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Causal discovery from event pairs is essential for understanding complex real-world phenomena. 
Large language models (LLMs) have shown strong capabilities in capturing the semantics of events 
and inferring plausible cause-effect relations from text. However, they typically process each event 
pair in isolation and struggle to model the global event structure, which limits their ability to capture 
interdependencies among multiple events. Graph-based methods offer a structural alternative by 
explicitly modeling connections between events, but they often lack relational expressiveness, as 
relations are treated as implicit edges rather than as entities. Homogeneous hypergraphs address 
this by representing relations as nodes, enabling richer modeling of multi-event interactions and 
more expressive causal reasoning. Nevertheless, this strategy frequently leads to disconnected 
structures, hindering information aggregation through graph neural networks (GNNs). To address 
these challenges, we propose eCHOLGA (edge Classification through Heterogeneous One-cLass 
Graph Autoencoder), a novel method that leverages heterogeneous hypergraphs to model causal 
relationships more effectively. eCHOLGA integrates semantic features extracted from language models 
into the graph structure, enhancing the representation of events and their relations. By transforming 
relations into nodes and introducing additional node and edge types, it improves topological 
connectivity and enables GNNs to learn more informative edge representations. Furthermore, our 
method adopts a one-class learning strategy, requiring only positive (causal) examples for training, 
which reduces labeling effort. In addition to its effectiveness, eCHOLGA enhances interpretability 
and provides insights into the causal discovery process. Experimental results show that eCHOLGA 
outperforms state-of-the-art methods, establishing it as a promising approach for causal discovery in 
event pairs.

Keywords  Event causal discovery, One-class learning, Heterogeneous graphs, Text pair causal discovery, 
Hypergraph for edge classification

Understanding the causal relationships between real-world events, known as causal discovery, is a fundamental 
yet challenging task with significant societal relevance. Identifying cause-effect links can support evidence-based 
decision-making in areas such as public policy, disaster management, public health, and economic planning1. In 
these contexts, understanding why an event occurs is often more valuable than merely knowing what occurred, as 
it enables proactive intervention, reduces risks, and improves resource allocation. While most research in causal 
discovery has focused on structured data and controlled settings, the widespread availability of unstructured 
textual event reporting in news articles, social media, and official documents has introduced new opportunities 
and methodological challenges. However, although textual descriptions offer rich contextual information, their 
inherent ambiguity and variability pose significant challenges for causal inference. As a result, there is a growing 
demand for computational methods capable of identifying causal relationships directly from natural language. 
In machine learning, this task is referred to as causal discovery in text or event pairs2–4.

Recent advances in language models (LMs) have significantly improved the ability to identify causal 
relationships between pairs of textual events2–4. More recently, state-of-the-art approaches have employed large 
language models (LLMs), which can capture nuanced semantic dependencies between sentences and generalize 
across different domains5. These models are effective at inferring plausible causal relations based on textual 
patterns and world knowledge. However, most LLM-based methods process each event pair independently 
and do not explicitly capture the broader structure of causal relationships among multiple events. While 
longer context windows allow for more events to be considered simultaneously, this alone does not guarantee 
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a coherent understanding of how events are interrelated. Moreover, extended contexts may lead to diluted 
attention and reduced accuracy, especially when causal dependencies span long distances. As a result, LLMs 
may overlook important patterns that only emerge when events are analyzed collectively. To overcome these 
limitations, we can explore a combination of LLMs with graph-based representations, which explicitly model 
causal connections and support information aggregation across events. We argue that this approach combines 
the contextual strength of LLMs with the structural reasoning capabilities of graphs, enabling more effective and 
robust causal discovery.

In a graph-based representation, each node corresponds to an event, and edges denote causal or non-causal 
relationships6. This structure supports information aggregation and enables reasoning across multiple events, 
addressing some of the blind spots of LLMs when operating independently on event pairs. However, even with 
graphs, significant challenges remain. Most graph-based methods represent relationships implicitly as edges, 
which limits the model’s ability to reason about the relationships themselves as entities. Furthermore, traditional 
graphs often lack the expressiveness needed to capture heterogeneous information associated with relationships, 
as they focus primarily on node-level attributes. Additionally, the prevalent use of Graph Neural Networks 
(GNNs) in these settings introduces architectural biases: GNNs are primarily designed to learn node embeddings 
and have limited capacity to represent rich relational semantics7. These factors constrain the effectiveness of 
graph-based causal discovery, especially when causal interactions are diverse and context-dependent.

To address these limitations, researchers have explored hypergraphs, which promote relationships to entities 
by modeling them as nodes, enabling a more flexible representation of multi-way interactions. When we use 
homogeneous hypergraphs, the resulting structure can often lack connectivity since an event can be associated 
with only one relation, which would generate a hypergraph with thousands of three-node components (event-
relation-event). This fact weakens the use of Graph Neural Networks (GNNs) to effectively propagate and 
aggregate information. Figure  1 illustrates the limitations presented above, including those of homogenous 
hypergraphs. On the other hand, incorporating additional node types into the hypergraph can alleviate this 
issue by enriching the topological structure and enabling more robust information flow8. The introduction of 
such heterogeneous elements transforms the hypergraph into a heterogeneous hypergraph9, which offers a more 
expressive and flexible framework for modeling complex and multi-faceted causal relationships among events.

We introduce a novel method for causal discovery in heterogeneous hypergraphs based on one-class 
learning. This work presents eCHOLGA (edge Classification through Heterogeneous One-cLAss Graph 
Autoencoder). Our approach leverages heterogeneous hypergraphs to enhance representation learning with 
GNNs7. Additionally, we model causal discovery in event pairs through One-Class Learning, where the model 
is trained using only one class (causal relations) but can predict two classes (causal or non-causal relationships). 
This eliminates the need to cover the entire spectrum of non-causal relationships and reduces labeling effort, as 
only causal instances need to be annotated10–12. We further propose a novel heterogeneous triple loss function, 
combining the state-of-the-art one-class loss function13, the reconstruction loss from graph autoencoders14, 
and the cross-entropy loss for different node types. Finally, eCHOLGA introduces explicit three-dimensional 
representations to naturally enhance interpretability. Our key contributions are: 

	1.	 Heterogeneous hypergraph modeling transforming edges into nodes, and enrichment to incorporate addi-
tional node types such as topics, involved entities, location, and event date to create a more connected causal 
discovery graph.

	2.	 A novel triple heterogeneous loss function designed for one-class learning in heterogeneous hypergraphs.
	3.	 We embed language model features into our heterogeneous hypergraph to enrich its semantic representa-

tion.
	4.	 One-Class Learning for causal discovery, enabling a more efficient labeling process and a natural problem 

formulation.
	5.	 Interpretable representation learning on hypergraphs through GNNs and OCL for causal discovery.

Related work
LM-Based Causal Discovery. Hassanzadeh et al.2 introduced NLM-BERT, an unsupervised method that 
leverages cosine similarity between the top-k most similar BERT embeddings to predict causality. Kayesh et 
al.3 proposed fine-tuning BERT and its variations to detect causality using a semi-supervised dataset of 100,000 
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Fig. 1.  Illustration of the styles of causality works. First, text-based, such as those exploring BERT and LLMs. 
Then, there are graph-based methods that classify edges as causal or not. Third, hypergraph-based works 
classify nodes that were edges in the causal graph. Finally, our strategy involves utilizing heterogeneous graphs 
to connect the causal hypergraph.
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causal and non-causal sentence pairs. However, the fine-tuned models did not outperform NLM-BERT. Later, 
Kayesh et al.4 extended this approach by incorporating an additional training dataset of 197,000 sentence pairs 
and experimenting with multiple methods and their combinations. The authors also explored a causality graph 
constructed from the training sets. Their CF-Context method integrates causal feature extraction, which involves 
embedding generation via graph-based representations, and contextual feature extraction.

LLM-Based Causal Discovery. Large Language Models (LLMs) have been applied to causal discovery in 
textual event data5,15. LLMs are pre-trained on vast corpora containing trillions of words and can generate 
text from a given input. This enables querying LLMs in natural language to determine whether one sentence 
causes another, effectively functioning as causal discovery models. The PyWhy-LLM library was developed 
specifically for causal detection tasks5,15. However, BERT- and LLM-based methods do not explicitly model the 
relationships between events, as they analyze each pair of texts in isolation rather than leveraging structured 
graph representations. Even studies such as Kayesh et al.4, which incorporate graphs, do not utilize them as the 
core of the method, resulting in inferior results compared to purely text-based approaches.

GNN-Based Causal Discovery. Minghim et al.16 introduced a method that extracts word embeddings to 
construct a causal graph, which is then processed using a gated GNN. A fully connected NN was employed for 
causal discovery. Similarly, Sakaji and Izumi17 explored a hybrid approach using BERT and GNNs, specifically 
Graph Attention Networks (GATs), highlighting improvements over Graph Convolutional Networks (GCNs). 
The model employed two fully connected neural networks to classify sentences separately as causes or effects. 
Sasaki et al.8 took a different approach, performing edge classification on a causal graph where nodes represent 
sentences and edges represent causal relationships. A classifier was applied to the final layer of the GNN. 
However, a key limitation of GNN-based methods is that they primarily focus on message passing between 
nodes (events), rather than learning edge representations, which are crucial for causal discovery. Additionally, 
most GNN-based approaches rely on binary supervised learning, requiring labeled examples of both causal and 
non-causal relationships. This poses a significant challenge since defining non-causal relationships is complex 
and costly due to their broad scope.

Hypergraphs. Hypergraphs have been extensively explored in the literature to address different tasks using 
Graph Neural Networks18. Zhao et al.19 investigate the use of hypergraphs for traffic flow prediction. Ju et 
al.20 employ hypergraphs for semi-supervised graph classification. Yi et al.21 propose a method for learning 
to generate hypergraphs to perform semi-supervised node classification. Gao et al.22 develop a novel GNN 
framework for hypergraphs designed to capture correlations in multi-modal and multi-type data. Wu et al.23 
introduce a contrastive learning approach for hypergraphs in the context of node classification. Finally, Wu et 
al.24 propose a reconstruction error–based method to enhance node classification performance in hypergraphs. 
These studies model hypergraphs using the concept of hyperedges, where each hyperedge connects multiple 
nodes, and the set of nodes in the hypergraph coincides with that of the original graph. These works consistently 
report performance gains when employing hypergraph-based modeling, indicating the promising potential of 
hypergraphs. It is important to note, however, that the hypergraph formulation adopted in these studies differs 
from the one proposed in this work. Here, we define a hypergraph where each edge in the original graph is 
transformed into a new node, resulting in a hypergraph with a larger number of nodes and edges. Gôlo and 
Marcacini12 proposed eCOLGAT, a method that leverages homogeneous hypergraphs to enhance representation 
learning for edges. eCOLGAT enables GNNs to learn more effective edge representations. Moreover, the authors 
modeled causal discovery using one-class learning (OCL), which offers two key advantages: (i) It eliminates the 
need to define the full scope of non-causal relationships; and (ii) It reduces the annotation effort, as only causal 
relationships need to be labeled. However, eCOLGAT generates hypergraphs from homogeneous graphs, which 
can lead to disconnected hypergraph structures in cases where relationships exist between events that share 
other relations. We highlight that this issue is particularly common in event-based causal discovery scenarios, as 
observed in the datasets explored by this work.

Table 1 summarizes the key characteristics of related studies. The (L)LMs row indicates (Large) LM studies. 
The GNNs row identifies works that leverage GNNs. The OCL row specifies whether the approach is based 
on the OCL. The 3D row highlights studies that propose interpretability. The HyperG. row denotes whether 
hypergraphs are explored. We adopt the definition of hypergraphs from Jo et al.7, which defines a hypergraph 
as a graph where edges have been transformed into nodes. Consequently, we do not include causality-related 
hypergraph studies that define hypergraphs as graphs with hyperedges (groups of nodes). The Het. row identifies 
studies that leverage heterogeneous hypergraphs.

Methods NLM-BERT++ CF-Context LLMs GNNs HGNNs eCOLGAT eCHOLGA

Reference 2,3 4 5 8,16,17 19–24 12 –

(L)LMs ✓ ✓ ✓ ✓ ✓ ✓
GNNs ✓ ✓ ✓ ✓
OCL ✓ ✓
3D ✓ ✓
HyperG. ✓ ✓ ✓
Het. ✓

Table 1.  Synthesis of related work of eCHOLGA. Gaps in interpretable one-class methods based on 
heterogeneous hypergraphs are filled by eCHOLGA.
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All studies incorporate (L)LMs, as processing event texts is fundamental. However, some rely solely on these 
representations, while others integrate them with GNNs. OCL for event-based causal discovery remains largely 
unexplored, marking the first research gap. Additionally, interpretable representation learning is a relatively new 
yet valuable direction for causal detection, identifying the second gap. Finally, the combination of heterogeneous 
hypergraphs with one-class learning has not been fully explored, presenting the third research gap. In the next 
section, we introduce our proposed method, which integrates heterogeneous hypergraphs and one-class learning 
to advance causal discovery in event pairs.

eCHOLGA: edge classification through heterogeneous one-cLAss graph autoencoder
We propose a novel method called edge Classification through Heterogeneous One-cLAss Graph Autoencoder 
(eCHOLGA) for causal detection in event pairs. Our method integrates heterogeneous hypergraphs, one-class 
learning (OCL), and graph neural networks (GNNs). eCHOLGA introduces several innovations for causal 
discovery in event pairs. First, it is the second one-class method developed for causal discovery and the first 
to use heterogeneous hypergraphs. Second, using heterogeneous hypergraphs with GNNs for causal discovery 
in event pairs is a novel approach, as most hypergraph-based causal studies focus on hypergraphs that do not 
transform edges into nodes. Third, our method leverages three-dimensional representation learning to provide 
interpretability in causal discovery, which enhances the understanding of event pair relationships.

Heterogeneous hypergraphs address two critical gaps in causal discovery. First, they solve the edge-
representation gap encountered in GNNs, and second, they enhance graph connectivity when new events 
emerge or when the homogeneous causal graph becomes naturally disconnected7,25, such as presented in Fig. 1. 
eCHOLGA leverages a state-of-the-art one-class loss function to cluster causal relationships near the center of 
a latent sphere13. Our method learns a three-dimensional latent space to provide interpretable representations, 
where causal relations are positioned inside the sphere and non-causal relations are placed outside. This space 
is learned via a graph autoencoder, using reconstruction loss as a constraint to the sphere loss function, which 
improves edge representation learning. Additionally, eCHOLGA introduces an innovative triple loss function by 
combining the one-class loss with a heterogeneous loss based on node types. This third loss not only improves 
representation learning but also serves as a secondary constraint for the one-class loss.

An illustration of eCHOLGA is presented in Fig. 2. Our workflow can be described in four main steps: 

	1.	 In this step, we obtain the causality graph. This graph is directed, since if one event causes another, the re-
verse is not necessarily true. Therefore, we model the relationships as a directed graph. Causality is explored 
through a one-class learning approach. Consequently, we have causal edges, where one event causes another, 
and unlabeled edges, which will later be classified as causal or non-causal;

	2.	 After obtaining the causality graph, we transform it into a homogeneous hypergraph. This strategy consists 
of converting the edges to be classified into nodes. In this way, for each edge in the original graph, we create 
a new node and two additional edges connecting the three nodes (the two original nodes and the new node 
representing the original edge);

	3.	 Once the homogeneous hypergraph is built, we enrich it to obtain a heterogeneous hypergraph. The main 
motivation is to add more information to the causality scenario and make the hypergraph more connected. 
To achieve this, we extract components from the events and create additional node types, as events can share 
these components. Furthermore, we add edges between the node-edge types, adding some relation between 
these nodes to enrich our heterogenous hypergraph;

	4.	 After generating the heterogeneous hypergraph, we apply graph neural networks to obtain interpretable 
representations in a one-class learning setting. We explore three loss functions that jointly guide the learning 
process, enabling the model to learn meaningful representations and classify unlabeled edges as causal or 
non-causal using only causal examples. At this point, it is important to note that we are classifying a node in 
the heterogeneous hypergraph that represents an edge from the original graph.

Causal discovery between event pairs can be defined as a binary classification task, where the input consists 
of two events and the output is a label indicating whether a causal or non-causal relationship exists. Let 
e1, e2, e3, ..., em ∈ E represent a set of m natural language sentences, each corresponding to an event, and 
let causal, non − causal ∈ C  denote the set of possible labels. The classification function can be defined as 
f : E → C , which maps pairs of events (ei, ej) ∈ E to either the causal or non-causal label. In this context, 
E ∈ Rd represents the feature space for each event’s sentence, where d = 38426. One-class learning (OCL) for 
causal discovery in event pairs is defined as the function f∗, which learns from a training set consisting only 
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Fig. 2.  Our proposed method eCHOLGA. We show all the steps from eCHOLGA: heterogeneous hypergraph 
generation, representation learning through GNNs, one-class sphere loss (Locl), GAE loss (Lgae), and cross-
entropy loss for the node types (Lce).
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of causal labels ((e1, e2); causal), ((e5, e3); causal), ..., ((ei, ej); causal), and approximates the unknown 
function f.

We model causality between event pairs using a directed graph. A directed graph is formally defined as 
G = (V, A), where V is the set of nodes and A is the adjacency matrix representing the relationships between 
nodes. In this case, V ≡ E, meaning that the events themselves serve as the nodes, while A encodes the causal and 
non-causal relationships between them27. The directionality of edges is a natural property of causal relationships, 
as if one event causes another, the reverse is not necessarily true. Therefore, we preserve this directionality 
in the propagation process to avoid misleading the model during message passing. Although, in principle, 
directionality could be relaxed or treated as a parameter, since the causal graph can be transformed into a non-
directional hypergraph, we deliberately maintain edge direction to ensure that information flows according to 
the causal order. This prevents the GNN from propagating information backward (from effects to causes), which 
could degrade the quality of learned representations. Our approach also incorporates Graph Neural Networks 
(GNNs), which are state-of-the-art models used for various tasks, including node classification28. However, due 
to GNNs’ inherent limitations in learning edge representations and classifications, we turn to hypergraphs as an 
alternative representation for modeling causal relationships7.

To overcome these limitations, we transform each edge in the directed graph into a node, thus converting the 
graph into a directed homogeneous hypergraph. Specifically, if node vi is connected to node vj , we introduce 
a new node vo (referred to as a node-edge) and create connections between vi and vo, and between vo and vj
7. We define a homogeneous hypergraph for causal discovery as HG = (V hg, Ahg), where V hg  represents all 
events represented by V and all edges of the original G, and Ahg  represents all new edges between the events and 
node-edges nodes7. In this sense, the number of nodes in the hypergraph is the number of nodes and edges in 
the original graph7. The number of edges in the hypergraph is double the number of edges in the original graph, 
since for every two nodes with a relation, this is transformed into three nodes and two edges.

Through Hypergraphs, GNNs can now operate without the typical message-passing restrictions for edge 
representations, as the edges have effectively been transformed into nodes. Even after transforming the 
causal graph into a hypergraph, a problem still remains. Specifically, the resulting hypergraph may become 
disconnected. This issue arises when the dataset contains pairs of events that either never participate or only 
minimally participate in multiple relations. As a result, the hypergraph can become fragmented, consisting 
of several disconnected communities, each comprising three nodes: two representing the events and one 
representing the relation. This lack of connectivity between different parts of the graph can hinder the model’s 
effectiveness in capturing global causal relationships.

One way to enhance the connectivity of the hypergraph is through enrichment, specifically by generating 
a heterogeneous hypergraph25. To enrich our hypergraph, we extracted several components from the event 
texts based on the 5W1H framework, Who, What, When, Where, Why, and How, which has been widely used 
in the literature to represent and enhance events in graph-based structures29,30. In our case, we selected the 
what, who, when, and where components, corresponding to the topic of the event, the entities involved, the 
temporal aspect, and the event location, respectively. We excluded the why and how components because they 
are highly abstract and open-ended, offering limited contribution to graph connectivity and often introducing 
noise during enrichment. To extract the topic component, we employed BERTopic31, associating each event with 
a specific topic, except when the topic was labeled “−1” (a generic category for unclassified texts). For the who, 
when, and where components, we used large language models, specifically Google’s Gemma2 (27B parameters). 
The prompts used for component extraction are available in the public code repository (see the Additional 
Information section). Each newly generated node was then represented by an embedding computed using 
BERT, based on its textual description. Finally, to ensure consistency among nodes, we applied a standardization 
process. For smaller datasets, this step was performed manually by the authors. For larger datasets, we adopted 
an automatic merging strategy based on embedding similarity, unifying nodes that referred to the same entity 
with minor textual variations.

We propose an additional enhancement to strengthen the GNN’s message passing by connecting relation 
nodes with similar nodes. Specifically, this strategy aims to improve message passing between nodes representing 
causal relationships. To achieve this, we employ a strategy based on Large Language Models (LLMs) and the 
heterogeneous hypergraph. The strategy involves exploring the event texts, along with related heterogeneous 
nodes (such as topic, who, where, and when), into the LLM to query whether the relationship between the events 
is potentially causal. If the LLM responds affirmatively, we connect the relationship between the events to the 
three nearest causal training relationships, based on the cosine similarity of their BERT embeddings. Conversely, 
if the LLM responds negatively, we connect the relationship to the three nearest predicted negatively relation 
nodes. We define the set of new heterogeneous nodes topic, who, where, and when as V he. Thus, we define our 
heterogeneous hypergraph as HHG = (V hhg, Ahhg), where V hhg = V hg ∪ V he, and Ahhg  represents the 
edges Ahg  plus the edges between the events and the heterogeneous nodes, and the enriched edges between the 
node-edges. We illustrate our definitions of graph, homogenous hypergraph, and heterogeneous hypergraph in 
Fig. 3.

We leverage Graph Neural Networks (GNNs) to learn representations in our causal hypergraph. The GNNs 
take as input the structured representation of each node, vi ∈ V hhg , and the adjacency matrix Ahhg , both of 
which are critical for the representation learning process. In this paper, we explore the Graph Convolutional 
Network (GCN)32 defined by Equation 1 and its aggregate and combine steps (Equation 2):

	 H(l+1) =σ(D̃− 1
2 Ã

hhg
D̃

− 1
2 H(l)W (l)), � (1)

	 hl
vi

=σ(W (l) · MEAN{hl−1
vj

: vj ∈ {Nvi ∪ vi}}, � (2)
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where, where H(l) is the input to the l-th GNN layer, and H l+1 is the output of this layer, Ãhhg = Ahhg + I  
is the adjacency matrix with self relations, I  is the identity matrix, D̃ is a diagonal matrix with 
D̃ =

∑
j

Ã
hhg
ij , σ is an activation function, V hhg ≡ H(0), W (l) represents trainable weights across the GNN 

layers W = {W (1), · · · , W (L)}, and Nvi  are the vi neighbors.
GNNs with sphere loss functions are state-of-the-art for one-class graph neural networks13,33. These methods 

learn hL
vi

 encapsulating the nodes of interest. To detect causality through our hypergraph, we explore this 
strategy13. We use the sphere loss function Locl defined in Equation 3.

	
Locl(W ) = 1

|V in|

|V in|∑
i=1

{
oi + 1, if oi > 0
exp(oi), otherwise ,� (3)

	 oi = ∥h(L)
vi

− c∥2 − r2,� (4)

where Eq. 4 represents the value indicating whether the interest instance vi is within the hypersphere with radius 
r and center c and V in are the set of interest nodes-edges in our hypergraph (with the causal class).

By using only the Locl loss, all nodes would converge to the center, leading to a collapse of the representations. 
To address this issue, following the approach in Gôlo et al.13, we incorporate our Graph Convolutional Network 
(GCN) layer into a Graph Autoencoder (GAE). GAEs have an unsupervised loss function that acts as a constraint 
to prevent this collapse, thus ensuring the nodes do not all converge to the center. Therefore, we combine the 
sphere loss function with the loss function of GAEs13, which has demonstrated superior and state-of-the-art 
results compared to other methods33. The GAE utilizes GNN layers as an encoder and the inner product of the 
latent representations as a decoder to learn effective node embeddings. Equation 5 provides the formal definition 
of a GAE34:

	
GAE =

{
Encoder : H(L), T̂ = g(Vr, Ar; W)
Decoder : Âr = σ(H(L) · H(L)⊺)

,� (5)

	
Lgae(W ) = − 1

|V |

|V |∑
i=0

|V |∑
j=0

(Ar
ij · logÂr

ij + (1 − Ar
ij) · log(1 − Âr

ij)),� (6)

where T̂  is the predicted vector of node types by our model (will be used in our third loss in Equation  7), 
Vr  and Ar  are the node-edges (relations) and the adjacency matrix for these node-edges, i.e., we apply the 
reconstruction loss only in the relation nodes. σ(.) is a logistic sigmoid function. The GAE loss function Lgae 
is defined in Equation 6 (binary cross entropy loss applied in the adjacency matrix).

To construct our triple loss and leverage the benefits of building a heterogeneous hypergraph, we incorporate 
a cross-entropy loss for node types, contributing to our heterogeneous loss. By adding heterogeneity components, 
we influence both the sphere and reconstruction loss functions. In addition to applying the sphere loss function 
to the primary relation nodes in the heterogeneous hypergraph, we also introduce a cross-entropy loss function 
for the node types (event, relation, topic, who, where, and when). This strategy aims to enhance the model’s 
ability to correctly predict the node type based on its learned representation. Our motivation is that by learning 
representations that clearly distinguish between node types, the model can better separate interest nodes from 
non-interest nodes through the sphere loss. This loss function is defined as follows:

	
Lce(W ) = − 1

|V |

|V |∑
i=0

(T i · logT̂ i + (1 − T i) · log(1 − T̂ i)).� (7)

where T  is the vector with the node types and T̂  is the node types predicted vector.
When combining multiple loss functions, a common challenge is balancing their scales, as one loss function 

could dominate the learning process and cause other tasks to be neglected35. To address this issue, we introduce three 
impact factors, α, β, and δ, to balance the contributions of each loss function. Additionally, graph representation 
learning may require adjustments in these impact factors at different stages of the learning process to optimize 
both node representation learning and causal discovery performance. For example, during the early stages of 

Fig. 3.  Illustration of our homogeneous and heterogeneous hypergraph notations.
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training, we assign more weight to the cross-entropy loss (Lce) to help the model distinguish between node types. 
As the training progresses, we gradually shift the focus toward Locl and Lrec, ensuring that the representation 
of relation nodes aligns with the sphere, with causal relations encapsulated within the sphere and non-causal 
relations positioned outside. To facilitate this, we propose a strategy for dynamically adjusting the impact factors 
during training. Our final loss function is therefore defined as: L = (Locl ∗ α) + (Lgae ∗ β) + (Lce ∗ δ), 
where α, β, and δ are impact factors for the losses.

We present the causal graph, causal hypergraph, causal heterogeneous hypergraph, the GCN step for 
representation learning in the heterogeneous hypergraph, as well as the sphere loss, GAE loss, and node type 
loss. In summary, our proposal not only introduces a novel approach for causal event representation through 
heterogeneous hypergraphs but also emphasizes interpretability as a central design principle. Interpretability 
has become increasingly important due to the growing demand for transparent and explainable models across 
different research domains. To this end, we propose that eCHOLGA inherently learns three-dimensional 
representations, thereby providing interpretability and enabling us to better understand the real-time 
representation learning process. This choice allows direct interpretation through the visualization of the latent 
space without the need for additional dimensionality reduction. Moreover, this 3D structure enables a clear 
understanding of the model decision since instances inside the sphere correspond to causal node–edges, while 
those outside represent non-causal ones. Overall, the three-dimensional design of eCHOLGA goes beyond 
improving performance. It transforms the model into an interpretable and interactive system, bridging the gap 
between representation learning and interpretability. This design choice provides researchers and practitioners 
with a concrete tool to observe, analyze, and trust the causal reasoning process, reinforcing interpretability as a 
core contribution of our proposal.

Experimental evaluation
This section presents the experimental evaluation. We present the four used datasets, experimental settings, 
results, and discussion. Our research goal is to demonstrate that our eCHOLGA proposal outperforms other 
SOTA methods for causal discovery in event pairs, through the new heterogeneous hypergraph proposed. Another 
goal is to demonstrate that our method learns low-dimensional representations, providing interpretability, even 
considering the heterogeneous scenario.

Datasets
We explore four causality datasets, each consisting of event pairs, where each event is represented by a text 
description. Each event pair is labeled as either causal or non_causal. The first dataset is the Risk Models 
dataset2, which was introduced by2 to analyze models created by expert analysts for configuring decision support 
systems36. These models are structured as graphs, where the nodes represent textual descriptions of conditions or 
events, and the edges denote causal relationships. The models are based on enterprise risk management, expert 
knowledge, literature reviews, and reports. To create the cause-effect pairs dataset, the authors transformed each 
edge in the graph into a pair of texts with a causal label.

The second dataset is FinCausal, which focuses on detecting causality associated with a quantified fact. In this 
dataset, an event refers to the emergence of a new object or context relative to a previous situation. Therefore, the 
dataset emphasizes detecting causality related to the transformation of financial objects embedded in quantified 
facts. The third dataset is Headlines37, which focuses on collecting implicit causal relationships between 
sentences. This dataset consists of pairs of English and Russian news headlines, each labeled with a causality 
tag obtained through crowdsourcing. The authors intentionally excluded texts from the full news articles, as the 
headlines themselves were considered representative of events. The labels were assigned based on the rule that 
the first headline causes the second if the second headline would be impossible without the first. In other words, 
if the first event did not occur, the second event could not happen either.

The fourth dataset is the Twitter dataset38, which contains tweets labeled as either causal or non-causal. The 
tweets in this dataset are related to the Commonwealth Games held on the Gold Coast in 2018. The dataset was 
manually annotated. Table 2 presents the details of the datasets. The Risk dataset comprises 402 causal pairs 
with 223 unique events. For the non-interest class, 402 pairs were randomly selected to be labeled as non-causal. 
The FinCausal dataset includes 536 causal pairs with 860 unique events. For the non-interest class, 540 non-
causal pairs were randomly chosen. The Headlines dataset has 909 causal pairs, 1603 non-causal pairs, and 4463 
unique events. The Twitter dataset comprises 459 causal pairs, 457 non-causal pairs, and 1772 events. Table 2 
also provides the node information after hypergraph enrichment. Thus, Risk and FinCausal generate connected 
hypergraphs, while Headlines and Twitter generate disconnected hypergraphs, since they present a scenario 
closer to the real world with naturally obtained counterexamples.

Name Causal Non_causal Events Relation Topic Who When Where

Risk 402 402 223 769 2 27 0 3

FinCausal 536 540 860 986 25 66 16 23

Headlines 909 1603 4463 2494 101 2484 57 606

Twitter 459 457 1772 905 32 508 33 88

Table 2.  Dataset details for the number of causal and non-causal event pairs, and the number of event, 
relation, topic, who, when, and where nodes in the heterogeneous hypergraph generated for each dataset.
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Experimental setting
We compare the eCHOLGA with the state-of-the-art text-based methods for causal discovery considering 
BERT, such as NLM-BERT, NLM-BERT++, and CF-Context2–4 and LLM methods5. We compare our method 
with five large language models using the strategy of Pywhy-LLM library. Different LLMs have been proposed in 
the last three years, and they have differences that generate advantages and disadvantages for each model39. We 
use the 5-fold cross-validation for our experiments. We use four folds of the causal class to train, the remaining 
fold to test, and one fold of the non-causal class to test. We use the f1-macro to compare all models. We use 
BERT embeddings as representations of event-type nodes and enriched nodes (topic, who, when, and where). 
Furthermore, we use the average of the two event embeddings as the initial representation of the relation node 
type (node-edges). Finally, we execute the experimental evaluation on a machine with an Ubuntu 24 computer 
with an i9-14900KF CPU, RTX A5000 (24 GB RAM), and 128 GB RAM. In this computer setting, the LLM 
gemma2 with 27 billion parameters extracts the components to enrich one event in 2.5 seconds.

We explore in our methodology four families of LLMs open-source: the LLM from meta (LLaMa)40, from 
Microsoft (Phi)41, from Google (Gemma)42, and from Alibaba Cloud (Qwen)43. Each LLM has a number of 
parameters: Llama 3 (8 and 70 billion of parameters), Phi 3 (14 billion of parameters), Gemma 2 (27 billion of 
parameters), and Qwen 2 (7 billion of parameters). We compare eCHOLGA with one-class methods since we 
have an initial representation for each sentence (BERT embedding) and can generate an initial representation 
for causal relationships (average of causal and effect sentences). In this sense, we explore two one-class methods: 
One-Class Support Vector Machines (OCSVM)44 and Isolation Forest (IsoForest)45. Finally, we compare 
eCHOLGA with the eCOLGAT12. We use the following parameters for the methods:

•	 LLMs: Temperature = 0 and max_sequence_length = 10240;
•	 NLM-BERT, NLM-BERT++: thresholds = {0, 0.3, 0.6, 0.9};
•	 CF-Context: epochs = {300}, patience = {3}, walkSize = {1}, samples = {100}, ρ = 0.025, and joint = {0};
•	 OCSVM: kernel = {rbf, poly, sigmoid, linear}, ν = {0.05 ∗ b}, b ∈ [1..19], and γ = { scale, auto };
•	 IsoForest: n◦ of estimators = {1, 2, 5, 10, 50, 100, 200, 500}, maximum samples and features = 

{0.1 ∗ b}, b ∈ [1..10];
•	 eCOLGAT: radius = {0.35, 0.45, 0.5}, epochs = {700, 1000, 1500}, heads= {1, 2, 3}, lr = {0.001, 0.0001,  

0.0005};
•	 eCHOLGA: radius = {0.3, 0.4, 0.5}, epochs = {6000, 3000}, and learning rate = {0.008}. enriched relation 

edges = {Qwen2.5:14b, Phi4:14b}. α, β, and δ have initial and final values and are increased (α, β) or decreased 
(δ) considering 100 epochs (During our initial empirical tests, we explored different initial, final, and incre-
mental values for α, β, and δ, in which the best values on at least one dataset were selected to compose the hy-
perparameter set). final_α = {0.8, 0.7, 0.6, 0.5}, final_β = {0, 0.15, 0.2, 0.3}, final_δ = {0.5, 0.1, 0.05}, 
initial_α = {0}, initial_β = {0}, initial_δ = {1}, iteration_α = {0.02, 0.04, 0.05}, iteration_β = {0.01}, 
iteration_δ = {0.02, 0.04, 0.05}.

Results and discussion
Table 3 presents the results of our study, showing the average f1 macro across five folds. We evaluate three 
baseline methods (NLM-BERT, NLM-BERT++, and CF-Context) based on their previous results on the Risk 
and Twitter datasets. We show results from eight models alongside our proposed method, eCHOLGA, across 
all four datasets. The highest-performing models are highlighted in bold, while the second-best results are 
underlined. eCHOLGA achieves state-of-the-art performance in three datasets, while CF-Context outperforms 
other methods in the Twitter dataset. Gemma2 obtains the second-best results in the Headlines and FinCausal 
datasets, whereas eCOLGAT and NLM-BERT++ achieve second-best performance in the Risk and Twitter 
datasets, respectively. Notably, two-step methods (BERT + OCL algorithm) yield the lowest overall results.

Method Risk Twitter Headlines FinCausal

NLM-BERT 0.669 – – –

NLM-BERT++ 0.667 0.668 – –

CF-Context 0.624 0.673 – –

BERT + IsoForest 0.324 0.535 0.488 0.502

BERT + OCSVM 0.672 0.497 0.617 0.544

LLaMa 3 (8b) 0.727 0.570 0.610 0.761

Phi 3 (14b) 0.659 0.509 0.626 0.695

Qwen 2 (7b) 0.691 0.472 0.654 0.719

Gemma 2 (27b) 0.720 0.630 0.734 0.822

LLaMa 3 (70b) 0.726 0.623 0.728 0.767

eCOLGAT 0.771 0.563 0.661 0.512

eCHOLGA 0.776 0.564 0.806 0.824

Table 3.  f1-macro for each method in the four datasets. The best results are in bold, and the second best are 
underlined. We report the results of NLM-BERT, NLM-BERT++, and CF-Context from the original papers. 
We update the results from LLMs in the Risk dataset due to the prompt update.
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In the Risk dataset, eCOLGAT achieves a competitive second-best result, nearly matching eCHOLGA. 
The third-best model, LLama 3 (8B), lags by approximately 5%, underscoring the robustness of both one-class 
and graph-based methods for this dataset. A similar pattern emerges in the FinCausal dataset, with Gemma2 
securing the second-best performance. However, LLama 3 (70B) follows closely, performing only 6% worse 
than eCHOLGA, indicating that this LLM is particularly effective in this dataset. For the Headlines and Twitter 
datasets, the performance gap between eCHOLGA and the best-performing models is more pronounced. In 
the Headlines dataset, eCHOLGA outperforms Gemma2 by 7%, demonstrating its effectiveness in this context. 
However, in the Twitter dataset, a BERT-based method outperforms eCHOLGA by 10%, highlighting that even 
non-graph-based models can excel in causal discovery. This also reinforces the importance of using BERT 
embeddings as the initial representation of nodes in graph-based methods like eCHOLGA. Additionally, the 
informal and concise nature of Twitter texts presents unique challenges for causal discovery, likely contributing 
to the observed performance differences.

In the Risk dataset, transforming the hypergraph into a heterogeneous hypergraph did not significantly impact 
performance, as eCOLGAT and eCHOLGA achieved similar results. This can be attributed to how non-causal 
instances were generated by randomly pairing two sentences, resulting in a connected hypergraph. Nonetheless, 
even in this already connected scenario, our proposed enrichment strategy demonstrated its potential to enhance 
performance. This effect was particularly evident in the FinCausal dataset, which also contains synthetically 
generated non-causal pairs, where eCHOLGA significantly outperformed eCOLGAT. However, the opposite 
is also true: in a disconnected hypergraph scenario, enrichment does not always guarantee performance gains. 
This was observed in the Twitter and Headlines datasets, where non-causal instances naturally occur. While 
enrichment led to substantial improvements in the Headlines dataset, its impact on the Twitter dataset was less 
pronounced.

Our strongest competitor was LLMs. Although LLMs are considered unsupervised methods, their immense 
computational power stems from having been trained on trillions of texts, potentially including causal and non-
causal event pairs. This makes outperforming them a challenging task. Nevertheless, eCHOLGA outperformed 
LLMs in two datasets (Headlines and Risk) and achieved competitive, near-equivalent performance in the other 
two (FinCausal and Twitter). Notably, only in one of the evaluated scenarios LLMs outperform eCHOLGA, 
highlighting that despite their robustness, they also face challenges in event causal discovery. Another key 
observation is that increasing the number of parameters in LLMs does not lead to better results. Moreover, 
models with more parameters require significantly more computational resources, which is a disadvantage.

eCOLGAT served as the basis for eCHOLGA. In the Headlines and FinCausal datasets, eCHOLGA 
outperformed eCOLGAT by 25–30% in macro f1 score. This demonstrates the impact of hypergraph enrichment 
and the new triple heterogeneous loss, two key improvements in eCHOLGA over eCOLGAT, that led to better 
performance. In contrast, the results of eCOLGAT and eCHOLGA were similar for the Risk and Twitter datasets. 
While enrichment did not significantly improve performance in these cases, it offers additional advantages 
beyond accuracy. A richer hypergraph structure enables better explainability techniques to interpret causality. 
Furthermore, with more diverse information embedded in the graph, new composite loss functions can be 
explored to enhance learning, an opportunity that is more limited in homogeneous hypergraphs.

The use of LLMs for event enrichment has shown consistently positive results, both in our experiments and 
in related literature46,47. Studies have demonstrated that LLMs are particularly effective in extracting 5W1H 
components, Who, What, When, Where, Why, and How, from unstructured text, which are crucial elements for 
representing events in structured forms46,47. While such models can occasionally produce incorrect inferences, 
their overall accuracy and ability to capture semantically meaningful relationships generally outweigh these 
errors. Nevertheless, before applying the enrichment strategy, it is advisable to conduct preliminary evaluations 
to assess the LLM’s reliability for the specific domain or dataset. In our case, this approach proved beneficial 
because, despite potential inaccuracies, the LLM-driven enrichment led to clear performance improvements, 
confirming that the advantages of using LLMs for enrichment surpass their limitations.

Figure 4 illustrates the interpretability results for the Headlines, FinCausal, and Risk datasets. These figures 
present the learned representations generated by eCHOLGA, showcasing its interpretability capabilities. 
Specifically, we visualize the representations of all nodes and node-edges in our heterogeneous hypergraph, 
highlighting the learning process. Since our learned representations are three-dimensional, it is possible to create 
a real-time video of the learning process without additional post-processing. Each figure contains eight plots. In 
the top four plots, each color represents a different node type. In the bottom four, yellow points indicate non-
causal relation nodes, while purple points represent causal relation nodes. It is important to note that the color 
schemes in the top and bottom plots do not correspond to the same node types. We selected four key stages of 
the learning process to illustrate the evolution of the embeddings: (1) the initial stage (0–1% of training), (2) an 
early intermediate stage ( 25% of training), (3) a late intermediate stage ( 75%), and (4) the final stage (model 
convergence).

The interpretability of eCHOLGA allows us to observe the learning dynamics, as demonstrated in Fig. 4. 
Initially, eCHOLGA prioritizes node type prediction, as the impact factor of the cross-entropy loss (Lce) is set 
higher at the beginning. As training progresses, the one-class loss (Locl) gains more influence, causing relation 
nodes, particularly causal relations, to move toward the sphere. Meanwhile, the reconstruction loss (Lgae) also 
becomes more significant, leading to a more structured node distribution. In the final training stages, all three 
losses work together: causal relations are clustered near the sphere (driven by Locl), non-causal relations remain 
outside the sphere (regulated by Lgae), and node types remain well-separated, further reinforcing the one-class 
loss (Lce).

We propose an ablation study to assess the impact of the different components of our composed loss function 
and the strategy used to enrich the edges between relation nodes, as discussed in Section “eCHOLGA: edge 
classification through heterogeneous one-cLAss graph autoencoder”. We evaluate four configurations: (i) using 
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only the OCL function (Locl), similar to the method of Wang et al.33, (ii) using a combination of one-class and 
reconstruction losses (Locl + Lrec), similar to the method of Gôlo et al.13, (iii) using all three components 
without node-edge relations strategy (Locl + Lrec + Lce), our proposal without enriched edges between node-
edges through LLMs, and (iv) using the full setup of eCHOLGA (results from Table 3), which includes all loss 
components along with the strategy for adding edges between relation-type nodes. Table  4 summarizes the 
ablation results. The best values are shown in bold.

Through the ablation study, we observe that using only a one-class loss in a heterogeneous graph is not sufficient 
to predict causality with high performance. When the reconstruction loss is added, performance improves, but it 
still falls short of the combination of all three losses. Using the three losses together improved results in 50% of 
the datasets, and in the remaining 50% where performance did not improve, it also did not degrade significantly. 
This suggests that the third loss generally contributes positively to learning in heterogeneous graphs. Finally, the 
best results were achieved by implementing the triplet loss and the enrichment of the heterogeneous hypergraph 
by adding edges between relation-type nodes (original graph edges transformed into nodes). Therefore, we 
identify the step of constructing edges between relation-type nodes as one of the key stages of eCHOLGA, 
highlighting the importance of these connections for learning. This finding also indicates that the GNN’s 
aggregation steps benefited from these enriched edges, which, when added, improved the GNN’s performance.

Conclusion and future work
In this study, we introduce eCHOLGA, a novel end-to-end and interpretable method for causal discovery 
between event pairs. eCHOLGA leverages graph neural networks, heterogeneous hypergraphs, and one-class 
learning to enhance causal inference. It employs a hypergraph structure to improve edge representation learning 
via graph neural networks. To further enrich and optimize learning, we propose transforming the hypergraph 
into a heterogeneous hypergraph, mitigating issues that arise when hypergraphs are disconnected. Our approach 
introduces a new heterogeneous triple-loss function, incorporating: (i) a sphere loss function to enforce one-
class learning, (ii) a reconstruction loss function, and (iii) a heterogeneous loss function to predict node types. 
The sphere loss function enables eCHOLGA to operate as a one-class learning method, confining the model’s 
focus to causal relations without requiring exhaustive non-causal relation coverage. Additionally, eCHOLGA 

Scenarios Risk Twitter Headlines FinCausal

Locl 0.324 0.334 0.264 0.312

Locl  + Lrec 0.657 0.496 0.264 0.394

Locl  + Lrec  + Lce 0.619 0.488 0.572 0.415

Locl  + Lrec  + Lce  + enriched edges 0.776 0.564 0.806 0.824

Table 4.  Ablation study for eCHOLGA considering its loss components and the enriched node-edges 
relations.

 

Fig. 4.  Interpretability analysis of the three-dimensional representations of eCHOLGA in the FinCausal 
dataset. In the top four plots, each color indicates one node type, and in the bottom four plots, the colors 
indicate the causal (purple) and the non-causal (yellow) classes.
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utilizes three-dimensional representations, providing interpretability in the causal discovery process for event 
pairs.

Our results demonstrate that eCHOLGA outperforms eleven competing methods, including LLM-based, 
BERT-based, and one-class-based approaches, in three out of four datasets. To illustrate the interpretability 
of our model, we visualize the three-dimensional learned embeddings, revealing how eCHOLGA integrates 
multiple loss functions. These plots show how eCHOLGA separates node types while encapsulating causal 
instances within the sphere, where node-type and reconstruction losses act as constraints to the one-class loss. 
This visualization enables a deeper understanding of eCHOLGA’s learning process. Selecting an appropriate 
causal discovery method depends on the user’s needs. If a user prioritizes ease of use and does not require model 
training or parameter tuning, LLMs are the most convenient choice, as they perform well without additional 
training. However, if the goal is to understand and refine results while maintaining interpretability, eCHOLGA 
is the superior choice. With minimal training and labeling of only causal event relations, eCHOLGA delivers 
competitive or even superior results to LLMs while offering interpretability.

eCHOLGA also has some limitations. The method relies on LLMs to establish connections between relation 
nodes, meaning that poor LLM performance can negatively impact eCHOLGA’s results, as observed in the 
Twitter dataset. Thus, the approach as a whole depends on the quality of the chosen LLM and its performance. 
To address this, future work will explore alternative strategies for connecting similar relation nodes, reducing 
dependence on LLMs. Potential solutions include integrating LLMs with additional methods through consensus 
or ensemble strategies. Additionally, we plan to investigate alternative heterogeneous GNN layers to further 
enhance eCHOLGA’s performance. We highlight that it is pertinent to investigate in future work which 
combinations of hyperparameters of different LLMs generate better heterogeneous hypergraphs with better cost-
benefit, considering different methods to detect causality. Finally, Future work could explore domain adaptation 
techniques for causal graphs, enabling transfer of causal knowledge across domains or datasets48.

Data availability
Source codes and datasets: https://github.com/GoloMarcos/eCHOLGA. There are no Competing Interests.

Received: 30 May 2025; Accepted: 12 November 2025

References
	 1.	 Kayesh, H., Islam, M. S. & Wang, J. Event causality detection in tweets by context word extension and neural networks. In Int. Conf. 

on parallel and distributed computing, applications and technologies 352–357 (IEEE, 2019).
	 2.	 Hassanzadeh, O. et al. Answering binary causal questions through large-scale text mining an evaluation using cause-effect pairs 

from human experts. IJCAI, 5003–5009 (2019).
	 3.	 Kayesh, H. et al. Answering binary causal questions: A transfer learning based approach. In 2020 International Joint Conference on 

Neural Networks (IJCNN) 1–9 (IEEE, 2020).
	 4.	 Kayesh, H., Islam, M. S. & Wang, J. Answering binary causal questions using role-oriented concept embedding. IEEE Trans. Artif. 

Intell. 4, 1426–1436 (2023).
	 5.	 Liu, X. et al. Large language models and causal inference in collaboration: A comprehensive survey. arXiv:2403.09606 (2024).
	 6.	 Zanga, A., Ozkirimli, E. & Stella, F. A survey on causal discovery: Theory and practice. Int. J. Approximate Reason. 151, 101–129 

(2022).
	 7.	 Jo, J. et al. Edge representation learning with hypergraphs. In NeurIPS 7534–7546 (NeurIPS foundation, 2021).
	 8.	 Sasaki, H., Fujii, M., Sakaji, H. & Masuyama, S. Enhancing risk analysis with gnn: Edge classification in risk causality from 

securities reports. Int. J. Inf. Manag. Data Insights 4, 100217 (2024).
	 9.	 Bing, R. et al. Heterogeneous graph neural networks analysis: a survey of techniques, evaluations and applications. Artif. Intell. Rev. 

56, 8003–8042 (2023).
	10.	 Seliya, N., Abdollah Zadeh, A. & Khoshgoftaar, T. M. A. literature review on one-class classification and its potential applications 

in big data. J. Big Data 8, 1–31 (2021).
	11.	 Emmert-Streib, F. & Dehmer, M. Taxonomy of machine learning paradigms: A data-centric perspective. Wiley Interdis. Rev.: Data 

Min. Knowl. Disc. 12, e1470 (2022).
	12.	 Gôlo, M. P. S. & Marcacini, R. M. One-class learning for text causal discovery through hypergraph neural networks. II Workshop 

on Causal Discovery (CaDis) , 1–12 (2024).
	13.	 Gôlo, M. P. S., de Medeiros Junior, J. G. B., Silva, D. F. & Marcacini, R. M. One-class graph autoencoder: A new end-to-end, low-

dimensional, and interpretable approach for node classification. Inf. Sci. 708, 122060 (2025).
	14.	 Zhang, F., Fan, H., Wang, R., Li, Z. & Liang, T. Deep dual support vector data description for anomaly detection on attributed 

networks. Int. J. Intell. Syst. 37, 1509–1528 (2022).
	15.	 Wan, G., Wu, Y., Hu, M., Chu, Z. & Li, S. Bridging causal discovery and large language models: A comprehensive survey of 

integrative approaches and future directions. arXiv:2402.11068 (2024).
	16.	 Minghim, R., Milos, E., Provia, K. et al. Ggnn@ causal news corpus 2022: Gated graph neural networks for causal event classification 

from social-political news articles. In Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of 
Socio-political Events from Text (CASE), 85–90 (2022).

	17.	 Sakaji, H. & Izumi, K. Financial causality extraction based on universal dependencies and clue expressions. N. Gener. Comput. 41, 
839–857 (2023).

	18.	 Ju, W. et al. A comprehensive survey on deep graph representation learning. Neural Netw. 173, 106207 (2024).
	19.	 Zhao, Y. et al. Dynamic hypergraph structure learning for traffic flow forecasting. In 2023 IEEE 39th International Conference on 

Data Engineering (ICDE) 2303–2316 (IEEE, 2023).
	20.	 Ju, W. et al. Hypergraph-enhanced dual semi-supervised graph classification. In International Conference on Machine Learning 

22594–22604 (PMLR, 2024).
	21.	 Yi, S. et al. Hypergraph consistency learning with relational distillation. IEEE Trans. Multimed. 27, 7028–7039 (2025).
	22.	 Gao, Y., Feng, Y., Ji, S. & Ji, R. Hgnn+: General hypergraph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45, 3181–3199 

(2022).
	23.	 Wu, H. et al. Collaborative contrastive learning for hypergraph node classification. Pattern Recogn. 146, 109995 (2024).
	24.	 Wu, H., Yan, Y. & Ng, M.K.-P. Hypergraph collaborative network on vertices and hyperedges. IEEE Trans. Pattern Anal. Mach. 

Intell. 45, 3245–3258 (2022).

Scientific Reports |        (2025) 15:44971 11| https://doi.org/10.1038/s41598-025-28842-5

www.nature.com/scientificreports/

https://github.com/GoloMarcos/eCHOLGA
http://arxiv.org/abs/2403.09606
http://arxiv.org/abs/2402.11068
http://www.nature.com/scientificreports


	25.	 Mohammed, S., Getahun, F. & Chbeir, R. Semantic event relationships identification and representation using hypergraph in 
multimedia digital ecosystem. J. Intell. Inf. Syst. 60, 463–493 (2023).

	26.	 Reimers, N. & Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings Conference on 
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP), 1–11 (Association for Computational Linguistics, 2019).

	27.	 Ma, J. et al. Learning causal effects on hypergraphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery 
and Data Mining, 1202–1212 (2022).

	28.	 Jin, M. et al. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. 
Trans. Pattern Anal. Mach. Intell. 46, 10466–10485 (2024).

	29.	 Mattos, J. P. R. & Marcacini, R. M. Semi-supervised graph attention networks for event representation learning. In 2021 IEEE 
International Conference on Data Mining (ICDM) 1234–1239 (IEEE, 2021).

	30.	 Hamborg, F., Lachnit, S., Schubotz, M., Hepp, T. & Gipp, B. Giveme5w: main event retrieval from news articles by extraction of the 
five journalistic w questions. In International conference on information 356–366 (Springer, 2018).

	31.	 Grootendorst, M. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint (2022).
	32.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International 

Conference on Learning Representations, 1–14 (Open Review, Toulon, France, 2017).
	33.	 Wang, X. et al. One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33, 12073–

12085 (2021).
	34.	 Kipf, T. N. & Welling, M. Variational graph auto-encoders. stat 1050, 21 (2016).
	35.	 Qin, Y., Wang, X., Zhang, Z., Chen, H. & Zhu, W. Multi-task graph neural architecture search with task-aware collaboration and 

curriculum. In Thirty-seventh Conference on Neural Information Processing Systems, 1–13 (2023).
	36.	 Sohrabi, S. et al. Ibm scenario planning advisor: Plan recognition as ai planning in practice. AI Commun. 32, 1–13 (2019).
	37.	 Gusev, I. & Tikhonov, A. Headlinecause: A dataset of news headlines for detecting causalities. In Proceedings of the Thirteenth 

Language Resources and Evaluation Conference, 6153–6161 (2022).
	38.	 Kayesh, H., Islam, M. S. & Wang, J. On event causality detection in tweets. arXiv:1901.03526 (2019).
	39.	 Zhao, W. X. et al. A survey of large language models. arXiv (2023).
	40.	 Meta. The llama 3 herd of models (2024). arXiv:2407.21783.
	41.	 Microsoft. Phi-3 technical report: A highly capable language model locally on your phone (2024). arXiv:2404.14219.
	42.	 Gemma. Gemma 2: Improving open language models at a practical size (2024). arXiv:2408.00118.
	43.	 Alibaba. Qwen technical report (2023). arXiv:2309.16609.
	44.	 Alam, S., Sonbhadra, S. K., Agarwal, S. & Nagabhushan, P. One-class support vector classifiers: A survey. Knowl.-Based Syst. 196, 

105754 (2020).
	45.	 Liu, F. T., Ting, K. M. & Zhou, Z.-H. Isolation forest. In int. conf. on data mining 413–422 (IEEE, 2008).
	46.	 Grande, E. & Begga, A. Syntax savants-ua at iberlef 2024: Leveraging flan-t5-xxl for automatic 5w1h identification in texts. In Proc. 

of the Iberian Languages Evaluation Forum (IberLEF 2024) (CEUR, 2024).
	47.	 Akter, M. & Santu, S. K. K. Fans: A facet-based narrative similarity metric. arXiv:2309.04823 (2023).
	48.	 Luo, J. et al. Gala: Graph diffusion-based alignment with jigsaw for source-free domain adaptation. IEEE Trans. Pattern Anal. 

Mach. Intell. 46, 9038–9051 (2024).

Acknowledgements
We also acknowledge support from the Google Latin America PhD Fellowship. We would like to thank the 
Google mentor, Mara Finkelstein, for her valuable feedback and support in reviewing this manuscript.

Author contributions
M. P. S. Gôlo: Writing, Visualization, Software, Resources, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization. R. M. Marcacini: Writing – review & editing, Validation, Supervision, Funding 
acquisition, Conceptualization.

Funding
This work was partially supported by CAPES (Process No. 88887.671481/2022-00), CNPq (Process No. 
316507/2023-7), and the São Paulo Research Foundation (FAPESP), Brazil (Grants 2024/15430-5, 2022/09091-
8, 2023/10100-4, 2019/07665-4, and 2013/07375-0).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.P.S.G. or R.M.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:44971 12| https://doi.org/10.1038/s41598-025-28842-5

www.nature.com/scientificreports/

http://arxiv.org/abs/1901.03526
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2309.04823
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:44971 13| https://doi.org/10.1038/s41598-025-28842-5

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿One-class edge classification through heterogeneous hypergraph for causal discovery
	﻿Related work
	﻿﻿eCHOLGA: edge classification through heterogeneous one-cLAss graph autoencoder
	﻿Experimental evaluation
	﻿Datasets
	﻿Experimental setting
	﻿Results and discussion

	﻿Conclusion and future work
	﻿References


