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Abstract

Long memory in volatility is a stylized fact found in most financial return series. This paper empirically
investigates the extent to which interdependence in emerging markets may be driven by conditional short
and long range dependence in volatility. We fit copulas to pairs of raw and filtered returns, analyse the
observed changes in the dependence structure may be driven by volatility, and discuss whether or not
asymmetries on propagation of crisis may be interpreted as intrinsic characteristics of the markets. We also
use the findings to construct portfolios possessing desirable expected behavior such as dependence at
extreme positive levels.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recent literature have shown empirical evidence of an increasing degree of integration among
stock markets, facilitated probably by the fast transmission of technology. Understanding and
measuring these interdependencies is important for portfolio selection, hedging, and accurate
assessment of risk in general. In particular, crisis seem to increase the frequency and magnitude of
co-movements (joint high gains or joint extreme losses) among stock indexes, risky assets, and
economic indicators. Risk managers and the insurance industry in general, have great interest on
the accurate computation of probabilities of joint catastrophes.
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International equity markets interdependencies have been widely studied through correlations
(Ang & Chen, 2000; Longin & Solnik, 2001; etc.). However, their pitfalls are well known
(Embrechts, McNeil, & Straumann, 2001; Forbes & Rigobon, 2000). A better picture of
interdependence, including the measuring of linear and non-linear types of, may be attained by
modeling the dependence structure using copulas. Examples include Ané and Kharoubi (2003),
Breymann, Dias, and Embrechts (2003), Fermanian and Scaillet (2004), among others.

Copulas are particularly well suited for modeling interdependence at extreme levels, for which
many copula families are available, see Joe (1999). In this paper we model markets behavior
during crisis fitting copulas to excesses over high thresholds. This alternative approach combines
modeling the univariate data using extreme value distributions, and modeling the transformed
data using selected copula families.

Let R1 and R2 represent the daily log-returns of two stock markets indexes and H(·,·) their
bivariate distribution with continuous margins F1 and F2. In this paper, the extremes are defined as
joint exceedances of high thresholds.More specifically, we take any bivariate high quantile (q1, q2) of
H as threshold values, and define the joint excesses (X1, X2) over the thresholds as (X1, X2)=(R1−q1,
R2−q2)1[(R1Nq1) and (R2Nq2)], where 1[A] is the indicator function of event A.

Let Gi(·) represent the conditional distribution of Xi|RiNqi, i=1, 2, and let G(·,·) be the joint
conditional distribution of (X1, X2). Univariate distributional results are well established, and
asymptotic arguments lead to the generalized Pareto distribution (GPD) for modeling the condi-
tional distribution of excesses over high thresholds Gi, see Leadbetter, Lindgren, and Rootzén
(1983). However, given a data set, finding the distributionG is a very difficult task (see Balkema&
Embretchs, 2004; Straetmans, 1999; Tawn, 1988). This problem may be successfully approached
by means of copulas (see Breymann et al., 2003; Kolev, Mendes, & Anjos, 2006). Having
obtained the copula C of (X1, X2), the distribution G is easily recovered from G(x1, x2)=C(G1(x1),
G2(x2)).

When collecting joint bivariate data over a high pair of thresholds, the temporal dependence
possibly existing in the univariate data and perhaps in the bivariate data is lost. Thus, temporal
dependence may not be an issue for our data type. However, how much of the observed
interdependence is due to conditional short and long range dependence in volatility? In which
ways high volatility affects the dependence structure? Being aware of these effects is crucial for
fund managers, central banks directors, regulators.

This topic is investigated in Poon, Rockinger, and Tawn (2002). They used nonparametric
measures of tail dependence and found that there is strong evidence in favor of asymptotically
independent models for the tail structure of stock market returns. They also found that most of the
extremal interdependence is due to heteroskedasticity in stock returns processes, which is
removed by applying bivariate GARCH models. However, they neither use joint excesses nor
copulas, drawing their conclusions just based on a logistic dependence structure. On the other
hand, Longin and Solnik (2001) modeled extreme tails of monthly returns using extreme value
theory and found that high volatility per se does not seem to lead to an increase in correlation
during stressful times. They conclude that the most important factor is market trend.

In efficient markets, the statistical dependence between very distant observations of a price series
should be negligible. Thus, existence of long memory in mean of returns is directly related to market
inefficiency. Longmemory in a return series increases dependence at extreme levels and thus volatility
clustering. Derivative markets in stock markets possessing long range dependence would be very
profitable, as the value of an option increases with the volatility of the underlying stock price process.
Riskmanagement should take this into account. Also, forecasts based onmodels that take into account
the long memory in returns are more likely to provide better medium or long-term predictions.
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The concept of long memory was introduced in econometrics by Granger (1980) and Hosking
(1981). There does not exist a unique definition of long range dependence. For a stationary
sequence (Xt), one may say that it exists if ∑h|ρX(h)| =∞, where ρX(·) denotes the autocorrelation
function of the sequence (Xt). This also makes the periodogram of the data to show large values
for small frequencies. An alternative definition is via the requirement that the spectral density of
the sequence (Xt) to be asymptotically of the order L(λ)λ−d for some dN0 and for a slowly
varying function L, as λ→∞.

Many empirical studies have used long memory, or fractionally integrated time series models
to capture long range dependence in mean and in volatility of financial returns. Several studies
found evidence of long memory in returns, for example, Crato (1994), Saqdique and Silvapulle
(2001), Lobato and Savin (1998), among others.

However, a comprehensive study investigating effects of long and short range memory on
dependence structures, and thus on dependence measures during crisis, is still missing. In the
present paper we address these issues. We first fit copulas to joint excess returns and compute
measures of tail dependence. Then, we filter the data using Fractionally Integrated Generalized
Autoregressive Conditionally Heteroskedastic (FIGARCH) processes, designed to model short
and long range dependence in volatility, and fit the same selected copulas to the joint excess
residuals. Filtering the data through GARCH type models is not a monotonic transformation.
Thus, it is expected that raw log daily returns and their residuals not to possess the same copula.
However, how the copula family changes, and how a measure of their asymptotic dependence
changes, may provide valuable information on how volatility dynamics affects interdependencies,
providing some new insights on markets joint behavior.

Another important issue when assessing interdependencies is asymmetric propagation of
shocks. For a given pair of financial returns, their joint (raw) excesses typically are not identically
distributed (i.d.). In this case they are not exchangeable, that is,G(x, y)≠G(y, x) for some x; yaR.
Non-exchangeability in the joint excesses implies that crisis dissipation or transmission is not
symmetric. However, identically distributed margins do not guarantee exchangeability. It may
happens that independent and identically distributed (i.i.d.) residuals from properly filtered returns
result in i.d. excess data possessing asymmetric dependence structure. That is, their copula C
would be such thatC(u,v)≠C(v,u) for some u,v∈ [0, 1]. In this case, we may interpret the observed
asymmetry in the markets joint behavior as an intrinsic characteristic not just due to volatility. We
provide examples of such situations.

The empirical investigation uses daily log-returns of the twelve most important emerging
markets stock indexes (from Argentina, Brazil, Chile, Mexico, India, Indonesia, Korea, Malaysia,
Philippines, Singapore, Taiwan, and Thailand), from 1st January 1994 to 31st January 2005. We
find that left-tail dependence is usually stronger than right-tail dependence for both raw and
filtered data. We find that most of the asymptotic dependence is due to high volatility:
approximately 50% in the case of positive comovements (75% in the case of negative
comovements) of the pairs found to be asymptotically dependent, after filtering were best fitted by
the product copula. Estimates of the long memory fractional parameter were most of them higher
than 0.50 indicating strong long memory dependence in volatility. The Latin American indexes
also indicated presence of long memory in mean. Most pairs were best fitted by the symmetric
AKS and the asymmetric ALM copulas.

The remainder of this paper is as follows. In Section 2 we give copula and tail dependence
definitions and the expressions of the copulas used. In Section 3 we provide a brief review of
fractional integration within the volatility context. Section 4 goes over the empirical analysis and
interprets the results. Section 5 concludes.
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2. Copulas and dependence

Let X1, X2 be continuous random variables with distribution function G(x1, x2) and marginal
distributionsG1,G2, correspondingly. For every (x1,x2)∈ [−∞,∞]2 consider the point in [0, 1]3 with
coordinates (G1(x1), G2(x2), G(x1, x2)). This mapping from [0, 1]2 to [0, 1] is an 2-dimensional
copula, or a bivariate copula.

The following basic theorem (given in the bivariate case) is the main result in copula theory,
e.g. Sklar (1959), and partially explains the importance of copulas, see also Nelsen (1999), p. 41.

Sklar's Theorem. Let G be a bivariate dimensional distribution function with margins G1, G2.
Then there exists a 2-dimensional copula C such that for all (x1, x2)∈ [−∞, ∞]2,

Gðx1; x2Þ ¼ CðG1ðx1Þ;G2ðx2ÞÞ: ð1Þ
Conversely, if C is a bivariate copula andG1, G2 are distribution functions, the functionG defined by
Eq. (1) is a 2-dimensional distribution function with margins G1, G2. Furthermore, if the marginals
are all continuous, C is unique. Otherwise, C is uniquely determined on RanG1×RanG2.

Therefore, the copula function is one of the most useful tools for dealing with multivariate
distributions with given or known univariate marginals. Additionally, copulas can be employed in
probability theory to characterize dependence concepts. In particular, in this paper we compute the
upper and lower tail dependence coefficients. The coefficient of upper tail dependence is defined by

kU ¼ lim
aY0þ

kUðaÞ ¼ lim
aY0þ

PrfX1NG
�1
1 ð1� aÞjX2NG

�1
2 ð1� aÞg;

provided a limit λU∈ [0, 1] exists. If λU∈ (0, 1], then X1 and X2 are said to be asymptotically
dependent in the upper tail. If λU= 0, they are asymptotically independent. Similarly, the lower tail
dependence coefficient is given by

kL ¼ lim
aY0þ

kLðaÞ ¼ lim
aY0þ

PrfX1bG
�1
1 ðaÞjX2bG

�1
2 ðaÞg;

provided a limit λL∈ [0, 1] exists.
Let C be the copula of (X1, X2). It follows that

kU ¼ lim
uz1

C̄ðu; uÞ
1� u

; where C̄ðu; vÞ ¼ PrfUNu;VNvg and kL ¼ lim
uA0

C̄ðu; uÞ
u

:

Copulas for modeling the joint exceedances (X1, X2)|[X1Nq1, X2Nq2] were studied in Nelsen
(1999), Joe (1999), Frees and Valdez (1998), Juri and Wüthrich (2002), Charpentier (2004),
among others. Frees and Valdez (1998) worked out the expression of the copula pertaining to the
bivariate Pareto distribution (Clayton copula). Juri andWüthrich (2002) characterize the limiting
dependence structure in the upper-tails of two random variables assuming their dependence
structure is Archimedean. All these results lead to the Clayton or Kimeldorf and Sampson
copula.

Let C be the Clayton or Kimeldorf and Sampson copula, that is, C(u, v; δ)= (u−δ+v−δ−1)−1/δ.
Note this is family B4 in Joe (1999), and family (4.2.1) in Nelsen (1999), known as the Pareto
family of copulas, or the Clayton family. Since C has lower tail dependence, for fitting purpose
we use one its associated copulas, that is, the copula C′(u, v)=u+v−1+C(1−u, 1−v), see Joe
(1999). This is the copula AKS, the copula Associated to the Kimeldorf and Sampson copula, also
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known as the Survival Clayton copula. The AKS copula possesses λU=2
−1/δ, which goes to zero

as δ→0, and goes to perfect dependence 1, when δ→∞.
The Clayton copula was also obtained by Juri and Wüthrich (2002) as the conditional limit

copula of Archimedean copulas. In few words, if C is a copula, for any (u, v)∈ (0, 1]2, the
conditional distribution of (U, V) given U≤u, V≤v is given by Cðx;yÞ

Cðu;vÞ, for 0≤x≤u and 0≤y≤v.
This is the so called lower tail dependence copula (LTDC). They show that if C is Archimedean,
then the LTDC is still Archimedean. They also show the only absolutely continuous invariant by
truncature copula is the Clayton copula. It follows that the limit as u, v→0 of the LTDC derived
from an Archimedean copula with differentiable generator is the Clayton copula.

This is a limit result. For the real data set used, considering the trade-off between the applicability of
asymptotic results (large thresholds, few data points) and good fit for the data (larger samples), we try
the following copula families possessing tail dependence, including one non-exchangeable copula.

2.1. Galambos copula

This is an extreme value copula (family B7 in Joe (1999)) given by C(u,v;δ)=uv exp
{(ũ−δ+ ṽ−δ)−1/δ}, where 0≤ δb∞, and where ã=− log(a). It is an exchangeable copula with
coefficient of upper tail dependence equal to 2−21/δ, for δN1. When δ=0, it corresponds to the
product copula, i.e., the copula of independent marginals.

2.2. Joe–Clayton copula

It is given by C(u, v; δ, θ)=1− [1− ([1− (1−u)θ]−δ+[1− (1−v)θ]−δ−1)−1/δ]1/θ, where θ ≥1,
δ≥0. This is an exchangeable copula possessing both (not equal in general) coefficients of tail
dependence. Upper tail dependence is given by λU=2−21/θ independent of δ, and lower given by
λL=2

−1/δ, independent of θ. When λU=0 (θ=1) it reduces to the Clayton copula. When δ≤1,
concordance increases with θ (Joe, 1999). When either θ →∞ or δ→∞, it approaches the perfect
positive dependence copula and λU→1 (family BB7 in Joe (1999)).

2.3. Joe copula

When the parameter δ in the Joe–Clayton copula is very close to its lower bound zero, we
could rather fit the one-parameter Joe copula. It is given by C(u, v, θ)=1− (ū θ+ v̄ θ−ū θ v̄ θ)1/θ,
where ū=1−u and v̄ =1−v, θ ≥1.

2.4. Asymmetric Logistic Model copula

The ALM copula is given by C(u, v, δ, p1, p2)=exp[−(p1δũδ+p2δṽ δ)1/δ− (1−p1)ũ− (1−p2)ṽ ]
for (p1, p2)∈ [0, 1]2 and δ≥1. This is a non-exchangeable copula, obtained as a mixture of the
Gumbel and the product copulas (see Genest, Ghoudi, & Rivest, 1993). Its upper tail dependence
coefficient is given by λU=p1+p2− ( p1δ−p2δ)1/δ.

3. Fractionally integrated GARCH models

In this section we provide a brief review of fractional integration within the volatility context.
Among the so called stylized facts that characterize a return series, the behavior of the

autocorrelation function (ACF) of the data and squared data deserves close attention. For the



Fig. 1. Sample ACF of the returns (top panel) and squared returns (bottom panel) of the Bangkok S.E.T. Index from Thailand.
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return series the sample ACF is typically negligible at almost all lags, except for the first and
second ones (it decays exponentially). However, the sample ACF of the absolute values or their
squares are all positive, decays slowly and tends to stabilize for large lags (hyperbolic decay rate).
Fig. 1 illustrates and shows at the top panel the sample ACF of the returns of the Bangkok S.E.T.
Index from Thailand. The lower panel shows the sample ACF of their squares. This empirical fact
is usually interpreted as evidence of long memory in volatility.

The first long memory time series model proposed (for the mean) was the Fractionally Integrated
ARMAmodel, the ARFIMAmodel, introduced byGranger (1980). AnARFIMA(p, d, q) process is
a general class of processes for the mean which ranges from the unit root ARIMA(p, d=1, q)
process, up to integrated processes of order 0. Robinson (1995) extended theARFIMA framework to
model long memory in volatility, giving rise to the long memory Autoregressive Conditionally
Heteroskedastic (ARCH) model. Perhaps the most theoretically discussed and empirically tested
(Bollerslev & Mikkelsen, 1999; Bollerslev & Wright, 2000; Caporin, 2002; Mikosch & Stărică,
2003; among others) long range dependence class of models consists of the Fractionally Integrated
Generalized ARCH models, FIGARCH models, introduced by Baillie, Bollerslev, and Mikkelsen
(1996), and Bollerslev and Mikkelsen (1996). Other important alternative models are the
Fractionally Integrated Stochastic Volatility models of Breidt, Crato, and de Lima (1998), and the
Two Component model of Ding and Granger (1996).

Let {rt}t=1
T be a time series of asset returns. To capture the varying conditional variance of rt it

is assumed that

rt ¼ C þ et ð2Þ
where C is a constant and

etjF t�1 ¼ rtzt; ð3Þ
where zt is an i.i.d. sequence of random variables with zero mean and unit variance, and F t

represents the information set up to time t. According to Baillie et al. (1996) and Bollerslev and
Mikkelsen (1996), a FIGARCH(r, d, s) model for the conditional variance σt

2 satisfies

e2t ð1� /ðLÞÞð1� LÞd ¼ wþ ð1� bðLÞÞðe2t � r2t Þ ð4Þ
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where ωN0 is a real constant, the fractional integration parameter d∈ [0, 1],L is the lag operator,
/ðLÞ ¼ aðLÞ þ bðLÞ; and bðLÞ ¼ Ps

j¼1 bjLj. The fractional difference operator ð1� LÞd can
be expanded in a binomial series to produce an infinite polynomial in L:

ð1� LÞd ¼ 1�
Xl
k¼1

dd;kLk ¼ 1� ddðLÞ; ð5Þ

where the coefficients dd;k ¼ d
Cðk � dÞ

Cðk þ 1ÞCð1� dÞ in Eq. (5) are such that

dd;k ¼ dd;k�1
k � 1� d

k

� �
; ð6Þ

for all k≥1, where δd,0≡1.
The FIGARCH(r, d, s) process has the infinite ARCH representation:

r2t ¼ xð1� bðLÞÞ�1 þ kðLÞe2t ; ð7Þ

where the polynomial λ(L) is given by

kðLÞ ¼
Xl
k¼0

kkLk ¼ 1� ð1� bðLÞÞ�1/ðLÞð1� LÞd : ð8Þ

FIGARCH(r, d, s) processes must meet some parameters restrictions to ensure positivity of the
conditional variance σt

2. In the case of a FIGARCH(1, d, 1) process one must have
b1 � dV/1V

2�d
3 ; d /1 � 1�d

2

� �
Vb1ðd þ a1Þ; and /1 ¼ a1 þ b1.

Even though the series σt
2 is non-observable, its persistence properties are propagated to the

observable series rt
2. Since the second moment of the unconditional distribution of rt is infinite,

the FIGARCH process is not weakly stationary. Discussions about stationarity property of
FIGARCH processes may be found in Mikosch and Stărică (2003), among others.

To assure the positiveness of the conditional variance, Bollerslev and Mikkelsen (1996)
proposed the Fractionally Integrated Exponential GARCH (FIEGARCH) model:

/ðLÞð1� LÞd lnr2t ¼ wþ
Xr

j¼1

bjj et�j

rt�j
j þ gj

et�j

rt�j

� �
; ð9Þ

where γj≠0 indicates the existence of leverage effects. By including the leverage term we allow
the conditional variance to depend both on sign and magnitude of expected returns. This
asymmetric model is an attempt to model another stylized fact about asset returns, the effect of
bad news: risky stocks respond differently to positive high gains and low negative falls. The
larger the leverage parameter value, the larger the risk.

We also consider the very interesting (FI)GARCH-in-mean model of Engle, Lilien, and Robins
(1987), which extends Eq. (2) to

rt ¼ C þ pgðr2t Þ þ et;

where g(·) can be an arbitrary function of the volatility, we use g(σt
2)=σt

2. This model captures
the effect of volatility on expected returns. One of the rationales behind this model is the fact that a
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price fall reduces the value of an equity and then increases the debt-to-equity ratio, raising
volatility.

4. Empirical analysis

In this section we empirically investigate the dependence structure of log-returns co-
exceedances. The analysis is performed in two steps: first we use the daily log-returns. Then we
repeat the analysis using the residuals from FIGARCH fits.

The series of log-returns were collected from the Datastream database. Specifically, the data
consist of the closing daily levels of the: General Index (Argentina), IBOVESPA (Brazil), IGPA
(Chile), IPC (Mexico), Bombay Sensitivity Index (India), Jakarta Stock Exchange Composite
(Indonesia), Seoul Composite (Korea), Kuala Lumpur Composite (Malaysia), Manila Composite
(Philippines), Singapore Straits Industrial (Singapore), Taipei Weighted Price Index (Taiwan), and
Bangkok S.E.T. Index (Thailand). Taiwan is the largest emerging market, with a total market
capitalization of US$ 379 billion, followed by Korea (US$ 298 billion) and India (US$ 252 billion).

The sample spans the period from January 1, 1994 through January 31, 2005. The returns are
calculated as the difference between consecutive logarithm daily prices, resulting in a total of
T=2891 observations. For all series of log-returns we did not reject the null hypothesis of
stationarity.

Consistent with several previous reports on the stylized facts of return series, the series present
approximately zero mean, high kurtosis,1 show volatility clusters in the time series plots, show
short range dependence on just few lags and evidence of long run dependence in the
autocorrelogram of the squared data (as illustrated in Fig. 1). The Ljung–Box statistic of order 20
computed for the squared returns is significant for all series.

To set the notation, let ((r1,1, r1,2),…, (rT,1, rT,2)) be observations of (R1, R2) (which are either
raw log-returns or filtered returns), and define a pair of threshold values (q1,p1, q2,p2) obtained as
the empirical quantiles in each margin i, i=1, 2. That is, the lower (upper) thresholds qi,pi are such
that Pr{Ribqi,pi}=pi (similarly, Pr{RiNqi,pi}=pi). The probabilities pi for both margins and tails
may be all different.

For fixed (p1, p2), the joint excesses over the threshold values (q1,p1, q2,p2) are the observed pairs
((x1,1, x1,2),…, (xn,1, xn,2)) of the random vector X1, X2), where (X1, X2)= (R1−q1,p1, R2−q2,p2)
1[(R1N q1,p1)and(R2N q2,p2)].

We fit by maximum likelihood method the generalized Pareto distribution (GPD) to the n
observations of Xi, i=1, 2. An important issue is the trade-off between bias and inefficiency of the
GPDparameter estimates (for example, Coles, 2001; Longin&Solnik, 2001).We do not address this
issue here, but we indeed do some sensitivity analysis and experiment with 5 values for pi, we try
pi=0.250, 0.225, 0.200, 0.175, 0.150, for i=1, 2, thus trying 25 combinations. The value (q1,p1, q2,p2)
is chosen after examining, for both margins, the GPD parameters standard errors and the result of a
goodness of fit test (Kolmogorov test). Our procedure allows for different threshold values for each
series and each tail, thus adapting for market scale and shape. In this work we observed that the
fraction n/T of observed pairs was approximately 0.05–0.09, much smaller than each individual pi.
Note that the way the joint data is collected breaks out the (possible) serial dependence for the
exceedances.
1 For the sake of conciseness, we do not report basic descriptive statistics, the tests for heteroskedasticity and for serial
dependence on the data. Many empirical papers have already did such exploratory analysis.
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The Uniform(0, 1) data are obtained by plugging the GPD parameters estimates in the GPD
distribution function, and the five selected copula families are fitted by maximum likelihood. This
two-steps fully parametric estimation procedure is usually called inference functions for margins
(IFM). Joe (1999) argues that we can expect the IFM method to be quite efficient because it is
fully based on maximum likelihood estimation, see Joe (1999) and Xu (1996).

Selection of best copula fit follows by comparing the log-likelihood value, the Akaike
Information Criterion (AIC),2 and the (discrete) L2 distance between the fitted copulas and the
empirical copula, see Ané and Kharoubi (2003). To test goodness of fit we used a bivariate
extention of the usual Pearson test, described in Genest and Rivest (1993). For each pair, the two
uniform data sets are ordered and divided into parts, forming a table, and the usual chi-squared
goodness-of-fit test statistic is defined. Finally, we test independence using the standard
likelihood ratio test. Parameters estimates standard errors are approximated using the observed
information matrix evaluated at the maximum likelihood estimates, and tail dependence
coefficient standard errors are computed using the delta method.

As a final remark we should note that in our empirical analysis, for a given data set, frequently
all copula fits did not reject the null hypothesis of goodness of fit, with high and close p-values.
Moreover, all provided very close log-likelihood values. In those cases we selected the copula
presenting the smaller L2 distance to the empirical copula. For example, this happened several
times involving the AKS and the Galambos copulas. Fitting copulas to data may be very trick, and
good procedure for help choosing the right copula is still missing.

4.1. Analysis of raw daily returns

Table 1 shows in the left panel a summary of the results for the dependent (40 out of 66) joint
negative exceedances. First column names the pairs of markets and gives the number n of joint
observations. They are ordered according to the value of their lower tail dependence coefficient
λL, given in the third column. The first three positions are occupied by the Latin American pairs.
Most of the symmetric fits were based on the AKS copula. There are 12 asymmetric cases.

Results for the positive co-exceedances are given in the left panel of Table 2. We first note the
asymmetry between bear and bull markets. All dependent pairs in Table 1, present in Table 2 a
smaller asymptotic dependence, that is, λUbλL. There are only 36 dependent pairs in the right
upper tail, being 16 of them based on the asymmetric copula, and also 16 based on the AKS copula.

The Asian markets show stronger dependence during bull markets. Among the 10 first positions,
8 are occupied by the Asian markets (in the case of bear markets they occupy 3 out of 10). Stronger
linkages are observed for pairs involving either Singapore or Philippines, being this true also for the
joint negative extreme events.

4.2. Analysis of FIGARCH filtered returns

We assume a more general expression for Eq. (2):

rt ¼ drt�1 þ pr2t þ et þ het�1

etjF t�1 ¼ rtzt;
2 Let LL represent the log likelihood computed at the maximum likelihood estimates, and k the number of parameters
in the model. The AIC=−2LL+2k.



Table 1
Copula parameters and λL estimates (standard errors) for dependent negative (raw and filtered) co-exceedances

Pairs (n) Raw data Filtered data

Copula — estimates (S.E.) λL (S.E.) Copula — estimates (S.E.) λL (S.E.)

Arge–Braz (337) JOE — 1.59 (0.08) 0.46 (0.04) JOE — 1.49 (0.08) 0.41 (0.04)
Arge–Mexi (310) JOE — 1.50 (0.16) 0.41 (0.06) JOE — 1.37 (0.08) 0.34 (0.05)
Braz–Mexi (266) AKS — 0.78 (0.08) 0.41 (0.04) JOE — 1.51 (0.10) 0.42 (0.05)
Phil–Sing (289) AKS — 0.70 (0.10) 0.37 (0.05) AKS — 0.46 (0.10) 0.22 (0.07)
Arge–Chil (311) JOE — 1.41 (0.10) 0.36 (0.05) ALM — 1.82 (0.45)

–0.30 (0.13)–0.36 (0.09)
0.18 (0.06)

Arge–Mala (197) ALM — 1.35 (0.15)
–0.98 (0.28)–0.22 (0.13)

0.36 (0.09) Independent 0.00

Chil–Mexi (294) JOE — 1.38 (0.08) 0.35 (0.05) ALM — 1.84 (0.13)
–0.24 (0.07)–0.66 (0.11)

0.19 (0.06)

Braz–Chil (303) AKS — 0.64 (0.09) 0.34 (0.05) JOE — 1.23 (0.08) 0.24 (0.07)
Sing–Thai (298) ALM — 1.40 (0.03)

–0.98 (0.06)–0.94 (0.07)
0.34 (0.04) ALM — 1.51 (0.23)

–0.68 (0.12)–0.90 (0.07)
0.32 (0.04)

Mala–Sing (295) ALM — 1.40 (0.08)
–0.76 (0.06)–0.98 (0.08)

0.31 (0.04) ALM — 1.50 (0.15)
–0.34 (0.04)–0.98 (0.17)

0.21 (0.06)

Indo–Sing (280) AKS — 0.55 (0.08) 0.28 (0.05) AKS — 0.48 (0.09) 0.23 (0.06)
Mala–Thai (278) ALM — 1.50 (0.09)

–0.50 (0.03)–0.92 (0.08)
0.27 (0.07) GAL — 0.43 (0.06) 0.20 (0.04)

Kore–Sing (244) ALM — 2.20 (0.14)
–0.40 (0.03)–0.40 (0.05)

0.25 (0.08) Independent 0.00

Indo–Mala (298) ALM — 1.25 (0.12)
–0.98 (0.04)–0.94 (0.07)

0.25 (0.05) ALM — 5.9 (0.50)
–0.18 (0.07)–0.14 (0.06)

0.13 (0.06)

Mala–Phil (260) GAL — 0.49 (0.06) 0.24 (0.04) Independent 0.00
Indi–Thai (223) ALM — 2.55 (0.11)

–0.54 (0.10)–0.26 (0.05)
0.23 (0.04) Independent 0.00

Chil–Sing (261) ALM — 1.25 (0.09)
–0.72 (0.12)–0.98 (0.08)

0.22 (0.06) Independent 0.00

Chil–Mala (234) ALM — 1.34 (0.08)
–0.98 (0.16)–0.46 (0.09)

0.21 (0.06) Independent 0.00

Phil–Thai (243) AKS — 0.44 (0.11) 0.21 (0.08) JC — 1.15 (0.10)
–0.13 (0.10)

0.17 (0.09)

Chil–Phil (231) GAL — 0.44 (0.08) 0.21 (0.05) Independent 0.00
Kore–Thai (252) AKS — 0.44 (0.09) 0.20 (0.07) Independent 0.00
Indo–Phil (284) AKS — 0.42 (0.09) 0.19 (0.06) AKS — 0.28 (0.09) 0.09 (0.06)
Mala–Taiw (206) GAL — 0.40 (0.08) 0.18 (0.05) Independent 0.00
Indi–Sing (261) AKS — 0.4 (0.08) 0.18 (0.06) Independent 0.00
Chil–Kore (177) ALM — 1.18 (0.16)

–0.86 (0.21)–0.98 (0.06)
0.18 (0.07) Independent 0.00

Mexi–Sing (218) ALM — 1.51 (0.11)
–0.28 (0.09)–0.9 (0.04)

0.18 (0.07) ALM — 1.31 (0.11)
–0.98 (0.02)–0.26 (0.05)

0.13 (0.02)

Mexi–Phil (218) ALM — 1.96 (0.07)
–0.16 (0.05)–0.98 (0.08)

0.15 (0.04) Independent 0.00

Indi–Kore (241) AKS — 0.36 (0.07) 0.14 (0.05) Independent 0.00
Chil–Bang (216) GAL — 0.34 (0.12) 0.13 (0.06) Independent 0.00
Indi–Taiw (149) AKS — 0.34 (0.13) 0.13 (0.09) Independent 0.00
Taiw–Thai (156) AKS — 0.34 (0.13) 0.13 (0.09) AKS — 0.19 (0.10) 0.03 (0.06)
Indo–Thai (238) AKS — 0.32 (0.11) 0.12 (0.08) ALM — 1.31 (0.09)

–0.40 (0.05)–0.98 (0.08)
0.18 (0.04)

Braz–Phil (214) AKS — 0.30 (0.08) 0.10 (0.06) Independent 0.00
Arge–Phil (184) AKS — 0.30 (0.08) 0.10 (0.06) Independent 0.00

(continued on next page)
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Table 1 (continued )

Pairs (n) Raw data Filtered data

Copula — estimates (S.E.) λL (S.E.) Copula — estimates (S.E.) λL (S.E.)

Mexi–Mala (226) AKS — 0.28 (0.08) 0.08 (0.06) AKS — 0.20 (0.08) 0.03 (0.04)
Kore–Mala (200) ALM — 3.7 (0.17)

–0.90 (0.09)–0.08 (0.04)
0.08 (0.03) Independent 0.00

Arge–Indo (182) AKS — 0.24 (0.09) 0.06 (0.03) Independent 0.00
Arge–Bang (182) AKS — 0.24 (0.09) 0.06 (0.06) Independent 0.00
Braz–Sing (255) AKS — 0.20 (0.09) 0.03 (0.05) Independent 0.00
Braz–Mala (220) AKS — 0.19 (0.08) 0.03 (0.04) Independent 0.00

Pairs are ranked according to the strength of their lower tail dependence coefficient.
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where δ is the autoregressive term, θ is the moving average term, zt is an i.i.d. sequence with
distribution N(0, 1), with σt

2 being specified according to Eq. (4) or Eq. (9) with r, s=0, 1, and
where we include the GARCH-in-mean term3 π to assess the impact of contemporaneous
relationship between return and volatility on the volatility process.

We used the AIC to discriminate between models. Maximum likelihood estimation may be
tricky, as one often gets a local maximum. Values provided by SPlus functions not always meet
model constrains. A summary of the results is given in Table 3. Note most of the markets exhibit
significant leverage effect. All estimates of γ1 are negative, indicating the large effect of bad
news. We observe that all markets (except those modeled by the GARCH-in-mean process)
present significant estimate of (strong) long memory.

All described steps of the statistical analysis performed on the raw log-returns are now applied
to the free of volatility clusters residuals. A summary of the results is provided at the right panel of
Table 1, in the case of negative co-exceedances, and in the right panel of Table 2 in the case of
positive co-exceedances.

Overall, the results strongly indicate that most of the observed dependence may be credited to
volatility. No pair found independent under raw data modeling, was found dependent after filtering.
On the contrary, among the 40 dependent pairs during bear markets, 22 are independent (55%) if
volatility is filtered. Those still dependent pairs show now smaller degree of dependence, as
measured by the value of the lower tail dependence coefficient. In the right upper tail the results are
evenmore impressive: the four pairs possessing strongest tail dependence are now independent, and
just 8 out of 36 pairs (22%) possess a non-zero, though small, λU. For example, the raw log-returns
from Korea and Thailand provided λL=0.20 and λU=0.23, but the co-exceedances became
independent after filtering. Another interesting finding is that after whitening the data, Korea and
India become independent from all other emerging markets during bear markets. This behavior is
also observed for Philippines, Taiwan, Chile, and India during bull markets.

The t-tests carried on the differences between the before and after filtering tail dependence
coefficients (λL and λU), provided zero p-values. So, in overall, the strength of tail dependence
existing among pairs of emerging markets statistically decrease when volatility dynamic is
filtered.

Fig. 2 graphically shows the results given in Tables 1 and 2, and plots the values of the tail
dependence coefficients. On the left (right) panel we show results for the left lower tail (upper
right tail). The sequence of filled balls represent the value of the tail dependence coefficient for the
ranked pairs of markets fitted using raw returns. The empty balls represent the value of the tail
3 We would like to use FIGARCH-in-mean, but the SPlus code for that is still not available.



Table 2
Copula parameters and λU estimates (standard errors) for dependent positive (raw and filtered) co-exceedances

Pairs (n) Raw data Filtered data

Copula — estimates (S.E.) λU (S.E.) Copula — estimates (S.E.) λU (S.E.)

Sing–Thai (316) JOE — 1.49 (0.06) 0.41 (0.03) Independent 0.00
Phil–Thai (237) AKS — 0.72 (0.12) 0.38 (0.07) Independent 0.00
Arge–Braz (296) JOE — 1.40 (0.09) 0.36 (0.05) Independent 0.00
Indo–Phil (251) ALM — 1.88 (0.18)

–0.70 (0.05)–0.62 (0.05)
0.36 (0.04) Independent 0.00

Indo–Sing (282) AKS — 0.66 (0.10) 0.35 (0.05) ALM — 1.48 (0.14)
–0.50 (0.03)–0.50 (0.09)

0.20 (0.04)

Kore–Sing (189) ALM — 1.94 (0.04)
–0.68 (0.02)–0.52 (0.06)

0.34 (0.04) ALM — 5.90 (0.18)
–0.44 (0.11)–0.12 (0.06)

0.12 (0.05)

Phil–Sing (256) AKS — 0.60 (0.11) 0.32 (0.06) Independent 0.00
Indo–Thai (269) ALM — 2.14 (0.07)

–0.38 (0.01)–0.68 (0.06)
0.29 (0.04) ALM — 1.84 (0.20)

–0.12 (0.02)–0.98 (0.08)
0.11 (0.03)

Arge–Mexi (274) AKS — 0.50 (0.09) 0.25 (0.06) AKS — 0.26 (0.08) 0.07 (0.06)
Indi–Sing (184) ALM — 1.25 (0.19)

–0.98 (0.02)–0.21 (0.03)
0.25 (0.02) Independent 0.00

Mala–Sing (346) AKS — 0.46 (0.09) 0.23 (0.06) ALM — 1.41 (0.13)
–0.44 (0.04)–0.78 (0.08)

0.21 (0.04)

Kore–Thai (258) ALM — 1.52 (0.19)
–0.42 (0.08)–0.76 (0.07)

0.23 (0.02) Independent 0.00

Indo–Kore (243) ALM — 3.00 (0.14)
–0.22 (0.02)–0.54 (0.07)

0.21 (0.04) Independent 0.00

Indi–Kore (260) ALM — 1.51 (0.24)
–0.34 (0.08)–0.82 (0.08)

0.20 (0.05) Independent 0.00

Arge–Chil (287) ALM — 1.92 (0.28)
–0.24 (0.06)–0.74 (0.08)

0.20 (0.04) Independent 0.00

Kore–Phil (233) ALM — 2.55 (0.26)
–0.30 (0.05)–0.28 (0.03)

0.20 (0.03) Independent 0.00

Arge–Indi (180) ALM — 1.64 (0.18)
–0.28 (0.03)–0.66 (0.06)

0.19 (0.04) AKS — 0.20 (0.11) 0.03 (0.06)

Chil–Mala (159) ALM — 1.34 (0.09)
–0.98 (0.07)–0.40 (0.04)

0.19 (0.03) Independent 0.00

Braz–Mexi (297) AKS — 0.41 (0.07) 0.18 (0.05) ALM — 1.66 (0.31)
–0.16 (0.03)–0.54 (0.07)

0.12 (0.06)

Mala–Thai (282) AKS — 0.40 (0.08) 0.18 (0.06) Independent 0.00
Braz–Sing (193) ALM — 1.68 (0.26)

–0.42 (0.07)–0.30 (0.07)
0.17 (0.04) Independent 0.00

Mexi–Taiw (178) ALM — 2.40 (0.25)
–0.18 (0.03)–0.68 (0.05)

0.17 (0.05) Independent 0.00

Chil–Mexi (273) AKS — 0.38 (0.08) 0.16 (0.06) Independent 0.00
Arge–Kore (142) GAL — 0.37 (0.17) 0.16 (0.08) Independent 0.00
Kore–Taiw (222) ALM — 1.98 (0.22)

–0.14 (0.03)–0.72 (0.05)
0.13 (0.02) Independent 0.00

Mala–Phil (211) AKS — 0.34 (0.12) 0.13 (0.08) AKS — 0.22 (0.08) 0.04 (0.05)
Kore–Mala (248) ALM — 5.10 (0.28)–0.28

(0.07)–0.12 (0.03)
0.12 (0.03) Independent 0.00

Indi–Thai (218) AKS — 0.32 (0.09) 0.12 (0.06) Independent 0.00
Arge–Sing (218) AKS — 0.28 (0.09) 0.09 (0.06) Independent 0.00
Sing–Taiw (209) AKS — 0.27 (0.09) 0.08 (0.07) Independent 0.00
Chil–Thai (161) AKS — 0.26 (0.10) 0.07 (0.06) Independent 0.00
Chil–Indo (181) AKS — 0.24 (0.07) 0.06 (0.05) Independent 0.00

(continued on next page)
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Table 2 (continued )

Pairs (n) Raw data Filtered data

Copula — estimates (S.E.) λU (S.E.) Copula — estimates (S.E.) λU (S.E.)

Mexi–Kore (208) AKS — 0.24 (0.09) 0.06 (0.06) Independent 0.00
Mexi–Mala (204) AKS — 0.24 (0.09) 0.06 (0.06) Independent 0.00
Mexi–Sing (246) AKS — 0.24 (0.08) 0.05 (0.05) Independent 0.00
Phil–Taiw (226) ALM–5.9 (021)

–0.22 (0.06)–0.04 (0.02)
0.04 (0.02) Independent 0.00

Pairs are ranked according to the strength of their upper tail dependence coefficient.
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dependence coefficient for the corresponding filtered residuals. We note that in only two cases
(Philippines–Singapore and Indonesia–Thailand) we observed an (small) increase in the λL
value. The results for λU are very impressive, being the less dramatic the one related to the pair
Malaysia–Singapore.

The observed asymmetry between the lower left and the upper right tails may be tested by
carrying on tests based on 2×2 contingency tables. We used the results from the filtered data and
defined tail dependence as weak if λLb0.10 (or λUb0.10), and not weak otherwise. The p-value
of 0.10 did not reject the null hypothesis of independence between the two categories defined on
the two tails.

Aswe have commented in the Introduction, non-exchangeability in the joint excesses implies that
crisis transmission is not symmetric. However, identically distributed margins may possess an
asymmetric dependence structure. How much G(x1, x2) differs from G(x2, x1) is, of course, of great
interest in the financial world. Any normalized measure of the difference G(x1, x2)−G(x2, x1) may
be used to measure the degree of non-exchangeability between X1 and X2. Nelsen (2007) proposed
to compute the maximum of the absolute value of the differences G(x, y)−G(x, y). For identically
distributed margins this is equivalent to compute μ=3*max|C(u, v)−C(v, u)|, for all u, v∈ [0, 1]2,
where C is the fitted (asymmetric) copula. Using the excess data we empirically estimate this
quantity.

Singapore–Thailand, for which the λL estimate did not statistically change after filtering, is an
interesting example where the intrinsic structure seems to be asymmetric, but the high volatility
and the long memory in volatility seems to lead to symmetric propagation of crisis. We accepted
the null hypothesis of equality of distributions for the raw and filtered excesses, with both p-values
above 0.90. However, the measure μ estimated using the fitted copulas provided for the raw
excesses the value 0.0029, and for the filtered excesses the value of 0.0200. This behavior was also
found for the other pairs for which the asymmetric ALM copula was the best fit. Their empirical
estimate of μ are, respectively, before and after filtering: Mexico–Singapore, μ=0.0200, 0.0436,
Malaysia–Singapore, μ=0.0159, 0.0469, Indonesia–Malaysia, μ=0.0018, 0.0145.

As a final exercise with the purpose of illustrating one application of the findings of this paper,
we considered the evolution through time of the accumulated gains of two equally weighted
portfolios. The first portfolio is composed by Singapore and Thailand. This pair showed the
strongest dependence at extreme levels during bull markets, λU=0.41, and the impressive result
after filtering (independence), λU=0.00. At extreme joint losses the tail dependence coefficients
are, before and after treatment, λL=0.34 and λL=0.32. The second portfolio corresponds to the
pair Malaysia and Singapore which shows, respectively, for the raw and filtered data, λU=0.23,
and λU=21. At extreme joint losses the tail dependence coefficients are, before and after
treatment, λL=0.31 and λL=21. Note that the correlation coefficient estimated for the two
portfolios are very close, respectively 0.43 and 0.41 (after cleaning the estimates are 0.37 and



Table 3
FIGARCH fits

Country δ (S.E.) θ (S.E.) π (S.E.) w (S.E.) α1 (S.E.) β1 (S.E.) γ1 (S.E.) d (S.E.)

Argent. 0.099
(0.021)

0.009
(0.008)

0.168
(0.019)

0.101
(0.007)

0.861
(0.009)

−0.259
(0.028)

Brazil 0.078
(0.020)

0.024
(0.007)

0.157
(0.022)

0.108
(0.010)

0.859
(0.011)

−0.237
(0.033)

Mexico 0.152
(0.019)

−0.130
(0.015)

0.182
(0.020)

0.496
(0.089)

−0.133
(0.015)

0.540
(0.031)

Chile 0.310
(0.018)

−0.276
(0.020)

0.357
(0.026)

−0.035
(0.012)

0.691
(0.026)

India 0.515
(0.079)

−0.361
(0.087)

−0.253
(0.017)

0.342
(0.024)

0.010
(0.078)

−0.083
(0.012)

0.655
(0.030)

Indon. 0.206
(0.020)

0.146
(0.019)

0.117
(0.027)

0.314
(0.023)

Korea 0.081
(0.019)

−0.083
(0.017)

0.112
(0.022)

0.446
(0.138)

−0.045
(0.009)

0.751
(0.037)

Malays. 0.145
(0.017)

−0.149
(0.016)

0.203
(0.023)

0.183
(0.113)

−0.081
(0.011)

0.754
(0.013)

Philip. 0.167
(0.017)

−0.013
(0.013)

0.048
(0.007)

0.053
(0.003)

0.918
(0.005)

−0.409
(0.038)

Singap. 0.118
(0.019)

−0.137
(0.015)

0.182
(0.020)

0.416
(0.087)

−0.069
(0.010)

0.698
(0.019)

Taiwan 0.923
(0.047)

−0.897
(0.055)

−0.086
(0.010)

0.127
(0.014)

0.666
(0.067)

−0.103
(0.012)

0.423
(0.043)

Thaila. 0.494
(0.118)

−0.384
(0.128)

0.230
(0.039)

0.193
(0.030)

0.296
(0.027)
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0.41). As indicated by their lower tail dependence coefficients, one may expect similar
performance from both portfolios during crisis. Thus one may expect to get better performance
from the first portfolio which promises to yield higher returns during booms. However, this is not
what Fig. 3 reveals. This figure shows the evolution of the accumulated gains from both portfolios
throughout the span of the data. In black we have the first portfolio (Singapore–Thailand), and in
green the second (Malaysia–Singapore) portfolio.

5. Conclusions

In this paper we carried on a comprehensive study investigating effects of long and short range
memory on dependence structures of emerging markets co-exceedances. We fitted copulas to
joint excess log-returns and computed measures of tail dependence. Then we filtered the data
using FIGARCH processes, and fitted the same selected copulas to the joint excess residuals. We
observed that all markets (except those modeled by the GARCH-in-mean process) presented
significant estimate of (strong) long memory. The observed changes on the dependence structure
provided valuable information on how volatility dynamics affects interdependencies.

All dependent pairs presented asymmetry between bear and bull markets, typically λUbλL,
this being true for raw and filtered data. Overall, the results strongly indicate that most of the
observed dependence may be credited to volatility. No pair found independent under raw data
modeling, was found dependent after filtering. On the contrary, among the 40 dependent pairs
during bear markets, 22 are independent (55%) if volatility is filtered. Those still dependent pairs
show now smaller lower tail dependence coefficient. In the right upper tail the results are even



Fig. 2. Tail dependence coefficients computed for raw excesses (filled balls) and filtered excesses (empty balls), for pairs
ranked in Tables 1 and 2.
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more impressive: the four pairs possessing strongest tail dependence were found independent
after filtering, and just 8 out of 36 pairs (22%) possessed a non-zero, though small, λU.

In summary, we found that volatility masked the true dependence structure (found in the
filtered excesses) in many ways. For example, symmetric propagation of crisis as well as the
observed degree of interdependence could be an effect of short and long memory in volatility. We
provided examples where non-exchangeability was found for identically distributed random
variables, and long memory in volatility was responsible for changes in dependence structure,
increasing extremal dependence.

As a final exercise with the purpose of illustrating one application of the findings of this paper,
we considered the evolution through time of the accumulated gains of two equally weighted
portfolios. One of the portfolios with strong upper tail dependence did not yield high returns as
expected. Many other applications may follow this analysis, and we leave this for future work.
Fig. 3. The evolution of the accumulated gains from both portfolios throughout the span of the data. In black, the
Singapore–Thailand portfolio, and in green the Malaysia–Singapore portfolio. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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