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Abstract. The development of Automatic Speech Recognition (ASR) technolo-
gies for healthcare applications is hindered by the limited availability of pub-
licly accessible speech corpora that reflect both natural medical dialogues and
the acoustic conditions typically found in clinical environments. In this study,
we present the creation and characterization of MedDialogue-Audio, a new syn-
thetic English-language corpus designed to address this gap. The dataset was
derived from the MedDialog-EN transcription set and enriched through a multi-
stage processing pipeline that involved text normalization with a large language
model, speech synthesis, and the controlled addition of both white noise and
hospital ambient sounds. We provide descriptive statistics for the corpus, which
comprises more than 10,000 dialogues, as well as benchmarking results from
leading ASR models. The experiments assess transcription performance across
varying signal-to-noise ratios and establish baseline metrics to support future
research in this field.

1. Introduction

The use of artificial intelligence (AI) systems, such as Large Language Models (LLMs)
and speech processing technologies, is playing an increasingly prominent role in health-
care applications. These solutions aim to optimize clinical documentation, support profes-
sional activities, and improve access to information [Arora et al. 2025, Lee et al. 2022].
In this context, Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) tech-
nologies have emerged as promising tools, particularly for automating records and docu-
menting interactions between physicians and patients [Nurfadhilah et al. 2021].

The development and evaluation of such technologies, however, fundamentally
depend on the availability of speech datasets that are representative of the target domain.
In the healthcare field, the availability of public datasets remains notably limited, pri-
marily due to ethical and legal privacy constraints and the high complexity associated
with collecting and anonymizing clinical data [Le-Duc 2024]. As a result, many exist-
ing resources are access-restricted, such as the Brazilian Portuguese corpus described in
[Gongalves et al. 2024].
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To mitigate this scarcity, the scientific community has invested in the creation of
public corpora. Several initiatives focus on specific languages, including Vietnamese (Vi-
etMed [Le-Duc 2024]) and Indonesian (BPPT [Nurfadhilah et al. 2021]). For English,
synthetic data generation has emerged as a strategy to overcome privacy barriers, as ex-
emplified by United-MedASR [Banerjee et al. 2024]. Despite their scale, this and similar
approaches present critical limitations: the audio samples often correspond to technical
documents or isolated terms, failing to simulate conversational exchanges and typically
lacking background noise.

More recently, MultiMed [Le-Duc et al. 2025] introduced a large-scale multilin-
gual dataset for medical ASR, comprising real clinical conversations in five languages.
The speech data were collected from publicly available medical videos on YouTube and
manually curated to ensure transcription quality. However, its focus on multilingual, real-
world recordings contrasts with our approach, which leverages synthetic generation to
systematically simulate English-language medical dialogues under controlled noise con-
ditions. Our method directly addresses the lack of publicly available English datasets with
realistic conversational structure and ensures reproducibility for benchmarking purposes.

These gaps highlight two main challenges for the reliable deployment of ASR sys-
tems in real-world clinical settings. The first concerns the accurate transcription of spe-
cialized medical terminology, which extends beyond the vocabulary of general-purpose
models [Lee et al. 2022]. The second refers to robustness against signal quality degrada-
tion caused by noise, a frequent occurrence in hospital and telemedicine environments.
Together, these factors underscore the need for datasets that more realistically capture
both the linguistic and acoustic conditions of these contexts.

To address these two challenges, this paper introduces MedDialogue-Audio, a new
public corpus of English-language medical dialogues designed to support ASR research
in clinical environments. The dataset was derived from the textual corpus MedDialog-EN
[Zeng et al. 2020, Tang et al. 2023] through a structured pipeline that involved: (i) text
preprocessing and linguistic correction of the source material; (ii) audio generation via
speech synthesis; and (ii1) controlled addition of acoustic noise at multiple intensity levels.
The result is a resource that combines the linguistic variability of clinical dialogues with
diverse acoustic conditions, enabling a more realistic assessment of ASR robustness. The
dataset is publicly available at https://huggingface.co/datasets/aline-gassenn/MedDialog-
Audio.

The remainder of this paper is organized as follows: Section 2 describes the source
textual corpus; Section 3 details the methodological process for dataset construction; Sec-
tion 4 presents a quantitative analysis of the generated data; Section 5 discusses a bench-
marking case study; Section 6 provides concluding remarks; and finally, Section 7 outlines
the limitations of the models used in the dataset construction process.

2. Med-Dialog

The MedDialog corpus, introduced by [Zeng et al. 2020], is a large-scale dataset that
plays a pivotal role in research on dialogue systems within the healthcare domain. This
study is based on its English-language version, MedDialog-EN, which consists of approx-
imately 260,000 dialogues, totaling 510,000 utterances and 44.53 million tokens. The
data, collected from telehealth platforms such as iclinig.com and healthcaremagic.com
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between 2008 and 2020, span 96 medical specialties and are structured to detail the pa-
tient’s condition, followed by the subsequent conversational turns.

A later version of this corpus, focused on enhancing terminological accuracy, was
presented by [Tang et al. 2023]. This enriched version applies methodologies for the iden-
tification and contextualization of medical terms to improve semantic consistency and
serves as the starting point for the methodology adopted in this work. The decision to use
this preprocessed corpus is grounded in the need for a text base with high clinical fidelity,
aiming to minimize the propagation of semantic ambiguities into the subsequent speech
synthesis stage.

3. Methodology

The methodology for constructing the MedDialogue-Audio dataset followed a sequential
processing pipeline, divided into two main stages: the preprocessing and enrichment of
the source textual corpus, and the subsequent generation of the audio corpus with noise
addition. The complete workflow of this pipeline is illustrated in Figure 1, and each stage
is detailed in the following subsections.

Input Text Pre-processing TTS Audio Generation Noise Addition Output
MedDialog-EN Textual — Regex Cleaning — Orpheus Model — White Noise (3 levels) — Final MedDialogue-
Dataset AI-based Correction Voice Selection Background Noise (3 levels) Audio Dataset

Figure 1. Workflow of the methodological pipeline for creating the MedDialogue-
Audio dataset.

3.1. Data Collection and Preprocessing

The starting point for this methodology was the MedDialog-EN corpus, specifically its
version with terminological enrichment [Tang et al. 2023]. The first processing step in-
volved reconstructing the conversational structure by concatenating patient utterances
(source.txt) and doctor utterances (target.txt) into complete dialogue interactions. A sub-
sequent text normalization phase was performed using regular expressions to remove
artifacts that could introduce inconsistencies in speech synthesis, such as URLs, email
addresses, and textual metadata from the source platforms.

The enrichment phase was mediated by the gpr-40-mini language model, which
was guided by the prompt shown in Figure 2. Aimed at maximizing both the intelligibility
and naturalness of the audio, the model was tasked with semantic cleaning and canonical
normalization of the text. These operations included correcting grammatical and technical
inaccuracies, as well as expanding abbreviations and numerals. Additionally, to enable
the selection of synthesis voices compatible with the speaker profile, the model performed
demographic attribute extraction for the patient (gender and age group). The output of the
entire process was consolidated into a JSON object, ensuring both structural integrity and
interoperability of the generated data.

3.2. Audio Synthesis and Acoustic Augmentation

The synthesis of textual dialogues into audio was performed using the Orpheus TTS
model [Canopyai 2025], specifically the canopylabs/orpheus-3b-0.1-ft variant. The se-
lection of this model was based on its Speech-LLM architecture, pretrained on a corpus
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system_msg = (
mmrn
Below is a conversation between a patient and a doctor. The conversation is
structured as:
"patient: [text]. doctor: [text]".

Please perform the following tasks:

1. Correct any grammatical errors, typos, unit measurement mistakes, and
inaccuracies in technical nomenclature.

2. Replace all abbreviations with their full, original words.

3. Extract and return the corrected text separately for the patient and the doctor.

Use the keys "return_text_patient" for the patient’s text and "return_ text_doctor
" for the doctor’s text.

4. Determine the patient’s gender, choosing one of the following classes: "male",
female", or "neutral".

5. Determine the patient’s age group, selecting one of the following classes: "child
", "teenage", "adult", "elderly", or "neutral".

"

Return your output as a JSON object with the keys:

- "return text_patient": the corrected text of the patient,
- "return text_doctor": the corrected text of the doctor,

- "return _gender": the identified gender,

- "return_age": the identified age group.

Ensure your output is in valid JSON format.
mmrn

Figure 2. Prompt submitted to the model for the correction and classification
task.

exceeding 100,000 hours of audio, which endows it with the capability to generate speech
with high fidelity and natural prosody. Additionally, its permissive Apache-2.0 license
was a key practical criterion, ensuring broad usability and enabling redistribution of the
derived dataset.

The generation process began with the segmentation of dialogues into units of
up to 60 words, an optimization intended to maintain synthesis quality. The audio seg-
ments for each speaker were then concatenated separately, resulting in the creation of two
distinct .wav files per dialogue: one for the patient and another for the doctor. Voice as-
signment was parameterized to ensure both diversity and clarity: for patients, selection
was guided by the inferred gender, using a set of five female voices (tara, leah, jess, mia,
zoe) and three male voices (leo, dan, zac). For doctors, voice selection was made from
the same overall pool, with the restriction that it differed from the voice assigned to the
patient, thereby ensuring clear speaker differentiation. This process was applied to 10,534
dialogues, resulting in a corpus comprising 21,068 individual audio files.

To enhance the dataset’s robustness and its applicability in real-world scenarios, an
acoustic augmentation step was implemented, in which each original audio file generated
six noisy variations. Two noise modalities were employed, with controlled intensity levels
to achieve predefined Signal-to-Noise Ratio (SNR) targets:

* White Noise: Added at three levels, corresponding to 2%, 6%, and 10% of the
original audio signal amplitude.

* Background Noise: Introduced at three levels (20%, 40%, and 60% of
the signal amplitude), using samples from the Hospital Ambient Noise
Dataset [Ali and Shuvo 2021, Ali et al. 2023]. To ensure variability, a different
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noise sample was selected at each level. The dataset contains diverse hospital-
related sounds, including background child crying, door movements, conversa-
tions in reception and waiting areas, and equipment operation noises.

The combination of high-fidelity synthesis with controlled acoustic augmentation
is a cornerstone of this work. The former ensures linguistic content clarity, while the latter
introduces systematic signal degradations, enabling the dataset to serve as a benchmark
for evaluating speech systems under adverse and clinically representative conditions.

3.3. Data Description

The dataset was constructed through speech synthesis from a preprocessed textual corpus,
followed by acoustic augmentation. The dataset comprises 10,534 dialogues. Since each
dialogue results in one audio file for the patient and another for the doctor, and each
of these has six noise-augmented variations, the corpus totals 147,476 audio files. This
multi-faceted structure enables the evaluation of models under various controlled acoustic
conditions.

The organization of the audio files follows a systematic naming convention de-
signed to facilitate the identification of the source and characteristics of each segment:

[DIALOGUE_ID]_[SPEAKER] [AUDIO_TYPE] [NOISE_LEVEL] .wav
Where:

DIALOGUE_ID: A unique numeric identifier for each dialogue.

SPEAKER: Indicates the speaker, with 1 for the patient and 2 for the doctor.
AUDIO _TYPE: Characterizes the nature of the audio: o for original (noise-free),
w for white noise, and b for hospital background noise.

NOISE_LEVEL: Indicates the noise intensity level, expressed as a percentage. For
original audio (o), this field takes the value 00, indicating no added noise. For
white noise samples (w), the levels are 2%, 6%, or 10%. For hospital background
noise (b), the levels correspond to 20%, 40%, or 60%.

In addition to the audio corpus, the repository includes a comprehensive meta-
data file, metadata.csv, which documents the properties of the noise-free audio samples.
Each row in this file corresponds to one original recording and contains both acoustic
descriptors and the associated transcription. These metadata entries are shared across all
augmented versions derived from the same original audio.

The metadata file includes the following columns:

* filename: The exact name of the audio file.

¢ duration_s: Duration of the recording, in seconds.

* mean_rms_energy: Mean root-mean-square energy of the signal.

* mean_f0_hz: Mean fundamental frequency (F0), in Hertz.

* mean_spectral_centroid_hz: Mean spectral centroid, in Hertz.

e hnr_db: Harmonic-to-noise ratio (HNR), expressed in decibels.

* transcription: Canonically normalized textual transcription of the utterance.

This metadata enables downstream tasks such as acoustic analysis, supervised
model training, and benchmarking of ASR systems under both clean and adverse audio
conditions, thereby enhancing the utility of the corpus for experimental reproducibility
and robust system evaluation.
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4. Exploratory Analysis of the Dataset

This section presents the empirical results of the study, organized into two complementary
analyses: the quantification of the impact of text processing and the characterization of
the properties of the final acoustic corpus, considering the noise-free version.

4.1. Text Augmentation Validation

The magnitude of textual modifications introduced by the enrichment pipeline was quan-
tified using the Levenshtein distance, a metric commonly employed in sequence com-
parison tasks that indicates the minimum number of insertions, deletions or substitutions
necessary to transform one string into another [Devatine and Abraham 2024]. Patient ut-
terances presented a higher mean distance of 80.69, while doctor utterances showed a
mean distance of 70.02. This difference reflects the greater presence of orthographic er-
rors and informal constructions in the original patient texts. It is important to note that
these modifications were applied to a textual corpus originally sourced from telemedicine
platforms, not to transcribed speech, and were designed to improve orthographic consis-
tency and ensure compatibility with text-to-speech systems, while preserving the natural
variability characteristic of spontaneous language.

The effectiveness of the spelling correction process was quantified based on
the variation in the frequency of errors identified using the PySpellChecker library
[Norvig 2025], which performs verification against a standard English dictionary. This
tool compares each term in the text against its lexical database and counts as a spelling
error any word not recognized. The results, presented in Figure 3, indicate a 68.7% reduc-
tion in the number of errors in patient texts (from 26,117 to 8,176) and a 61.0% reduction
in doctor texts (from 21,775 to 8,495). The residual volume of errors is largely attributable
to the use of highly specialized domain vocabulary, including technical jargon and proper
names, which are not covered by the reference spell-checking dictionary used in the cor-
rection process.

B Before
mmm After

25000

20000

15000

10000

5000

Total Number of Spelling Errors

Patient Doctor
Speaker

Figure 3. Number of spelling errors identified before and after the application of
the text enrichment pipeline.

4.2. Acoustic Corpus Characterization

The audio corpus, in its original noise-free version, totals 136.68 hours, covering 21,068
utterances. Table 1 presents a summary of the main descriptive statistics for this set.
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The complexity of the corpus is most evident in the distribution profile of the Fun-
damental Frequency (F0), which exhibits a distinctly bimodal pattern (Figure 4a). Density
peaks centered around approximately 140 Hz and 190 Hz are consistent with the presence
of one male vocal group and one female vocal group, a direct consequence of the synthe-
sis methodology employed. This multimodality also extends to other metrics: both RMS
Energy (Figure 4c) and the Harmonics-to-Noise Ratio (HNR) (Figure 4d) display bimodal
distributions, indicating the existence of multiple intensity profiles and distinct phonation
quality clusters (ranging from breathy to clear voice characteristics), respectively.

In contrast to this heterogeneity, other metrics point to an underlying consistency
in the synthesis process. The Spectral Centroid shows a unimodal profile with a peak
around 2100 Hz, suggesting a stable overall spectral ’brightness”. Similarly, utterance
duration (Figure 4b) follows a unimodal distribution with pronounced positive skewness
(peak at approximately 19 seconds), indicating a central tendency in dialogue length,
despite the presence of a long tail of extended interactions.

Table 1. Descriptive statistics of acoustic metrics for the original (noise-free)
audio corpus.

Metric Mean | Standard Deviation Min Max
Duration (s) 23.31 10.11 0.51 90.54
RMS Energy 0.058 0.022 0.017 0.128
Fundamental Frequency (Hz) | 181.52 30.44 108.07 | 267.14
Spectral Centroid (Hz) 2228.07 287.71 1407.62 | 3956.16
HNR (dB) 1.06 3.89 -24.11 12.01

5. ASR Model Benchmarking

To demonstrate the applicability of MedDialogue-Audio and to establish a quantitative
reference point, a benchmarking case study was conducted. The aim of this analysis is
not to provide an exhaustive evaluation of Automatic Speech Recognition (ASR) models,
but rather to use them as diagnostic tools to characterize the complexity of the corpus,
with particular attention to the impact of noise variations on transcription performance.

The experiments were conducted on a 10% subset of the corpus, covering both the
original audio files and all their noisy versions. This material was processed by three state-
of-the-art ASR systems, all used in their pretrained configurations (zero-shot scenario).
The selected models represent different learning paradigms: the supervised encoder-
decoder architecture Whisper (base) [Radford et al. 2023], and two self-supervised ap-
proaches, Wav2Vec 2.0 (base-960h) [Baevski et al. 2020] and HuBERT (large-1s960-ft)
[Hsu et al. 2021].

The quality of the transcriptions was assessed using three complementary met-
rics. Lexical accuracy was measured by the Word Error Rate (WER), where lower values
indicate better performance. The ability to recognize domain-specific vocabulary was
evaluated using the Medical Term Recognition Accuracy (MTRA). Finally, semantic fi-
delity between the hypothesis and the reference was quantified using the BERTScore (F1),
which reflects semantic similarity.

77



Proceedings of the VII Dataset Showcase Workshop (DSW) October 2025 — Fortaleza, CE, Brazil

1600 2000
1200 1500
a >
2 1000 21250
g S
g 800 031000
* 600 * 750
400 500
200 250
0 0
0 50 100 150 200 250 0 20 40 60 80
Mean Frequency (Hz) Duration (seconds)
(a) Fundamental Frequency (F0) (b) Utterance Duration (s)
1200 1600
1000 1400
1200
> 800 >
I 21000
g g
o 600 S 800
o o
w w
400 600
400
200
200
0 0
0.02 0.04 0.06 0.08 0.10 0.12 -25 -20 -15 -10 -5 0 5 10
Mean RMS Energy Harmonic-to-Noise Ratio (dB)
(c) RMS Energy (d) Harmonics-to-Noise Ratio (HNR)

Figure 4. Distribution profiles for key acoustic metrics. Figures (a), (c), and
(d) highlight the dataset’s heterogeneity through multimodal distributions,
while Figure (b) illustrates the skewed distribution of utterance durations.

Figures 5 to 7 present the results obtained for each metric, discriminated across
the different noise conditions considered.

The results demonstrate a negative correlation between noise level and model per-
formance across all evaluated systems, with substantial variations in degradation magni-
tude among the different architectures. The lexical accuracy analysis (Figure 5) reveals
a robustness hierarchy, where the Whisper model consistently outperforms others across
all test conditions, showing a gradual performance decline as noise intensity increases.
In contrast, Wav2Vec 2.0, while initially competitive, suffers a sharp degradation under
more severe noise levels.

This disparity between models becomes even more pronounced when analyzing
domain-specific term recognition (Figure 7). The Whisper MTRA shows high resilience,
whereas Wav2Vec 2.0 exhibits an abrupt decline, reaching a residual accuracy of only
2.5%. The qualitative microanalysis in Table 2 illustrates this phenomenon, highlighting
severe lexical failures by Wav2Vec 2.0 in transcribing technical terms. The semantic
similarity analysis (Figure 6) reinforces these trends.

These results establish a set of baselines that not only validate the utility of
MedDialogue-Audio for investigations into ASR robustness but also quantify the inherent
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Figure 6. Semantic similarity measured by BERTScore (F1) under White Noise
(left) and Background Noise (right) conditions.

challenges of speech processing in the medical domain under adverse acoustic conditions.

6. Conclusion

This work introduced MedDialogue-Audio, a synthetic public corpus of English-language
medical dialogues designed to address the shortage of resources for research in Auto-
matic Speech Recognition (ASR) in noisy clinical contexts. The corpus was derived from
MedDialog-EN through a pipeline that integrates linguistic enrichment using an LLM,
high-fidelity speech synthesis, and data augmentation with controlled acoustic noise.

The pipeline validation demonstrated a substantial reduction in errors in the
source text. Subsequent benchmarking experiments established baseline performances
for prominent ASR models, revealing a direct correlation between noise intensity and
performance degradation. These results not only quantify the robustness of current archi-

tectures but also demonstrate the utility of the corpus in simulating the challenges of real
clinical environments.

By being made publicly available, MedDialogue-Audio offers a new resource for
the training and rigorous evaluation of speech technologies. Future research directions
include expanding the dataset and applying it to the fine-tuning of ASR models, with the
goal of improving automatic transcription accuracy in the healthcare domain.
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Table 2. Example of ASR transcription for a medical statement. Differences from
the original text are underlined.

Source Transcription

Original You may have a renal stone or dysfunctional uterine bleeding.
Please get an abdominal ultrasound and a routine urine test, and
let me know the results.

Whisper you may have a renal stone or dysfunctional uterine bleeding.
please get an abdominal ultrasound and a routine urine test. and
let me know the results.

Wav2Vec 2.0 you may have a reedal stone or disfunctional uteran bleeding_
please get an adominable ultresound in a routine earan test and
let me know the results_

HuBERT you may have a renal stone or disfunctional uterin bleeding_
please get an abdominal ultra sound and a routine urin test and
let me know the results_

7. Limitations

Although MedDialogue-Audio represents a relevant contribution to ASR research in clin-
ical scenarios, it presents some limitations that must be considered. As a synthetic dataset,
it is subject to biases arising from the language model gpt-4o-mini used in the text nor-
malization stage. The inference of demographic attributes such as gender and age group,
based solely on textual input (see Figure 2), may reproduce stereotypical associations
implicitly present in the model’s training data.

The text-to-speech system adopted, Orpheus TTS, while offering high-fidelity au-
dio generation, does not support expressive prosody. As a result, the synthesized audio
lacks vocal modulations associated with emotional or physical states such as pain, crying,
or empathy. In addition, the limited number of available speaker voices constrains the
acoustic variability of the corpus.

Another relevant limitation concerns the absence of human validation. All evalua-
tions were carried out using automatic ASR models. Manual verification of transcriptions,
demographic labels, and semantic coherence was not performed due to constraints related
to time and availability of expert annotators. Nonetheless, human evaluation remains
fundamental for assessing the realism and reliability of synthetic corpora and should be
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incorporated in future iterations of this work.

Future directions include the integration of human validation procedures, the an-
notation of medical specialties and diagnostic categories, and the application of the corpus
to the development of summarization models for automatic generation of structured clin-
ical records.
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