, enabling richer modeling of multi-event interactions and
more expressive causal reasoning. Nevertheless, this strategy frequently leads to disconnected
structures, hindering information aggregation through graph neural networks (GNNs). To address
these challenges, we propose eCHOLGA (edge Classification through Heterogeneous One-cLass
Graph Autoencoder), a novel method that leverages heterogeneous hypergraphs to model causal
relationships more effectively. eCHOLGA integrates semantic features extracted from language models
into the graph structure, enhancing the representation of events and their relations. By transforming
relations into nodes and introducing additional node and edge types, it improves topological
connectivity and enables GNNs to learn more informative edge representations. Furthermore, our
method adopts a one-class learning strategy, requiring only positive (causal) examples for training,
which reduces labeling effort. In addition to its effectiveness, eCHOLGA enhances interpretability
and provides insights into the causal discovery process. Experimental results show that eCHOLGA
outperforms state-of-the-art methods, establishing it as a promising approach for causal discovery in
event pairs.

Keywords Event causal discovery, One-class learning, Heterogeneous graphs, Text pair causal discovery,
Hypergraph for edge classification

Understanding the causal relationships between real-world events, known as causal discovery, is a fundamental
yet challenging task with significant societal relevance. Identifying cause-effect links can support evidence-based
decision-making in areas such as public policy, disaster management, public health, and economic planning'. In
these contexts, understanding why an event occurs is often more valuable than merely knowing what occurred, as
it enables proactive intervention, reduces risks, and improves resource allocation. While most research in causal
discovery has focused on structured data and controlled settings, the widespread availability of unstructured
textual event reporting in news articles, social media, and official documents has introduced new opportunities
and methodological challenges. However, although textual descriptions offer rich contextual information, their
inherent ambiguity and variability pose significant challenges for causal inference. As a result, there is a growing
demand for computational methods capable of identifying causal relationships directly from natural language.
In machine learning, this task is referred to as causal discovery in text or event pairs*™.

Recent advances in language models (LMs) have significantly improved the ability to identify causal
relationships between pairs of textual events®~%. More recently, state-of-the-art approaches have employed large
language models (LLMs), which can capture nuanced semantic dependencies between sentences and generalize
across different domains®. These models are effective at inferring plausible causal relations based on textual
patterns and world knowledge. However, most LLM-based methods process each event pair independently
and do not explicitly capture the broader structure of causal relationships among multiple events. While
longer context windows allow for more events to be considered simultaneously, this alone does not guarantee
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a coherent understanding of how events are interrelated. Moreover, extended contexts may lead to diluted
attention and reduced accuracy, especially when causal dependencies span long distances. As a result, LLMs
may overlook important patterns that only emerge when events are analyzed collectively. To overcome these
limitations, we can explore a combination of LLMs with graph-based representations, which explicitly model
causal connections and support information aggregation across events. We argue that this approach combines
the contextual strength of LLMs with the structural reasoning capabilities of graphs, enabling more effective and
robust causal discovery.

In a graph-based representation, each node corresponds to an event, and edges denote causal or non-causal
relationships®. This structure supports information aggregation and enables reasoning across multiple events,
addressing some of the blind spots of LLMs when operating independently on event pairs. However, even with
graphs, significant challenges remain. Most graph-based methods represent relationships implicitly as edges,
which limits the model’s ability to reason about the relationships themselves as entities. Furthermore, traditional
graphs often lack the expressiveness needed to capture heterogeneous information associated with relationships,
as they focus primarily on node-level attributes. Additionally, the prevalent use of Graph Neural Networks
(GNNs) in these settings introduces architectural biases: GNNs are primarily designed to learn node embeddings
and have limited capacity to represent rich relational semantics’. These factors constrain the effectiveness of
graph-based causal discovery, especially when causal interactions are diverse and context-dependent.

To address these limitations, researchers have explored hypergraphs, which promote relationships to entities
by modeling them as nodes, enabling a more flexible representation of multi-way interactions. When we use
homogeneous hypergraphs, the resulting structure can often lack connectivity since an event can be associated
with only one relation, which would generate a hypergraph with thousands of three-node components (event-
relation-event). This fact weakens the use of Graph Neural Networks (GNNs) to effectively propagate and
aggregate information. Figure 1 illustrates the limitations presented above, including those of homogenous
hypergraphs. On the other hand, incorporating additional node types into the hypergraph can alleviate this
issue by enriching the topological structure and enabling more robust information flow®. The introduction of
such heterogeneous elements transforms the hypergraph into a heterogeneous hypergraph’, which offers a more
expressive and flexible framework for modeling complex and multi-faceted causal relationships among events.

We introduce a novel method for causal discovery in heterogeneous hypergraphs based on one-class
learning. This work presents eCHOLGA (edge Classification through Heterogeneous One-cLAss Graph
Autoencoder). Our approach leverages heterogeneous hypergraphs to enhance representation learning with
GNNs’. Additionally, we model causal discovery in event pairs through One-Class Learning, where the model
is trained using only one class (causal relations) but can predict two classes (causal or non-causal relationships).
This eliminates the need to cover the entire spectrum of non-causal relationships and reduces labeling effort, as
only causal instances need to be annotated!?-!2. We further propose a novel heterogeneous triple loss function,
combining the state-of-the-art one-class loss function'®, the reconstruction loss from graph autoencoders'®,
and the cross-entropy loss for different node types. Finally, cCHOLGA introduces explicit three-dimensional
representations to naturally enhance interpretability. Our key contributions are:

1. Heterogeneous hypergraph modeling transforming edges into nodes, and enrichment to incorporate addi-
tional node types such as topics, involved entities, location, and event date to create a more connected causal
discovery graph.

2. A novel triple heterogeneous loss function designed for one-class learning in heterogeneous hypergraphs.

3. We embed language model features into our heterogeneous hypergraph to enrich its semantic representa-
tion.

4. One-Class Learning for causal discovery, enabling a more efficient labeling process and a natural problem
formulation.

5. Interpretable representation learning on hypergraphs through GNNs and OCL for causal discovery.

Related work

LM-Based Causal Discovery. Hassanzadeh et al? introduced NLM-BERT, an unsupervised method that
leverages cosine similarity between the top-k most similar BERT embeddings to predict causality. Kayesh et
al.? proposed fine-tuning BERT and its variations to detect causality using a semi-supervised dataset of 100,000
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Fig. 1. Ilustration of the styles of causality works. First, text-based, such as those exploring BERT and LLMs.
Then, there are graph-based methods that classify edges as causal or not. Third, hypergraph-based works
classify nodes that were edges in the causal graph. Finally, our strategy involves utilizing heterogeneous graphs
to connect the causal hypergraph.
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causal and non-causal sentence pairs. However, the fine-tuned models did not outperform NLM-BERT. Later,
Kayesh et al.* extended this approach by incorporating an additional training dataset of 197,000 sentence pairs
and experimenting with multiple methods and their combinations. The authors also explored a causality graph
constructed from the training sets. Their CF-Context method integrates causal feature extraction, which involves
embedding generation via graph-based representations, and contextual feature extraction.

LLM-Based Causal Discovery. Large Language Models (LLMs) have been applied to causal discovery in
textual event data®!®. LLMs are pre-trained on vast corpora containing trillions of words and can generate
text from a given input. This enables querying LLMs in natural language to determine whether one sentence
causes another, effectively functioning as causal discovery models. The PyWhy-LLM library was developed
specifically for causal detection tasks™'®. However, BERT- and LLM-based methods do not explicitly model the
relationships between events, as they analyze each pair of texts in isolation rather than leveraging structured
graph representations. Even studies such as Kayesh et al.%, which incorporate graphs, do not utilize them as the
core of the method, resulting in inferior results compared to purely text-based approaches.

GNN-Based Causal Discovery. Minghim et al.!® introduced a method that extracts word embeddings to
construct a causal graph, which is then processed using a gated GNN. A fully connected NN was employed for
causal discovery. Similarly, Sakaji and Izumi!” explored a hybrid approach using BERT and GNN, specifically
Graph Attention Networks (GATs), highlighting improvements over Graph Convolutional Networks (GCNs).
The model employed two fully connected neural networks to classify sentences separately as causes or effects.
Sasaki et al.8 took a different approach, performing edge classification on a causal graph where nodes represent
sentences and edges represent causal relationships. A classifier was applied to the final layer of the GNN.
However, a key limitation of GNN-based methods is that they primarily focus on message passing between
nodes (events), rather than learning edge representations, which are crucial for causal discovery. Additionally,
most GNN-based approaches rely on binary supervised learning, requiring labeled examples of both causal and
non-causal relationships. This poses a significant challenge since defining non-causal relationships is complex
and costly due to their broad scope.

Hypergraphs. Hypergraphs have been extensively explored in the literature to address different tasks using
Graph Neural Networks'®. Zhao et al.'® investigate the use of hypergraphs for traffic flow prediction. Ju et
al.?® employ hypergraphs for semi-supervised graph classification. Yi et al.?! propose a method for learning
to generate hypergraphs to perform semi-supervised node classification. Gao et al.?? develop a novel GNN
framework for hypergraphs designed to capture correlations in multi-modal and multi-type data. Wu et al.?®
introduce a contrastive learning approach for hypergraphs in the context of node classification. Finally, Wu et
al.* propose a reconstruction error-based method to enhance node classification performance in hypergraphs.
These studies model hypergraphs using the concept of hyperedges, where each hyperedge connects multiple
nodes, and the set of nodes in the hypergraph coincides with that of the original graph. These works consistently
report performance gains when employing hypergraph-based modeling, indicating the promising potential of
hypergraphs. It is important to note, however, that the hypergraph formulation adopted in these studies differs
from the one proposed in this work. Here, we define a hypergraph where each edge in the original graph is
transformed into a new node, resulting in a hypergraph with a larger number of nodes and edges. Golo and
Marcacini'? proposed eCOLGAT, a method that leverages homogeneous hypergraphs to enhance representation
learning for edges. eECOLGAT enables GNNs to learn more effective edge representations. Moreover, the authors
modeled causal discovery using one-class learning (OCL), which offers two key advantages: (i) It eliminates the
need to define the full scope of non-causal relationships; and (ii) It reduces the annotation effort, as only causal
relationships need to be labeled. However, eCOLGAT generates hypergraphs from homogeneous graphs, which
can lead to disconnected hypergraph structures in cases where relationships exist between events that share
other relations. We highlight that this issue is particularly common in event-based causal discovery scenarios, as
observed in the datasets explored by this work.

Table 1 summarizes the key characteristics of related studies. The (L)LMs row indicates (Large) LM studies.
The GNNs row identifies works that leverage GNNs. The OCL row specifies whether the approach is based
on the OCL. The 3D row highlights studies that propose interpretability. The HyperG. row denotes whether
hypergraphs are explored. We adopt the definition of hypergraphs from Jo et al.”, which defines a hypergraph
as a graph where edges have been transformed into nodes. Consequently, we do not include causality-related
hypergraph studies that define hypergraphs as graphs with hyperedges (groups of nodes). The Het. row identifies
studies that leverage heterogeneous hypergraphs.

Methods | NLM-BERT++ | CF-Context | LLMs | GNNs | HGNNs | eCOLGAT | eCHOLGA
Reference | >3 4 5 81617 | 19-24 12 a

(LLMs | v v v v L,

GNNs v v v v

OCL v v

3D v v
HyperG. v v v

Het. v

Table 1. Synthesis of related work of eECHOLGA. Gaps in interpretable one-class methods based on
heterogeneous hypergraphs are filled by eCHOLGA.
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All studies incorporate (L)LMs, as processing event texts is fundamental. However, some rely solely on these
representations, while others integrate them with GNNs. OCL for event-based causal discovery remains largely
unexplored, marking the first research gap. Additionally, interpretable representation learning is a relatively new
yet valuable direction for causal detection, identifying the second gap. Finally, the combination of heterogeneous
hypergraphs with one-class learning has not been fully explored, presenting the third research gap. In the next
section, we introduce our proposed method, which integrates heterogeneous hypergraphs and one-class learning
to advance causal discovery in event pairs.

eCHOLGA: edge classification through heterogeneous one-cLAss graph autoencoder
We propose a novel method called edge Classification through Heterogeneous One-cLAss Graph Autoencoder
(eCHOLGA) for causal detection in event pairs. Our method integrates heterogeneous hypergraphs, one-class
learning (OCL), and graph neural networks (GNNs). eCHOLGA introduces several innovations for causal
discovery in event pairs. First, it is the second one-class method developed for causal discovery and the first
to use heterogeneous hypergraphs. Second, using heterogeneous hypergraphs with GNNs for causal discovery
in event pairs is a novel approach, as most hypergraph-based causal studies focus on hypergraphs that do not
transform edges into nodes. Third, our method leverages three-dimensional representation learning to provide
interpretability in causal discovery, which enhances the understanding of event pair relationships.

Heterogeneous hypergraphs address two critical gaps in causal discovery. First, they solve the edge-
representation gap encountered in GNNs, and second, they enhance graph connectivity when new events
emerge or when the homogeneous causal graph becomes naturally disconnected”-?*, such as presented in Fig. 1.
eCHOLGA leverages a state-of-the-art one-class loss function to cluster causal relationships near the center of
a latent sphere!. Our method learns a three-dimensional latent space to provide interpretable representations,
where causal relations are positioned inside the sphere and non-causal relations are placed outside. This space
is learned via a graph autoencoder, using reconstruction loss as a constraint to the sphere loss function, which
improves edge representation learning. Additionally, eCHOLGA introduces an innovative triple loss function by
combining the one-class loss with a heterogeneous loss based on node types. This third loss not only improves
representation learning but also serves as a secondary constraint for the one-class loss.

An illustration of eECHOLGA is presented in Fig. 2. Our workflow can be described in four main steps:

1. In this step, we obtain the causality graph. This graph is directed, since if one event causes another, the re-
verse is not necessarily true. Therefore, we model the relationships as a directed graph. Causality is explored
through a one-class learning approach. Consequently, we have causal edges, where one event causes another,
and unlabeled edges, which will later be classified as causal or non-causal;

2. After obtaining the causality graph, we transform it into a homogeneous hypergraph. This strategy consists
of converting the edges to be classified into nodes. In this way, for each edge in the original graph, we create
a new node and two additional edges connecting the three nodes (the two original nodes and the new node
representing the original edge);

3. Once the homogeneous hypergraph is built, we enrich it to obtain a heterogeneous hypergraph. The main
motivation is to add more information to the causality scenario and make the hypergraph more connected.
To achieve this, we extract components from the events and create additional node types, as events can share
these components. Furthermore, we add edges between the node-edge types, adding some relation between
these nodes to enrich our heterogenous hypergraph;

4. After generating the heterogeneous hypergraph, we apply graph neural networks to obtain interpretable
representations in a one-class learning setting. We explore three loss functions that jointly guide the learning
process, enabling the model to learn meaningful representations and classify unlabeled edges as causal or
non-causal using only causal examples. At this point, it is important to note that we are classifying a node in
the heterogeneous hypergraph that represents an edge from the original graph.

Causal discovery between event pairs can be defined as a binary classification task, where the input consists
of two events and the output is a label indicating whether a causal or non-causal relationship exists. Let
e1,€2,€3,...,em € I represent a set of m natural language sentences, each corresponding to an event, and
let causal, non — causal € C' denote the set of possible labels. The classification function can be defined as
f : E — C, which maps pairs of events (e;,e;) € E to either the causal or non-causal label. In this context,
E € R? represents the feature space for each event’s sentence, where d = 38426, One-class learning (OCL) for
causal discovery in event pairs is defined as the function f*, which learns from a training set consisting only
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Fig. 2. Our proposed method eCHOLGA. We show all the steps from eCHOLGA: heterogeneous hypergraph
generation, representation learning through GNNG, one-class sphere loss (-Z5c1), GAE loss (Zyac), and cross-
entropy loss for the node types (Z..).
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of causal labels ((e1, e2); causal), ((es, es); causal), ..., ((ei, e;); causal), and approximates the unknown
function f.

We model causality between event pairs using a directed graph. A directed graph is formally defined as
G = (V, A), where V is the set of nodes and A is the adjacency matrix representing the relationships between
nodes. Inthis case, V' = E, meaning that the events themselves serve as the nodes, while A encodes the causal and
non-causal relationships between them?”. The directionality of edges is a natural property of causal relationships,
as if one event causes another, the reverse is not necessarily true. Therefore, we preserve this directionality
in the propagation process to avoid misleading the model during message passing. Although, in principle,
directionality could be relaxed or treated as a parameter, since the causal graph can be transformed into a non-
directional hypergraph, we deliberately maintain edge direction to ensure that information flows according to
the causal order. This prevents the GNN from propagating information backward (from effects to causes), which
could degrade the quality of learned representations. Our approach also incorporates Graph Neural Networks
(GNNs), which are state-of-the-art models used for various tasks, including node classification?®. However, due
to GNN§’ inherent limitations in learning edge representations and classifications, we turn to hypergraphs as an
alternative representation for modeling causal relationships’.

To overcome these limitations, we transform each edge in the directed graph into a node, thus converting the
graph into a directed homogeneous hypergraph. Specifically, if node v; is connected to node v;, we introduce
a new node v, (referred to as a node-edge) and create connections between v; and v,, and between v, and v;
7. We define a homogeneous hypergraph for causal discovery as HG = (V"9 A"9), where V"9 represents all
events represented by V and all edges of the original G, and A" represents all new edges between the events and
node-edges nodes’. In this sense, the number of nodes in the hypergraph is the number of nodes and edges in
the original graph’. The number of edges in the hypergraph is double the number of edges in the original graph,
since for every two nodes with a relation, this is transformed into three nodes and two edges.

Through Hypergraphs, GNNs can now operate without the typical message-passing restrictions for edge
representations, as the edges have effectively been transformed into nodes. Even after transforming the
causal graph into a hypergraph, a problem still remains. Specifically, the resulting hypergraph may become
disconnected. This issue arises when the dataset contains pairs of events that either never participate or only
minimally participate in multiple relations. As a result, the hypergraph can become fragmented, consisting
of several disconnected communities, each comprising three nodes: two representing the events and one
representing the relation. This lack of connectivity between different parts of the graph can hinder the model’s
effectiveness in capturing global causal relationships.

One way to enhance the connectivity of the hypergraph is through enrichment, specifically by generating
a heterogeneous hypergraph?. To enrich our hypergraph, we extracted several components from the event
texts based on the 5SW1H framework, Who, What, When, Where, Why, and How, which has been widely used
in the literature to represent and enhance events in graph-based structures?®. In our case, we selected the
what, who, when, and where components, corresponding to the topic of the event, the entities involved, the
temporal aspect, and the event location, respectively. We excluded the why and how components because they
are highly abstract and open-ended, offering limited contribution to graph connectivity and often introducing
noise during enrichment. To extract the topic component, we employed BERTopic®!, associating each event with
a specific topic, except when the topic was labeled “~1” (a generic category for unclassified texts). For the who,
when, and where components, we used large language models, specifically Google’s Gemmaz2 (27B parameters).
The prompts used for component extraction are available in the public code repository (see the Additional
Information section). Each newly generated node was then represented by an embedding computed using
BERT, based on its textual description. Finally, to ensure consistency among nodes, we applied a standardization
process. For smaller datasets, this step was performed manually by the authors. For larger datasets, we adopted
an automatic merging strategy based on embedding similarity, unifying nodes that referred to the same entity
with minor textual variations.

We propose an additional enhancement to strengthen the GNN’s message passing by connecting relation
nodes with similar nodes. Specifically, this strategy aims to improve message passing between nodes representing
causal relationships. To achieve this, we employ a strategy based on Large Language Models (LLMs) and the
heterogeneous hypergraph. The strategy involves exploring the event texts, along with related heterogeneous
nodes (such as topic, who, where, and when), into the LLM to query whether the relationship between the events
is potentially causal. If the LLM responds affirmatively, we connect the relationship between the events to the
three nearest causal training relationships, based on the cosine similarity of their BERT embeddings. Conversely,
if the LLM responds negatively, we connect the relationship to the three nearest predicted negatively relation
nodes. We define the set of new heterogeneous nodes topic, who, where, and when as V"¢, Thus, we define our
heterogeneous hypergraph as HHG = (V"9 A"M9) where V"9 = V"9 U V"¢, and A" represents the
edges A" plus the edges between the events and the heterogeneous nodes, and the enriched edges between the
node-edges. We illustrate our definitions of graph, homogenous hypergraph, and heterogeneous hypergraph in
Fig. 3.

We leverage Graph Neural Networks (GNNs) to learn representations in our causal hypergraph. The GNNs
take as input the structured representation of each node, v; € V"9 and the adjacency matrix A" both of
which are critical for the representation learning process. In this paper, we explore the Graph Convolutional
Network (GCN)*? defined by Equation 1 and its aggregate and combine steps (Equation 2):

1. . _1
H"Y =D 22" D 2 HOWDY), V)
by, =o(W"  MEAN{h," : v; € {N,, Uvi}}, )
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Fig. 3. Mlustration of our homogeneous and heterogeneous hypergraph notations.

where, where H® is the input to the I-th GNN layer, and H 41 s the output of this layer, Ahhg = AP T
is the adjacency matrix with self relations, I is the identity matrix, D is a diagonal matrix with

D = Zj A?jhg, o is an activation function, V"9 = H © w® represents trainable weights across the GNN
layers W = {W® ... W)} and N,, are the v; neighbors.
GNNs with sphere loss functions are state-of-the-art for one-class graph neural networks'>**. These methods

learn h% encapsulating the nodes of interest. To detect causality through our hypergraph, we explore this
stlrategy]3 We use the sphere loss function .Z,; defined in Equation 3.

jvin|
0;+1, ifo;, >0

Loa(W) = |Vm‘ Z {exp (0;), otherwise ®

o = IR — cl* = 1*, @

where Eq. 4 represents the value indicating whether the interest instance v; is within the hypersphere with radius
rand center c and V' are the set of interest nodes-edges in our hypergraph (with the causal class).

By using only the .Z,,; loss, all nodes would converge to the center, leading to a collapse of the representations.
To address this issue, following the approach in Golo et al.'%, we incorporate our Graph Convolutional Network
(GCN) layer into a Graph Autoencoder (GAE). GAEs have an unsupervised loss function that acts as a constraint
to prevent this collapse, thus ensuring the nodes do not all converge to the center. Therefore, we combine the
sphere loss function with the loss function of GAEs'?, which has demonstrated superior and state-of-the-art
results compared to other methods**. The GAE utilizes GNN layers as an encoder and the inner product of the
latent representations as a decoder to learn effective node embeddings. Equation 5 provides the formal definition
of a GAE™:

Encoder : H(L T =g(V",A™; W)
GAE =
{Decoder o(H®) . H(L>T) ’ ®)
1 Vi vl
Lyae(W) = IV\Z;z; T logAri; + (1 — AL) -log(1 — Ary)), (6)
i=0 j

where T is the predicted vector of node types by our model (will be used in our third loss in Equation 7),
V" and A" are the node-edges (relations) and the adjacency matrix for these node-edges, i.e., we apply the
reconstruction loss only in the relation nodes. o (.) is a logistic sigmoid function. The GAE loss function %4
is defined in Equation 6 (binary cross entropy loss applied in the adjacency matrix).

To construct our triple loss and leverage the benefits of building a heterogeneous hypergraph, we incorporate
a cross-entropy loss for node types, contributing to our heterogeneous loss. By adding heterogeneity components,
we influence both the sphere and reconstruction loss functions. In addition to applying the sphere loss function
to the primary relation nodes in the heterogeneous hypergraph, we also introduce a cross-entropy loss function
for the node types (event, relation, topic, who, where, and when). This strategy aims to enhance the model’s
ability to correctly predict the node type based on its learned representation. Our motivation is that by learning
representations that clearly distinguish between node types, the model can better separate interest nodes from
non-interest nodes through the sphere loss. This loss function is defined as follows:

Loo(W) = = STy - log' + (1= T) - log (1 — 1), %)

where T is the vector with the node types and 7" is the node types predicted vector.

When combining multiple loss functions, a common challenge is balancing their scales, as one loss function
could dominate thelearning processand cause other tasks tobe neglected*. Toaddress thisissue, we introduce three
impact factors, a, 3, and 6, to balance the contributions of each loss function. Additionally, graph representation
learning may require adjustments in these impact factors at different stages of the learning process to optimize
both node representation learning and causal discovery performance. For example, during the early stages of
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training, we assign more weight to the cross-entropy loss (Z:.) to help the model distinguish between node types.
As the training progresses, we gradually shift the focus toward Z,c; and Z;.c, ensuring that the representation
of relation nodes aligns with the sphere, with causal relations encapsulated within the sphere and non-causal
relations positioned outside. To facilitate this, we propose a strategy for dynamically adjusting the impact factors
during training. Our final loss function is therefore defined as: £ = (ZLoc * @) + (Lyae * ) + (Lee * 0),
where «, 3, and § are impact factors for the losses.

We present the causal graph, causal hypergraph, causal heterogeneous hypergraph, the GCN step for
representation learning in the heterogeneous hypergraph, as well as the sphere loss, GAE loss, and node type
loss. In summary, our proposal not only introduces a novel approach for causal event representation through
heterogeneous hypergraphs but also emphasizes interpretability as a central design principle. Interpretability
has become increasingly important due to the growing demand for transparent and explainable models across
different research domains. To this end, we propose that eCHOLGA inherently learns three-dimensional
representations, thereby providing interpretability and enabling us to better understand the real-time
representation learning process. This choice allows direct interpretation through the visualization of the latent
space without the need for additional dimensionality reduction. Moreover, this 3D structure enables a clear
understanding of the model decision since instances inside the sphere correspond to causal node-edges, while
those outside represent non-causal ones. Overall, the three-dimensional design of eCHOLGA goes beyond
improving performance. It transforms the model into an interpretable and interactive system, bridging the gap
between representation learning and interpretability. This design choice provides researchers and practitioners
with a concrete tool to observe, analyze, and trust the causal reasoning process, reinforcing interpretability as a
core contribution of our proposal.

Experimental evaluation

This section presents the experimental evaluation. We present the four used datasets, experimental settings,
results, and discussion. Our research goal is to demonstrate that our eCHOLGA proposal outperforms other
SOTA methods for causal discovery in event pairs, through the new heterogeneous hypergraph proposed. Another
goal is to demonstrate that our method learns low-dimensional representations, providing interpretability, even
considering the heterogeneous scenario.

Datasets

We explore four causality datasets, each consisting of event pairs, where each event is represented by a text
description. Each event pair is labeled as either causal or non_causal. The first dataset is the Risk Models
dataset?, which was introduced by? to analyze models created by expert analysts for configuring decision support
systems>. These models are structured as graphs, where the nodes represent textual descriptions of conditions or
events, and the edges denote causal relationships. The models are based on enterprise risk management, expert
knowledge, literature reviews, and reports. To create the cause-effect pairs dataset, the authors transformed each
edge in the graph into a pair of texts with a causal label.

The second dataset is FinCausal, which focuses on detecting causality associated with a quantified fact. In this
dataset, an event refers to the emergence of a new object or context relative to a previous situation. Therefore, the
dataset emphasizes detecting causality related to the transformation of financial objects embedded in quantified
facts. The third dataset is Headlines®’, which focuses on collecting implicit causal relationships between
sentences. This dataset consists of pairs of English and Russian news headlines, each labeled with a causality
tag obtained through crowdsourcing. The authors intentionally excluded texts from the full news articles, as the
headlines themselves were considered representative of events. The labels were assigned based on the rule that
the first headline causes the second if the second headline would be impossible without the first. In other words,
if the first event did not occur, the second event could not happen either.

The fourth dataset is the Twitter dataset®®, which contains tweets labeled as either causal or non-causal. The
tweets in this dataset are related to the Commonwealth Games held on the Gold Coast in 2018. The dataset was
manually annotated. Table 2 presents the details of the datasets. The Risk dataset comprises 402 causal pairs
with 223 unique events. For the non-interest class, 402 pairs were randomly selected to be labeled as non-causal.
The FinCausal dataset includes 536 causal pairs with 860 unique events. For the non-interest class, 540 non-
causal pairs were randomly chosen. The Headlines dataset has 909 causal pairs, 1603 non-causal pairs, and 4463
unique events. The Twitter dataset comprises 459 causal pairs, 457 non-causal pairs, and 1772 events. Table 2
also provides the node information after hypergraph enrichment. Thus, Risk and FinCausal generate connected
hypergraphs, while Headlines and Twitter generate disconnected hypergraphs, since they present a scenario
closer to the real world with naturally obtained counterexamples.

Name Causal | Non_causal | Events | Relation | Topic | Who | When | Where
Risk 402 402 223 769 2 27 0 3
FinCausal | 536 540 860 986 25 66 16 23
Headlines | 909 1603 4463 2494 101 2484 | 57 606
Twitter 459 457 1772 905 32 508 33 88

Table 2. Dataset details for the number of causal and non-causal event pairs, and the number of event,
relation, topic, who, when, and where nodes in the heterogeneous hypergraph generated for each dataset.
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Experimental setting

We compare the eCHOLGA with the state-of-the-art text-based methods for causal discovery considering
BERT, such as NLM-BERT, NLM-BERT++, and CF-Context>* and LLM methods’. We compare our method
with five large language models using the strategy of Pywhy-LLM library. Different LLMs have been proposed in
the last three years, and they have differences that generate advantages and disadvantages for each model*’. We
use the 5-fold cross-validation for our experiments. We use four folds of the causal class to train, the remaining
fold to test, and one fold of the non-causal class to test. We use the fi-macro to compare all models. We use
BERT embeddings as representations of event-type nodes and enriched nodes (topic, who, when, and where).
Furthermore, we use the average of the two event embeddings as the initial representation of the relation node
type (node-edges). Finally, we execute the experimental evaluation on a machine with an Ubuntu 24 computer
with an 19-14900KF CPU, RTX A5000 (24 GB RAM), and 128 GB RAM. In this computer setting, the LLM
gemma2 with 27 billion parameters extracts the components to enrich one event in 2.5 seconds.

We explore in our methodology four families of LLMs open-source: the LLM from meta (LLaMa)*’, from
Microsoft (Phi)*!, from Google (Gemma)*, and from Alibaba Cloud (Qwen)*. Each LLM has a number of
parameters: Llama 3 (8 and 70 billion of parameters), Phi 3 (14 billion of parameters), Gemma 2 (27 billion of
parameters), and Qwen 2 (7 billion of parameters). We compare eCHOLGA with one-class methods since we
have an initial representation for each sentence (BERT embedding) and can generate an initial representation
for causal relationships (average of causal and effect sentences). In this sense, we explore two one-class methods:
One-Class Support Vector Machines (OCSVM)* and Isolation Forest (IsoForest)*>. Finally, we compare
eCHOLGA with the eCOLGAT'2. We use the following parameters for the methods:

o LLMs: Temperature = 0 and max_sequence_length = 10240;

« NLM-BERT, NLM-BERT++: thresholds = {0, 0.3,0.6,0.9};

« CF-Context: epochs = {300}, patience = {3}, walkSize = {1}, samples = {100}, p = 0.025, and joint = {0};

o OCSVM: kernel = {rbf, poly, sigmoid, linear}, v = {0.05 * b}, b € [1..19], and v = { scale, auto };

« IsoForest: n° of estimators = {1,2,5,10,50,100,200,500}, maximum samples and features =
{0.1%b},b € [1..10];

o eCOLGAT: radius = {0.35,0.45, 0.5}, epochs = {700, 1000, 1500}, heads= {1, 2, 3}, Ir = {0.001, 0.0001,
0.0005};

o eCHOLGA: radius = {0.3,0.4, 0.5}, epochs = {6000, 3000}, and learning rate = {0.008}. enriched relation
edges = {Qwen2.5:14b, Phi4:14b}. ¢, 8, and ¢ have initial and final values and are increased (c, 5) or decreased
(6) considering 100 epochs (During our initial empirical tests, we explored different initial, final, and incre-
mental values for «, 3, and 6, in which the best values on at least one dataset were selected to compose the hy-
perparameter set). final_a = {0.8,0.7,0.6,0.5}, final_8 = {0,0.15,0.2,0.3}, final 6 = {0.5,0.1,0.05},
initial_av = {0}, initial_3 = {0}, initial_6 = {1}, iteration_a: = {0.02,0.04, 0.05}, iteration_j3 = {0.01},
iteration_d = {0.02,0.04,0.05}.

Results and discussion

Table 3 presents the results of our study, showing the average f1 macro across five folds. We evaluate three
baseline methods (NLM-BERT, NLM-BERT++, and CF-Context) based on their previous results on the Risk
and Twitter datasets. We show results from eight models alongside our proposed method, eCHOLGA, across
all four datasets. The highest-performing models are highlighted in bold, while the second-best results are
underlined. eECHOLGA achieves state-of-the-art performance in three datasets, while CF-Context outperforms
other methods in the Twitter dataset. Gemma2 obtains the second-best results in the Headlines and FinCausal
datasets, whereas eCOLGAT and NLM-BERT++ achieve second-best performance in the Risk and Twitter
datasets, respectively. Notably, two-step methods (BERT + OCL algorithm) yield the lowest overall results.

Method Risk | Twitter | Headlines | FinCausal
NLM-BERT 0.669 | - - -
NLM-BERT++ 0.667 | 0.668 - -
CF-Context 0.624 | 0.673 - -
BERT + IsoForest | 0.324 | 0.535 0.488 0.502
BERT + OCSVM | 0.672 | 0.497 0.617 0.544
LLaMa 3 (8b) 0.727 | 0.570 0.610 0.761
Phi 3 (14b) 0.659 |0.509 | 0.626 0.695
Qwen 2 (7b) 0.691 | 0.472 0.654 0.719
Gemma 2 (27b) 0.720 | 0.630 0.734 0.822
LLaMa 3 (70b) 0.726 | 0.623 0.728 0.767
eCOLGAT 0.771 | 0.563 0.661 0.512
eCHOLGA 0.776 | 0.564 0.806 0.824

Table 3. f;-macro for each method in the four datasets. The best results are in bold, and the second best are
underlined. We report the results of NLM-BERT, NLM-BERT++, and CF-Context from the original papers.
We update the results from LLMs in the Risk dataset due to the prompt update.
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In the Risk dataset, eCOLGAT achieves a competitive second-best result, nearly matching eCHOLGA.
The third-best model, LLama 3 (8B), lags by approximately 5%, underscoring the robustness of both one-class
and graph-based methods for this dataset. A similar pattern emerges in the FinCausal dataset, with Gemma2
securing the second-best performance. However, LLama 3 (70B) follows closely, performing only 6% worse
than eCHOLGA, indicating that this LLM is particularly effective in this dataset. For the Headlines and Twitter
datasets, the performance gap between eCHOLGA and the best-performing models is more pronounced. In
the Headlines dataset, eCHOLGA outperforms Gemma2 by 7%, demonstrating its effectiveness in this context.
However, in the Twitter dataset, a BERT-based method outperforms eCHOLGA by 10%, highlighting that even
non-graph-based models can excel in causal discovery. This also reinforces the importance of using BERT
embeddings as the initial representation of nodes in graph-based methods like eCHOLGA. Additionally, the
informal and concise nature of Twitter texts presents unique challenges for causal discovery, likely contributing
to the observed performance differences.

In the Risk dataset, transforming the hypergraph into a heterogeneous hypergraph did not significantly impact
performance, as eCOLGAT and eCHOLGA achieved similar results. This can be attributed to how non-causal
instances were generated by randomly pairing two sentences, resulting in a connected hypergraph. Nonetheless,
even in this already connected scenario, our proposed enrichment strategy demonstrated its potential to enhance
performance. This effect was particularly evident in the FinCausal dataset, which also contains synthetically
generated non-causal pairs, where eCHOLGA significantly outperformed eCOLGAT. However, the opposite
is also true: in a disconnected hypergraph scenario, enrichment does not always guarantee performance gains.
This was observed in the Twitter and Headlines datasets, where non-causal instances naturally occur. While
enrichment led to substantial improvements in the Headlines dataset, its impact on the Twitter dataset was less
pronounced.

Our strongest competitor was LLMs. Although LLMs are considered unsupervised methods, their immense
computational power stems from having been trained on trillions of texts, potentially including causal and non-
causal event pairs. This makes outperforming them a challenging task. Nevertheless, eCHOLGA outperformed
LLM:s in two datasets (Headlines and Risk) and achieved competitive, near-equivalent performance in the other
two (FinCausal and Twitter). Notably, only in one of the evaluated scenarios LLMs outperform eCHOLGA,
highlighting that despite their robustness, they also face challenges in event causal discovery. Another key
observation is that increasing the number of parameters in LLMs does not lead to better results. Moreover,
models with more parameters require significantly more computational resources, which is a disadvantage.

eCOLGAT served as the basis for eCHOLGA. In the Headlines and FinCausal datasets, eCHOLGA
outperformed eCOLGAT by 25-30% in macro fi score. This demonstrates the impact of hypergraph enrichment
and the new triple heterogeneous loss, two key improvements in eECHOLGA over eCOLGAT, that led to better
performance. In contrast, the results of eCOLGAT and eCHOLGA were similar for the Risk and Twitter datasets.
While enrichment did not significantly improve performance in these cases, it offers additional advantages
beyond accuracy. A richer hypergraph structure enables better explainability techniques to interpret causality.
Furthermore, with more diverse information embedded in the graph, new composite loss functions can be
explored to enhance learning, an opportunity that is more limited in homogeneous hypergraphs.

The use of LLMs for event enrichment has shown consistently positive results, both in our experiments and
in related literature’®’. Studies have demonstrated that LLMs are particularly effective in extracting 5SW1H
components, Who, What, When, Where, Why, and How, from unstructured text, which are crucial elements for
representing events in structured forms*®*”. While such models can occasionally produce incorrect inferences,
their overall accuracy and ability to capture semantically meaningful relationships generally outweigh these
errors. Nevertheless, before applying the enrichment strategy, it is advisable to conduct preliminary evaluations
to assess the LLM’s reliability for the specific domain or dataset. In our case, this approach proved beneficial
because, despite potential inaccuracies, the LLM-driven enrichment led to clear performance improvements,
confirming that the advantages of using LLMs for enrichment surpass their limitations.

Figure 4 illustrates the interpretability results for the Headlines, FinCausal, and Risk datasets. These figures
present the learned representations generated by eCHOLGA, showcasing its interpretability capabilities.
Specifically, we visualize the representations of all nodes and node-edges in our heterogeneous hypergraph,
highlighting the learning process. Since our learned representations are three-dimensional, it is possible to create
a real-time video of the learning process without additional post-processing. Each figure contains eight plots. In
the top four plots, each color represents a different node type. In the bottom four, yellow points indicate non-
causal relation nodes, while purple points represent causal relation nodes. It is important to note that the color
schemes in the top and bottom plots do not correspond to the same node types. We selected four key stages of
the learning process to illustrate the evolution of the embeddings: (1) the initial stage (0-1% of training), (2) an
early intermediate stage ( 25% of training), (3) a late intermediate stage ( 75%), and (4) the final stage (model
convergence).

The interpretability of eCHOLGA allows us to observe the learning dynamics, as demonstrated in Fig. 4.
Initially, eCHOLGA prioritizes node type prediction, as the impact factor of the cross-entropy loss (Zz.) is set
higher at the beginning. As training progresses, the one-class loss (Z,c;) gains more influence, causing relation
nodes, particularly causal relations, to move toward the sphere. Meanwhile, the reconstruction loss (-Zya.) also
becomes more significant, leading to a more structured node distribution. In the final training stages, all three
losses work together: causal relations are clustered near the sphere (driven by .Z5:), non-causal relations remain
outside the sphere (regulated by .Zjq.), and node types remain well-separated, further reinforcing the one-class
loss (Zee).

We propose an ablation study to assess the impact of the different components of our composed loss function
and the strategy used to enrich the edges between relation nodes, as discussed in Section “eCHOLGA: edge
classification through heterogeneous one-cLAss graph autoencoder”. We evaluate four configurations: (i) using
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Fig. 4. Interpretability analysis of the three-dimensional representations of eECHOLGA in the FinCausal
dataset. In the top four plots, each color indicates one node type, and in the bottom four plots, the colors
indicate the causal (purple) and the non-causal (yellow) classes.

Scenarios Risk | Twitter | Headlines | FinCausal
Loel 0.324 [ 0.334 | 0.264 0.312
Loct + Lrec 0.657 | 0.496 | 0.264 0.394
Loct + Lrec + Lee 0.619 |0.488 | 0.572 0.415
Loct + Lrec + Lee + enriched edges | 0.776 | 0.564 0.806 0.824

Table 4. Ablation study for eECHOLGA considering its loss components and the enriched node-edges
relations.

only the OCL function (%), similar to the method of Wang et al.3, (ii) using a combination of one-class and
reconstruction losses (Zoer + Zree), similar to the method of Gélo et al.'3, (iii) using all three components
without node-edge relations strategy (Zoci + -Lrec + Zee), our proposal without enriched edges between node-
edges through LLMs, and (iv) using the full setup of eECHOLGA (results from Table 3), which includes all loss
components along with the strategy for adding edges between relation-type nodes. Table 4 summarizes the
ablation results. The best values are shown in bold.

Through the ablation study, we observe that using only a one-classloss in a heterogeneous graph is not sufficient
to predict causality with high performance. When the reconstruction loss is added, performance improves, but it
still falls short of the combination of all three losses. Using the three losses together improved results in 50% of
the datasets, and in the remaining 50% where performance did not improve, it also did not degrade significantly.
This suggests that the third loss generally contributes positively to learning in heterogeneous graphs. Finally, the
best results were achieved by implementing the triplet loss and the enrichment of the heterogeneous hypergraph
by adding edges between relation-type nodes (original graph edges transformed into nodes). Therefore, we
identify the step of constructing edges between relation-type nodes as one of the key stages of eCHOLGA,
highlighting the importance of these connections for learning. This finding also indicates that the GNN’s
aggregation steps benefited from these enriched edges, which, when added, improved the GNN’s performance.

Conclusion and future work

In this study, we introduce eCHOLGA, a novel end-to-end and interpretable method for causal discovery
between event pairs. ECHOLGA leverages graph neural networks, heterogeneous hypergraphs, and one-class
learning to enhance causal inference. It employs a hypergraph structure to improve edge representation learning
via graph neural networks. To further enrich and optimize learning, we propose transforming the hypergraph
into a heterogeneous hypergraph, mitigating issues that arise when hypergraphs are disconnected. Our approach
introduces a new heterogeneous triple-loss function, incorporating: (i) a sphere loss function to enforce one-
class learning, (ii) a reconstruction loss function, and (iii) a heterogeneous loss function to predict node types.
The sphere loss function enables eCHOLGA to operate as a one-class learning method, confining the model’s
focus to causal relations without requiring exhaustive non-causal relation coverage. Additionally, cCHOLGA
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utilizes three-dimensional representations, providing interpretability in the causal discovery process for event
pairs.

Our results demonstrate that eECHOLGA outperforms eleven competing methods, including LLM-based,
BERT-based, and one-class-based approaches, in three out of four datasets. To illustrate the interpretability
of our model, we visualize the three-dimensional learned embeddings, revealing how eCHOLGA integrates
multiple loss functions. These plots show how eCHOLGA separates node types while encapsulating causal
instances within the sphere, where node-type and reconstruction losses act as constraints to the one-class loss.
This visualization enables a deeper understanding of eCHOLGA’s learning process. Selecting an appropriate
causal discovery method depends on the user’s needs. If a user prioritizes ease of use and does not require model
training or parameter tuning, LLMs are the most convenient choice, as they perform well without additional
training. However, if the goal is to understand and refine results while maintaining interpretability, eCHOLGA
is the superior choice. With minimal training and labeling of only causal event relations, cCHOLGA delivers
competitive or even superior results to LLMs while offering interpretability.

eCHOLGA also has some limitations. The method relies on LLMs to establish connections between relation
nodes, meaning that poor LLM performance can negatively impact eCHOLGA’ results, as observed in the
Twitter dataset. Thus, the approach as a whole depends on the quality of the chosen LLM and its performance.
To address this, future work will explore alternative strategies for connecting similar relation nodes, reducing
dependence on LLMs. Potential solutions include integrating LLMs with additional methods through consensus
or ensemble strategies. Additionally, we plan to investigate alternative heterogeneous GNN layers to further
enhance eCHOLGA’s performance. We highlight that it is pertinent to investigate in future work which
combinations of hyperparameters of different LLMs generate better heterogeneous hypergraphs with better cost-
benefit, considering different methods to detect causality. Finally, Future work could explore domain adaptation
techniques for causal graphs, enabling transfer of causal knowledge across domains or datasets?®.

Data availability
Source codes and datasets: https://github.com/GoloMarcos/eCHOLGA. There are no Competing Interests.
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