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A R T I C L E I N F O A B S T R A C T

Editor: Hubert Saleur We consider the interaction-round-a-face version of the isotropic six-vertex model. The associated 
spin chain is made of two coupled Heisenberg spin chains with different boundary twists. The 
phase diagram of the model and the long distance correlations were studied in Tavares and Ribeiro 
(2023) [43]. Here, we compute the short-distance correlation functions of the model in the ground 
state for finite system sizes via non-linear integral equations and in the thermodynamic limit. 
This was possible since the model satisfies the face version of the discrete quantum Knizhnik-

Zamolodchikov (qKZ) equation. A suitable ansatz for the density matrix is proposed in the form of 
a direct sum of two Heisenberg density matrices, which allows us to obtain the discrete functional 
equation for the two-site function 𝜔(𝜆1, 𝜆2). Thanks to the known results on the factorization of 
correlation functions of the Heisenberg chain, we are able to compute the density matrix of the 
IRF model for up to four sites and its associated spin chain for up to three sites.

1. Introduction

The correlation functions of integrable models have been widely studied in the last decades [1,2]. Many results were obtained for 
quantum spin chains associated to classical vertex models, specially for the 𝑆𝑈 (2) spin-1∕2 chain [3–15], its higher-spin realizations 
[16–23] and also some explicit results for high-rank spin chains [24–26].

Nevertheless, much less is known about correlation functions of the interaction-round-a-face (IRF) models and its associated spin 
chains [27–31]. The IRF model and its many different realizations as the cyclic solid-on-solid (CSOS) [32–36], the restricted solid-

on-solid (RSOS) models and its 𝐴-𝐷-𝐸 generalizations [37–40] share some similarities with the vertex models and its integrable 
structure, which allow for the exact computation of physical properties. Recently, some remarkable results appeared in the context 
of correlation functions of face models [41,42]. In [41], the reduced density matrix was formulated in terms of face model weights, 
which allowed for the derivation of discrete functional equations of qKZ type along the same lines as the six-vertex model and the 
associated Heisenberg spin chain [14]. Besides, it was shown [41,42] that the density matrix of the RSOS models can be factorized 
in terms of nearest-neighbour correlators.

In this work, we are interested to compute correlation functions of the recently proposed IRF version of the six-vertex model 
[43]. The spin chain associated to this face model has previously appeared in different contexts [44–46], however, the integrable 
structure of the face models and its relationship with the six-vertex model allowed the study of its physical properties and phase 
diagram in the thermodynamical limit [43]. Here, inspired in [41,42], we study the reduced density matrix for the IRF version of 
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Fig. 1. Boltzmann weights of the IRF version of the six-vertex model. The face weights are obtained from the allowed configuration for the six-vertex model, which 
can be seen through the dotted oriented lines.

the six-vertex model, which satisfies the discrete functional equation of qKZ type. We obtain the solution of the functional equation 
at zero temperature for finite and infinity system sizes, which is determined by the density matrix in the ground state. As described 
in [43], the associated quantum spin chain is made of two coupled Heisenberg spin chains with different boundary conditions. This 
implies that the density matrix in the ground state can also be seen as two copies of the density matrix of the Heisenberg spin chain. 
Therefore, with a suitable ansatz, we obtain that the qKZ equation for the face model density matrix results in the discrete functional 
equation for the two-site correlation function, usually denoted by 𝜔(𝜆1, 𝜆2) and whose solution is written in terms of the solution of 
non-linear integral equations for finite system sizes. This allowed to fully determine the two and three-site density matrices of the 
spin chain and its correlations at zero temperature for finite system size and in the thermodynamic limit.

This paper is organized as follows. In section 2, we describe the IRF version of the six-vertex model and its integrable structure. 
In section 3, we introduce the physical density matrix and its functional equation. In section 4, we present the solution for two-

, three-, and four-site density matrices of the IRF model and up to three-sites for the spin chain for finite system size and in the 
thermodynamic limit at zero temperature. In section 5, we make use of the non-linear integral equations in order to evaluate the 
non-trivial correlations for large but finite system sizes. Our conclusions are given in section 6.

2. The IRF version of the six-vertex model and its quantum spin chain

The face models are classical statistical mechanical models on a square lattice defined by local Boltzmann weights, which can be 
depicted as [32–34],

𝑊

(
𝑑 𝑐

𝑎 𝑏

||||| 𝜆
)

=

𝑎 𝑏

𝑐𝑑

𝜆 ,
(1)

where 𝑎, 𝑏, 𝑐, 𝑑 are the spins or heights on the corners of the face separated by bonds and 𝜆 is the spectral parameter.

In this work, we consider the IRF version of the isotropic six-vertex model introduced in [43], which can be depicted as in Fig. 1. 
This face model is made of two copies of the six-vertex model, whose spins are assigned as in Fig. 1.

The face weights a(𝜆), b(𝜆) and c(𝜆) are given by,
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The physical properties of the classical 𝑀 ×𝐿 square lattice model with periodic boundary condition can be obtained from the [( ) ]

2

partition function, which can be written as 𝑍IRF = Tr 𝑇IRF(𝜆)
𝑀

. Here, the transfer matrix with periodic boundary condition is 
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 𝛼1𝛽1
𝛼2𝛽2

(𝜆)𝑎1𝑎2⋯𝑎𝐿
𝑏1𝑏2⋯𝑏𝐿

=

𝛼2 = 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏𝐿 𝑏𝐿+1 = 𝛽2

𝛼1 = 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎𝐿 𝑎𝐿+1 = 𝛽1

𝜆− 𝑢1 𝜆− 𝑢2 𝜆− 𝑢3 𝜆− 𝑢4 𝜆− 𝑢𝐿⋯

Fig. 2. The monodromy matrix elements of the IRF model.

defined as 𝑇IRF(𝜆) = Tr[ (𝜆)] =
∑
𝛼1 ,𝛼2

 𝛼1𝛼1
𝛼2𝛼2

(𝜆), where the monodromy matrix elements are defined as the product of the Boltzmann 
weights along the row,

 𝛼1𝛽1
𝛼2𝛽2

(𝜆)𝑎1𝑎2⋯𝑎𝐿
𝑏1𝑏2⋯𝑏𝐿

=
𝐿∏
𝑖=1

𝑊

(
𝑎𝑖 𝑎𝑖+1
𝑏𝑖 𝑏𝑖+1

||||| 𝜆− 𝑢𝑖
)
𝛿𝛼1𝑎1𝛿𝛼2𝑏1𝛿𝛽1𝑎𝐿+1𝛿𝛽2𝑏𝐿+1 , (3)

where for later convenience we introduce the inhomogeneity parameters {𝑢𝑖}.

The depiction of the monodromy matrix is given in Fig. 2.

The transfer matrix is part of a family of commuting operators [𝑇IRF(𝜆), 𝑇IRF(𝜇)] = 0 thanks to the Yang-Baxter equation. The face 
version of the Yang-Baxter equation given by,
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. (4)

Taking the logarithmic derivative of the IRF transfer matrix IRF = 𝜕𝜆 log𝑇IRF(𝜆)|𝜆=𝑢𝑖=0, we obtain a one-dimensional spin chain 
with interaction of three spins,

IRF =
1
2

𝐿∑
𝑖=1

𝜎𝑥𝑖 − 𝜎
𝑧
𝑖−1𝜎

𝑥
𝑖 𝜎

𝑧
𝑖+1 + 𝜎

𝑧
𝑖−1𝜎

𝑧
𝑖+1 + 1, (5)

where 𝜎𝛼 for 𝛼 = 𝑥, 𝑦, 𝑧 are the standard Pauli matrices. The Hamiltonian (5) has a continuous 𝑈 (1) symmetry and a discrete ℤ2
symmetry, since it commutes with the operators,

Σ𝑧 =
𝐿∑
𝑗=1

𝜎𝑧
𝑗
𝜎𝑧
𝑗+1, Π𝑥 =

𝐿∏
𝑗=1

𝜎𝑥
𝑗
. (6)

This three spin interaction Hamiltonian (5) was shown in [43] to be made of two coupled Heisenberg spin chains (XXX(𝜙)) with 
different boundary conditions at the sector of even spin flips,

IRF =𝑈𝑡
(even

XXX
(0)⊕even

XXX
(𝜋∕2)

)
𝑈, (7)

where 𝑈 is the matrix that diagonalizes Π𝑥 and 𝜙 is the twist angle, such that 𝜙 = 0 result in periodic boundary condition [43].

The physical properties of this model were studied in [43] via the quantum transfer matrix approach [47] in the thermodynamical 
limit. It was shown that the leading eigenvalue of the transfer matrix with periodic boundary conditions determines the thermody-

namic properties like the free-energy and its derivatives. This implies that the Hamiltonian (5) has the same phase diagram as the 
Heisenberg model. Nevertheless due to the fact that the first excited states belong to the sector with non-periodic boundary condition, 
the long distance correlation function presents different oscillatory behaviour from the Heisenberg chain [48].

3. Density matrix and functional equations

In [41], the scheme to deal with correlation functions of integrable models was extended to the case of face models. This was done 
by proceeding along the same lines as in the vertex model case [14]. Within this approach, the main object is the inhomogeneous 
reduced density matrix formulated in terms of face weights at zero temperature and finite system size 𝐿 (see Fig. 3), whose matrix 
elements are given by,

𝐷𝑛(𝜆1, 𝜆2,… , 𝜆𝑛)
𝛼1𝛼2…𝛼𝑛+1
𝛽1𝛽2…𝛽𝑛+1

=
⟨Φ0|| 𝛼1𝛽1

𝛼2𝛽2
(𝜆1) 𝛼2𝛽2

𝛼3𝛽3
(𝜆2)… 𝛼𝑛𝛽𝑛

𝛼𝑛+1𝛽𝑛+1
(𝜆𝑛) ||Φ0⟩⟨Φ0 ||Φ0⟩Λ0(𝜆1)Λ0(𝜆2)⋯Λ0(𝜆𝑛)

, (8)

where  𝛼𝑘𝛽𝑘
𝛼𝑘+1𝛽𝑘+1

(𝜆) are the monodromy matrix elements (3) and ||Φ0⟩ is the eigenstate associated to the leading eigenvalue Λ0(𝑥) of 
3

the transfer matrix 𝑇IRF(𝜆).
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𝐷̃𝑛(𝜆1,… , 𝜆𝑛)
𝛼1𝛼2…𝛼𝑛+1
𝛽1𝛽2…𝛽𝑛+1

=

Φ0

Φ0

𝛼2 𝛽2

𝛼1 𝛽1

𝛼𝑛+1 𝛽𝑛+1

𝛼𝑛 𝛽𝑛

𝜆1 − 𝑢1 𝜆1 − 𝑢2 𝜆1 − 𝑢𝐿⋯

⋮ ⋮

⋯𝜆𝑛 − 𝑢1 𝜆𝑛 − 𝑢2 𝜆𝑛 − 𝑢𝐿⋯

Fig. 3. Graphical illustration of the un-normalized reduced density matrix elements.

It is worth to note that the connection with the physical density matrix of the face model for 𝑛 consecutive edges in the ground 
state is obtained from the inhomogeneous reduced density matrix via the limit 𝜆𝑘 → 𝑢𝑘 for 𝑘 = 1, 2, … , 𝑛 [41],

𝐷̌[1,𝑛] = lim
𝜆1→𝑢1 ,⋯,𝜆𝑛→𝑢𝑛

𝐷𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛). (9)

Besides, in order to obtain the physical results for the quantum spin chain, one has to additionally take partial trace of the IRF density 
matrix, which results in the spin chain density matrix 𝔻𝑛−1 given by,

𝔻𝑛−1(𝜆1, 𝜆2,⋯ , 𝜆𝑛)
𝛼2…𝛼𝑛
𝛽2…𝛽𝑛

=
∑

𝛼1 ,𝛼𝑛+1

𝐷𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛)
𝛼1𝛼2…𝛼𝑛𝛼𝑛+1
𝛼1𝛽2…𝛽𝑛𝛼𝑛+1

. (10)

Finally, the homogeneous limit guarantees we are describing the correlation of the quantum spin chain, which means that all inho-

mogeneities are taken to zero such that 𝑢𝑘 = 0, for all 𝑘.

The efficient computation of the inhomogeneous reduced density matrix in a way that the above limits can be taken is established 
through the solution of a discrete functional equation of qKZ type [14,41]. The existence of such equation is guaranteed by the 
integrable structure plus the crossing symmetry of the Boltzmann weights.

The face version of the discrete functional equations is given by [41],

𝐷𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛 − 1) =𝐴𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛)[𝐷𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛)], (11)

under the condition that 𝜆𝑛 = 𝑢𝑘 for arbitrary 𝑘 and where the linear operator 𝐴𝑛 can be written as,

𝐴𝑛(𝜆1, 𝜆2,⋯ , 𝜆𝑛)[𝐵]
𝛼1𝛼2…𝛼𝑛+1
𝛽1𝛽2…𝛽𝑛+1

=
𝛿𝛼1𝛽1 𝛿𝛼𝑛+1𝛽𝑛+1∏𝑛
𝑘=1(1−(𝜆𝑘−𝜆𝑛)

2) ×∑
𝛾𝑖,𝛿𝑖=±

𝛿𝛼𝑛𝛾𝑛+1

𝑛−1∏
𝑘=1

𝑊

(
𝛾𝑘 𝛾𝑘+1
𝛼𝑘 𝛼𝑘+1

||||| 𝜆𝑛 − 𝜆𝑘
)
𝐵
𝛾1…𝛾𝑛+1
𝛿1…𝛿𝑛+1

(12)

∏𝑛−1
𝑘=1𝑊

(
𝛿𝑘 𝛽𝑘
𝛿𝑘+1 𝛽𝑘+1

||||| 𝜆𝑘 − 𝜆𝑛
)
𝑊

(
𝛿𝑛 𝛽𝑛
𝛿𝑛+1 𝛽𝑛+1

||||| − 1

)
.

By direct inspection, we verified for finite lattices 𝐿 = 4, 8 that the discrete functional equation (11) is satisfied.

In the next section, we are going to propose a suitable ansatz for the density matrix which allows for the solution of the functional 
equation for short-distances 𝑛 = 2, 3 and 4.

4. Computation of the reduced density matrix

Due to the fact that the IRF model (2) is made of two copies of the six-vertex model, and likewise the associated spin chain (5) is 
made of two coupled Heisenberg spin chains, it is expected that this structure carries over to the density matrix as well. Actually, we 
realized that the IRF reduced density matrix in the ground state (8) can be written, after a trivial reordering of the basis states, as a 
direct sum of two copies of the density matrix of the Heisenberg spin chain,
4

𝐷IRF
𝑛 (𝜆1, 𝜆2,… , 𝜆𝑛) =

1
2
𝐷𝑋𝑋𝑋
𝑛 (𝜆1, 𝜆2,… , 𝜆𝑛)⊕

1
2
𝐷𝑋𝑋𝑋
𝑛 (𝜆1, 𝜆2,… , 𝜆𝑛). (13)
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Note that since Tr[𝐷𝑋𝑋𝑋
𝑛 (𝜆1, 𝜆2, … , 𝜆𝑛)] = 1, it naturally guarantees the normalization of the IRF density matrix, i.e. Tr[𝐷IRF

𝑛 (𝜆1, 𝜆2,
… , 𝜆𝑛)] = 1.

4.1. Computation of the two-site density matrix

The two-site density matrix of the isotropic Heisenberg model, which originally was written in a vector basis [9], can be conve-

niently written in terms of projector operators or the identity and permutation matrices, such that

𝐷𝑋𝑋𝑋
2 (𝜆1, 𝜆2) =

(
1
4
−
𝜔(𝜆1, 𝜆2)

6

)
𝐼4 +

𝜔(𝜆1, 𝜆2)
3

𝑃12, (14)

where 𝐼4 is the 4 × 4 identity and 𝑃12 is the permutation operator,

𝑃12 =
⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ . (15)

Choosing

{|+++⟩ , |++−⟩ , |+−−⟩ , |+−+⟩} ∪ {|−+−⟩ , |−++⟩ , |−−+⟩ , |−−−⟩}, (16)

as the basis ordering, the two-site IRF density matrix can be written as,

𝐷IRF
2 (𝜆1, 𝜆2) =

1
2
𝐷𝑋𝑋𝑋

2 (𝜆1, 𝜆2)⊕
1
2
𝐷𝑋𝑋𝑋

2 (𝜆1, 𝜆2). (17)

On the quantum spin chain side, one has to take the partial trace of the 𝐷IRF
2 (𝜆1, 𝜆2), resulting in the one-site density matrix for 

the Hamiltonian (5),

𝔻1(𝜆1, 𝜆2) =

(
1
2

𝜔(𝜆1 ,𝜆2)
3

𝜔(𝜆1 ,𝜆2)
3

1
2

)
. (18)

By replacing (14) into (17) and substituting this ansatz in the functional equation (11), we obtain a single discrete functional 
equation for the function 𝜔(𝜆1, 𝜆2), which reads,

𝜔(𝜆1, 𝜆2 − 1) +
(𝜆1 − 𝜆2)(𝜆1 − 𝜆2 + 2)

(𝜆1 − 𝜆2)2 − 1
𝜔(𝜆1, 𝜆2) =

3
2

1
(𝜆1 − 𝜆2)2 − 1

, (19)

for 𝜆2 = 𝑢𝑘 for 𝑘 = 1, 2, … , 𝐿. This discrete functional equation is the same one obtained for the isotropic Heisenberg spin chain [14]. 
We have verified that this equation is fulfilled by direct inspection for small lattice sizes 𝐿 = 4, 8.

The only non-trivial one-point correlation function is given by

⟨𝜎𝑥𝑖 ⟩𝐿 = 2
3
𝜔(0,0). (20)

4.1.1. Solution in the thermodynamical limit (𝐿 →∞)

In the thermodynamic limit, there will be arbitrarily many 𝑢𝑘 forming a continuum, which allows the equation (19) to hold for 
arbitrary values of 𝜆1 and 𝜆2. Therefore, in the thermodynamic limit, we may remove the restriction on the 𝜆2 variable and (19)

becomes an equation for the difference of the variables 𝜆 = 𝜆1 − 𝜆2 such that 𝜔(𝜆1, 𝜆2) = 𝜔∞(𝜆1 − 𝜆2),

𝜔∞(𝜆+ 1) + 𝜆(𝜆+ 2)
𝜆2 − 1

𝜔∞(𝜆) = 3
2

1
𝜆2 − 1

, (21)

which is exactly the same equation in [9]. The solution in the thermodynamical limit can be written as [9],

𝜔∞(𝜆) = (𝜆2 − 1) 𝑑
𝑑𝜆

log
⎧⎪⎨⎪⎩
Γ(1 + 𝜆

2 )Γ(
1
2 −

𝜆

2 )

Γ(1 − 𝜆

2 )Γ(
1
2 +

𝜆

2 )

⎫⎪⎬⎪⎭+ 1
2
. (22)

Taking the homogeneous limit 𝜆𝑘 = 𝜆 = 0, we obtain that

𝜔∞(0) = 1
2
− 2 log(2), (23)

which implies that for 𝐿 →∞,
5

⟨𝜎𝑥𝑖 ⟩∞ = 1
3
− 4

3
log(2) = −0.590862907413... (24)
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4.2. Computation of the three-site density matrix

Again, the three-site density matrix of the Heisenberg model can be conveniently written in terms of identity and permutation 
matrices acting on three different sites, such that

𝐷𝑋𝑋𝑋
3 (𝜆1, 𝜆2, 𝜆3) = 𝜌

(3)
1 𝐼8 + 𝜌

(3)
2 𝑃12 + 𝜌

(3)
3 𝑃23 + 𝜌

(3)
4 𝑃23𝑃12 + 𝜌

(3)
5 𝑃12𝑃23, (25)

where 𝜌(3)
𝑘

= 𝜌(3)
𝑘
(𝜆1, 𝜆2, 𝜆3) are functions that are determined by normalization of the density matrix, by the functional equations and 

by the density matrix symmetries [9,10], which can be written as,

𝜌
(3)
1 = 1

8 −
1
12

(
1 − 1

𝜆13𝜆23

)
𝜔(𝜆1, 𝜆2) +

1
12

(
1 − 1

𝜆12𝜆23

)
𝜔(𝜆1, 𝜆3) −

1
12

(
1 − 1

𝜆12𝜆13

)
𝜔(𝜆2, 𝜆3),

𝜌
(3)
2 = 1

6

(
1 − 1

𝜆13𝜆23

)
𝜔(𝜆1, 𝜆2) −

1
6

(
1 − 1

𝜆12𝜆23

)
𝜔(𝜆1, 𝜆3) −

1
6

(
1

𝜆12𝜆13

)
𝜔(𝜆2, 𝜆3),

𝜌
(3)
3 = −1

6

(
1

𝜆13𝜆23

)
𝜔(𝜆1, 𝜆2) −

1
6

(
1 − 1

𝜆12𝜆23

)
𝜔(𝜆1, 𝜆3) +

1
6

(
1 − 1

𝜆12𝜆13

)
𝜔(𝜆2, 𝜆3), (26)

𝜌
(3)
4 = 1

12

(
2−𝜆12
𝜆13𝜆23

)
𝜔(𝜆1, 𝜆2) +

1
12

(
2 − 2

𝜆12𝜆23
− 1

𝜆12
+ 1

𝜆23

)
𝜔(𝜆1, 𝜆3)

+ 1
12

(
2

𝜆12𝜆13
+ 1

𝜆12
− 1

𝜆13

)
𝜔(𝜆2, 𝜆3),

𝜌
(3)
5 = 1

12

(
2

𝜆12𝜆23
− 2

𝜆12𝜆23
− 1

𝜆13
+ 1

𝜆23

)
𝜔(𝜆1, 𝜆2) +

1
12

(
2 − 2

𝜆12𝜆23
+ 1

𝜆12
− 1

𝜆23

)
𝜔(𝜆1, 𝜆3)

+ 1
12

(
2

𝜆12𝜆13
− 1

𝜆12
+ 1

𝜆13

)
𝜔(𝜆2, 𝜆3),

where 𝜆𝑖𝑗 = 𝜆𝑖 − 𝜆𝑗 .
Choosing

{|++++⟩ , |+++−⟩ , |++−−⟩ , |++−+⟩ , |+−−−⟩ , |+−−+⟩ , |+−++⟩ , |+−+−⟩} (27)

∪ {|−+−+⟩ , |−+−−⟩ , |−++−⟩ , |−+++⟩ , |−−+−⟩ , |−−++⟩ , |−−−+⟩ , |−−−−⟩},
as the basis ordering, the three-site IRF density matrix can be written as,

𝐷IRF
3 (𝜆1, 𝜆2, 𝜆3) =

1
2𝐷

𝑋𝑋𝑋
3 (𝜆1, 𝜆2, 𝜆3)⊕

1
2𝐷

𝑋𝑋𝑋
3 (𝜆1, 𝜆2, 𝜆3). (28)

On the quantum spin chain side, one has to take the partial trace on 𝐷IRF
3 (𝜆1, 𝜆2, 𝜆3), which results in the two-site density matrix 

of the Hamiltonian (5),

𝔻2(𝜆1, 𝜆2, 𝜆3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
4

𝜔(𝜆2 ,𝜆3)
6

𝜔(𝜆1 ,𝜆2)
6

Ω(3)(𝜆1 ,𝜆2 ,𝜆3)
6

𝜔(𝜆2 ,𝜆3)
6

1
4

Ω(3)(𝜆1 ,𝜆2 ,𝜆3)
6

𝜔(𝜆1 ,𝜆2)
6

𝜔(𝜆1 ,𝜆2)
6

Ω(3)(𝜆1 ,𝜆2 ,𝜆3)
6

1
4

𝜔(𝜆2 ,𝜆3)
6

Ω(3)(𝜆1 ,𝜆2 ,𝜆3)
6

𝜔(𝜆1 ,𝜆2)
6

𝜔(𝜆2 ,𝜆3)
6

1
4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

where

Ω(3)(𝜆1, 𝜆2, 𝜆3) = 3
(
𝜌
(3)
4 + 𝜌(3)5

)
= 𝜔(𝜆1 ,𝜆2)

𝜆13𝜆23
+𝜔(𝜆1, 𝜆3)

(
1 − 1

𝜆12𝜆23

)
+ 𝜔(𝜆2 ,𝜆3)

𝜆12𝜆13
. (30)

The only non-trivial two-site correlation function is obtained from Ω(3)(𝜆1, 𝜆2, 𝜆3) as,

⟨𝜎𝑥
𝑖
𝜎𝑥
𝑖+1⟩𝐿 = 2

3Ω
(3)(0,0,0), (31)

where the homogeneous limit is a singular one, which results in Ω(3)(0, 0, 0) = 𝜔(0,0) + 𝜔(1,1) − 𝜔(2,0)∕2, where 𝜔(𝑚,𝑛) =
𝜕𝑚
𝜆1
𝜕𝑛
𝜆2
𝜔(𝜆1, 𝜆2)|𝜆1=𝜆2=0 for arbitrary system size 𝐿.

The homogeneous limit of Ω(𝜆1, 𝜆2, 𝜆3) in the thermodynamical limit gives,

Ω(3)
∞ (0,0,0) = 1

2 − 8 log(2) + 9
2 𝜁(3), (32)

therefore,
6

⟨𝜎𝑥1𝜎𝑥2 ⟩∞ = 1
3 −

16
3 log(2) + 3𝜁(3) = 0.242719079825... (33)
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4.3. Computation of the four-site density matrix

The four-site density matrix of the Heisenberg model was computed in [10] and can be written as,

𝐷𝑋𝑋𝑋
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

14∑
𝑘=1

𝜌
(4)
𝑘
𝑃𝑘, (34)

where 𝑃𝑘 for 𝑘 = 1, … , 14 can be taken from the following ordered set of linearly independent operators,

{𝑃𝑘}14𝑘=1 = {𝐼16, 𝑃12, 𝑃23, 𝑃34, 𝑃12𝑃23, 𝑃23𝑃12, 𝑃23𝑃34, 𝑃34𝑃23, 𝑃12𝑃34, 𝑃13𝑃24,

𝑃12𝑃34𝑃23, 𝑃12𝑃23𝑃34, 𝑃34𝑃23𝑃12, 𝑃23𝑃34𝑃12},

and the coefficients 𝜌(4)
𝑘

= 𝜌(4)
𝑘
(𝜆1, 𝜆2, 𝜆3, 𝜆4), which can be read from [10],1 have the following structure (we list the coefficients 𝐴(𝑘)

𝑖

and 𝐵(𝑘)
𝑖

in the Appendix A),

𝜌
(4)
𝑘

= 𝑝(𝑘)0 +𝐴(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆2) +𝐴

(𝑘)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆3)

+𝐴(𝑘)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆4) +𝐴

(𝑘)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆2, 𝜆3)

+𝐴(𝑘)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆2, 𝜆4) +𝐴

(𝑘)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆3, 𝜆4) (35)

+𝐵(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆2) 𝜔(𝜆3, 𝜆4)

+𝐵(𝑘)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆3) 𝜔(𝜆2, 𝜆4)

+𝐵(𝑘)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) 𝜔(𝜆1, 𝜆4) 𝜔(𝜆2, 𝜆3).

Due to the factorization properties of the correlation functions for the Heisenberg chain [9,10], the functions 𝜌(3)
𝑘

and 𝜌(4)
𝑘

can be 
written in terms of the two-site functions 𝜔(𝜆𝑖, 𝜆𝑗 ) and likewise all non-trivial correlations below.

The non-trivial correlations can be expressed in terms of the homogeneous limit of the following functions,

Ω(4)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 2

(
𝜌
(4)
11 + 𝜌(4)12 + 𝜌(4)13 + 𝜌(4)14

)
, (36)

Ω(4)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 4

(
𝜌
(4)
9 + 𝜌(4)10

)
+Ω(4)

1 (𝜆1, 𝜆2, 𝜆3, 𝜆4),

Ω(4)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 2

(
−𝜌(4)11 + 𝜌(4)12 + 𝜌(4)13 − 𝜌(4)14

)
,

Ω(4)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 8𝜌(4)3 + 4

(
𝜌
(4)
5 + 𝜌(4)6 + 𝜌(4)7 + 𝜌(4)8

)
+Ω(4)

1 (𝜆1, 𝜆2, 𝜆3, 𝜆4),

where the last function Ω(4)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) can be further simplified as Ω(4)

4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =
1
3

(
−4 𝜔(𝜆1, 𝜆2) + 6 𝜔(𝜆2, 𝜆3)

)
.

This implies that the non-trivial three-point correlations are given by,

⟨𝜎𝑥𝑖 𝜎𝑥𝑖+1𝜎𝑥𝑖+2⟩𝐿 =Ω(4)
1 (0,0,0,0),

= 𝜔(0,0)
[
2
3 +

4
3𝜔

(1,1) + 2
9𝜔

(2,2) − 4
27𝜔

(3,1)
]
−𝜔(1,0)

[
4
3𝜔

(1,0) + 4
9𝜔

(2,1) − 4
27𝜔

(3,0)
]

− 1
9𝜔

(3,1) +
[
4𝜔(1,1) − 2𝜔(2,0)] [ 1

3 +
1
9𝜔

(2,0)
]
+ 1

6𝜔
(2,2), (37)

⟨𝜎𝑥𝑖 𝜎𝑥𝑖+2⟩𝐿 =Ω(4)
2 (0,0,0,0),

= 𝜔(0,0)
[
4
5𝜔

(0,0) + 8
15𝜔

(1,1) + 7
45𝜔

(2,2) − 14
135𝜔

(3,1)
]

− 𝜔(1,0)
[

8
15𝜔

(1,0) + 14
45𝜔

(2,1) − 14
135𝜔

(3,0)
]

(38)

+ 𝜔(1,1)
[
2
5 +

14
45𝜔

(2,0)
]
−𝜔(2,0)

[
4
15 +

7
45𝜔

(2,0)
]
+ 2

15𝜔
(2,2) − 4

45𝜔
(3,1),

⟨𝜎𝑦
𝑖
𝜎
𝑦

𝑖+2⟩𝐿 =Ω(4)
3 (0,0,0,0),

= 𝜔(0,0)
[

4
15𝜔

(0,0) + 2
5𝜔

(1,1) + 4
45𝜔

(2,2) − 8
135𝜔

(3,1)
]

− 𝜔(1,0)
[
2
5𝜔

(1,0) + 8
45𝜔

(2,1) − 8
135𝜔

(3,0)
]
+𝜔(1,1)

[
7
15 +

8
45𝜔

(2,0)
]

− 𝜔(2,0)
[
1
5 +

4
45𝜔

(2,0)
]
− 1

15𝜔
(3,1) + 1

10𝜔
(2,2). (39)
7

1 Note that it was used in [10] a function 𝐺, which is closely related to 𝜔, such as 𝐺(𝑥) = 𝜔(i𝑥) − 1
2
.
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The remaining non-zero three-point correlations are related to the previous ones as follows,

⟨𝜎𝑧𝑖 𝜎𝑧𝑖+2⟩𝐿 =Ω(4)
4 (0,0,0,0) = 2

3𝜔(0,0) = ⟨𝜎𝑥𝑖 ⟩𝐿,⟨𝜎𝑦
𝑖
𝜎𝑥
𝑖+1𝜎

𝑦

𝑖+2⟩𝐿 = −⟨𝜎𝑦
𝑖
𝜎
𝑦

𝑖+2⟩𝐿,⟨𝜎𝑧𝑖 𝜎𝑥𝑖+1𝜎𝑧𝑖+2⟩𝐿 = −⟨𝜎𝑧𝑖 𝜎𝑧𝑖+2⟩𝐿. (40)

In the thermodynamical limit, one can evaluate the correlation functions by use of the function 𝜔∞(𝜆) given in (22). The final 
results are given by,

⟨𝜎𝑥
𝑖
𝜎𝑥
𝑖+1𝜎

𝑥
𝑖+2⟩∞ = 1

3 − 12 log(2) + 74
3 𝜁(3) −

56
3 log(2)𝜁(3) − 6𝜁(3)2 − 125

6 𝜁(5) +
100
3 log(2)𝜁(5),

= −0.200994509028...,⟨𝜎𝑥𝑖 𝜎𝑥𝑖+2⟩∞ = 1
5 −

16
3 log(2) + 232

15 𝜁(3) −
32
3 log(2)𝜁(3) − 21

5 𝜁(3)
2 − 95

6 𝜁(5) +
70
3 log(2)𝜁(5),

= 0.491445392361...,⟨𝜎𝑦
𝑖
𝜎
𝑦

𝑖+2⟩∞ = 1
15 − 4 log(2) + 169

15 𝜁(3) −
20
3 log(2)𝜁(3) − 12

5 𝜁(3)
2 − 65

6 𝜁(5) +
40
3 log(2)𝜁(5),

= 0.164575433372... (41)

5. Integral equations for finite system size

The physical properties of the IRF six-vertex model and its associated spin chain was obtained from the leading eigenvalue of the 
six-vertex model transfer matrix with periodic boundary conditions via non-linear integral equations [43]. The same should apply to 
the case of correlation functions.

More specifically, one can obtain the leading eigenvalue Λ0(𝜆) of the six-vertex row-to-row transfer matrix given by [48],

ln
⎡⎢⎢⎣
Λ0(i𝑥−

1
2 )

(i𝑥+ 1
2 )
𝐿

⎤⎥⎥⎦ =𝐿 𝑒(𝑥+ i
2 ) +

i𝜋𝐿
2 +

(
𝐾 ∗ ln𝐵𝐵̄

)
(𝑥), (42)

where we set from now on 𝜆 = i𝑥,

𝑒(𝑥) = log
⎡⎢⎢⎢⎣
Γ
(
1 − i𝑥

2

)
Γ
(
1
2 +

i𝑥
2

)
Γ
(
1 + i𝑥

2

)
Γ
(
1
2 −

i𝑥
2

)⎤⎥⎥⎥⎦ , (43)

and

𝐾(𝑥) = 𝜋

cosh𝜋𝑥
. (44)

The symbol ∗ denotes convolution (𝑓 ∗ 𝑔)(𝑥) = 1
2𝜋 ∫ ∞

−∞ 𝑓 (𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦.

The auxiliary functions 𝑏(𝑥), 𝑏̄(𝑥) and its simply related functions 𝐵(𝑥) = 𝑏(𝑥) +1 and 𝐵̄(𝑥) = 𝑏̄(𝑥) +1 are solutions of the following 
set of non-linear integral equations [47],

ln 𝑏(𝑥) =𝐿 ln(tanh( 𝜋𝑥2 )) + (𝐹 ∗ ln𝐵) (𝑥) −
(
𝐹 ∗ ln 𝐵̄

)
(𝑥+ i), (45a)

ln 𝑏̄(𝑥) =𝐿 ln(tanh( 𝜋𝑥2 )) − (𝐹 ∗ ln𝐵) (𝑥− i) +
(
𝐹 ∗ ln 𝐵̄

)
(𝑥), (45b)

where the Kernel function is given by

𝐹 (𝑥) = i𝑑𝑒(𝑥)
𝑑𝑥

=

∞

∫
−∞

𝑒−|𝑘|∕2+i𝑘𝑥
2cosh( 𝑘2 )

𝑑𝑘. (46)

Similarly, the two-site correlation function 𝜔(𝜆1, 𝜆2) is given by [12],

𝜔(𝜆1, 𝜆2) =
(
𝜆212 − 1

) Ψ(i𝜆1 + i
2 , i𝜆2 +

i
2 )

2
+ 1

2
, (47)

where

Ψ(i𝜆1 +
i
2 , i𝜆2 +

i
2 ) = 2𝐹 (𝜆1 − 𝜆2) +

∞

∫
−∞

1
cosh(𝜋(𝜆2 +

i
2 − 𝑥))

⎡⎢⎢⎣
𝑔
(+)
𝜆1

(𝑥)

1 + 𝑏−1(𝑥)
+

𝑔
(−)
𝜆1

(𝑥)

1 + 𝑏̄−1(𝑥)

⎤⎥⎥⎦𝑑𝑥, (48)
8

and the additional auxiliary functions 𝑔(±)
𝜆1

(𝑥) are solution of the following set of linear integral equations [12],
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Table 1

Comparison of numerical results from exact diagonalization for 𝐿 = 4, 8, 12 sites and from the 
solution of the set of integral equations with the analytical result in the thermodynamic limit 
for correlations.

Length ⟨𝜎𝑥1 ⟩ ⟨𝜎𝑥1𝜎𝑥2 ⟩ ⟨𝜎𝑥1𝜎𝑥2𝜎𝑥3 ⟩ ⟨𝜎𝑥1𝜎𝑥3 ⟩ ⟨𝜎𝑦1𝜎𝑦3 ⟩
𝐿 = 4 −0.66666667 0.33333333 −0.66666667 1.00000000 0.66666667
𝐿 = 8 −0.60851556 0.26103720 −0.25193710 0.55630211 0.21746487
𝐿 = 12 −0.59859899 0.25044371 −0.22109565 0.51802986 0.18542814
𝐿 = 16 −0.59519136 0.24696584 −0.21183645 0.50601523 0.17583391
𝐿 = 32 −0.59193864 0.24374937 −0.20358916 0.49500263 0.16727766
𝐿 = 64 −0.59113127 0.24297329 −0.20163433 0.49232982 0.16524315
𝐿 = 128 −0.59092994 0.24278223 −0.20115366 0.49166622 0.16474172
𝐿 = 256 −0.59087965 0.24273481 −0.20103420 0.49150058 0.16461694
𝐿 = 512 −0.59086709 0.24272301 −0.20100442 0.49145918 0.16458580
𝐿 = 1024 −0.59086395 0.24272006 −0.20099698 0.49144884 0.16457802
𝐿→∞ −0.59086290 0.24271907 −0.20099450 0.49144539 0.16457543

Fig. 4. Correlations of the six-vertex IRF spin chain (5) normalized by its values at the thermodynamic limit (e.g. ⟨𝜎𝑥1 ⟩norm = ⟨𝜎𝑥1 ⟩𝐿∕⟨𝜎𝑥1 ⟩∞) versus system size.

𝑔
(+)
𝜆1

(𝑥) = 𝜋

cosh(𝜋(𝜆1 +
i
2 − 𝑥))

+
⎛⎜⎜⎝𝐹 ∗

𝑔
(+)
𝜆1

1 + 𝑏−1

⎞⎟⎟⎠ (𝑥) −
⎛⎜⎜⎝𝐹 ∗

𝑔
(−)
𝜆1

1 + 𝑏̄−1

⎞⎟⎟⎠ (𝑥+ i), (49a)

𝑔
(−)
𝜆1

(𝑥) = 𝜋

cosh(𝜋(𝜆1 +
i
2 − 𝑥))

−
⎛⎜⎜⎝𝐹 ∗

𝑔
(+)
𝜆1

1 + 𝑏−1

⎞⎟⎟⎠ (𝑥− i) +
⎛⎜⎜⎝𝐹 ∗

𝑔
(−)
𝜆1

1 + 𝑏̄−1

⎞⎟⎟⎠ (𝑥). (49b)

By iteratively solving the equations (45a), (45b) and (49a), (49b), one can evaluate 𝜔(0, 0) and its derivatives 𝜔(𝑛,𝑚) for different 
values of the system size 𝐿. This allows us to compute the correlation function given in Eq. (20), Eq. (31) and Eqs. (37)-(39). The 
results are listed in the Table 1. They are in good agreement with the exact diagonalization at smaller lattice sizes 𝐿 = 4, 8, 12, as well 
as with the thermodynamic limit values. The results are also shown in the Fig. 4.

It is worth mentioning that, due to the inherent relationship between the spin chains, the correlations of the IRF spin chain in 
the ground state ended up having the same values as the Heisenberg (XXX) spin chain, which are ⟨𝜎𝑥1 ⟩IRF = ⟨𝜎𝑧1𝜎𝑧2⟩𝑋𝑋𝑋 , ⟨𝜎𝑥1𝜎𝑥2 ⟩IRF =
9

⟨𝜎𝑧1𝜎𝑧3⟩𝑋𝑋𝑋 , ⟨𝜎𝑥1𝜎𝑥2𝜎𝑥3 ⟩IRF = ⟨𝜎𝑧1𝜎𝑧4⟩𝑋𝑋𝑋 , ⟨𝜎𝑥1𝜎𝑥3 ⟩IRF = ⟨𝜎𝑧1𝜎𝑧2𝜎𝑧3𝜎𝑧4⟩𝑋𝑋𝑋 and ⟨𝜎𝑦1𝜎𝑦3⟩IRF = ⟨𝜎𝑧1𝜎𝑥2𝜎𝑥3𝜎𝑧4⟩𝑋𝑋𝑋 .



Nuclear Physics, Section B 1008 (2024) 116715T.S. Tavares and G.A.P. Ribeiro

6. Conclusion

We computed short-distance correlations of the IRF version of the isotropic six-vertex model and its associated spin chain. This 
was done by exploiting the fact that the density matrix of the model satisfies the discrete version of the qKZ equation. By proposing 
a suitable ansatz for the density matrix, we could exploit the close relationship between the IRF spin chain and the Heisenberg spin 
chain. We computed explicitly the 𝑛 = 2, 3, 4 site correlations for finite system sizes via non-linear integral equations and in the 
thermodynamic limit. The results show very good agreement.

Numerical equality of the different correlators of the Heisenberg spin chain and its IRF counterpart should not be seen as a trivial 
fact, as the correct identification between these is not a given. It draws from the recent construction of the density matrix for IRF 
models [41,42]. Besides, it is worth to emphasize that this identification occurs for the correlators evaluated in the ground state. 
Furthermore, we had already pointed it out how the different order sets in either model, despite the same integrable structure which 
is a consequence of the mapping from one onto the other [43].

We expect that, far from being an isolate example, new quantum spin chains can be obtained from other IRF models related to 
more general vertex models and that the correlation functions can be evaluated via functional equations of the quantum Knizhnik-

Zamolodchikov. We hope to report on these problems in the future.
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Appendix A. Coefficients of 𝝆(𝟒)
𝒌
(𝝀𝟏, 𝝀𝟐, 𝝀𝟑, 𝝀𝟒)

In this appendix, we list the necessary coefficients 𝐴(𝑘)
𝑖

and 𝐵(𝑘)
𝑖

needed in Eq. (35) in order to compute the correlations given by 
the functions Ω𝑖(𝜆1, 𝜆2, 𝜆3, 𝜆4) for 𝑖 = 1, 2, 3. The constant term is given by 𝑝(1)0 = 1∕16 and 𝑝(𝑘)0 = 0 for 𝑘 > 1. We can conveniently 
write 𝐴(𝑘)

1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) and 𝐵(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) as,

𝐴
(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

𝑄
(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4)
𝜆13𝜆14𝜆23𝜆24

,

𝐵
(𝑘)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

𝑄
(𝑘)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4)
𝜆13𝜆14𝜆23𝜆24

, (A.1)

and the remaining coefficients are given as follows,

𝑄
(9)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 1

60

(
14 − 𝜆212 + 10𝜆13𝜆23

)
,

𝑄
(9)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 𝜆14𝜆24

90

(
2 − 3𝜆212 − 10𝜆13𝜆23

)
+ 1

90
𝜆24
𝜆12

(
22 + 2𝜆223 − 6𝜆13𝜆12 − 3𝜆213𝜆

2
12
)
+ 1

90
𝜆14
𝜆12

(
22 + 2𝜆213 + 6𝜆23𝜆12 − 3𝜆223𝜆

2
12
)
,

𝐴
(9)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(9)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) −

1
6 ,

𝐴
(9)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(9)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
6

(
1 − 1

𝜆13𝜆34

)
, (A.2)

𝐴
(9)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(9)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) −

1
6

(
1 − 1

𝜆23𝜆24
+ 1

𝜆23𝜆34

)
,

𝐴
(9)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(9)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1), 𝐴

(9)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(9)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1),

𝐵
(9)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(9)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) −

1
18𝜆12𝜆34

(
2 − 𝜆14𝜆23 + 𝜆12𝜆34

)
,

𝐵
(9)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(9)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) +

1
18𝜆12𝜆34

(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
,

𝑄
(10)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (− 1

6 +
𝜆212−4

20𝜆12𝜆13𝜆23𝜆14
−

𝜆212−4
20𝜆12𝜆13𝜆23𝜆24

)𝜆13𝜆14𝜆23𝜆24,

𝑄
(10)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

1
90 (𝜆

2
12 − 4)(𝜆234 − 4), 𝐴(10)

2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴
(10)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) +

1
6 ,

𝐴
(10)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(10)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) +

1
6 , 𝐴

(10)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(10)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) +

1
3 ,
10

𝐴
(10)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(10)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1) +

1
6 , 𝐴

(10)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(10)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1) +

1
6 ,
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𝐵
(10)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(10)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) +

1
18𝜆12𝜆34

(
2 − 𝜆14𝜆23 + 𝜆12𝜆34

)
, (A.3)

𝐵
(10)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(10)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
18𝜆12𝜆34

(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
,

𝑄
(11)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 1

120 (𝜆12 − 2)(2 + 𝜆12 + 5(𝜆13 + 1)𝜆23),

𝑄
(11)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

1
180 (𝜆12 − 2)(𝜆34 − 2)(3 + 𝜆23 − 𝜆14 + 3𝜆14𝜆23 + 2𝜆13𝜆24),

𝐴
(11)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(11)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) −

1
12𝜆12𝜆14𝜆34

(2 − 𝜆12𝜆13),

𝐴
(11)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(11)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
24𝜆12𝜆13𝜆34

(𝜆12 − 1)(2 + 𝜆13 − 𝜆34 − 2𝜆13𝜆34),

𝐴
(11)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(11)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) −

1
24𝜆12𝜆24𝜆34

(𝜆12 − 1)(𝜆23 + 2),

𝐴
(11)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(11)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1), (A.4)

𝐴
(11)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(11)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1) +

1
12𝜆13𝜆14𝜆24

(2 − 𝜆24𝜆34),

𝐵
(11)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(11)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) −

1
18𝜆12𝜆14𝜆34

(
2 − 𝜆14𝜆23 + 𝜆12𝜆34

)
,

𝐵
(11)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(11)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) +

1
36𝜆12𝜆34

(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
,

𝑄
(12)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 1

120 (𝜆12 − 2)(8 − 𝜆12 + 5(𝜆13 − 1)𝜆23),

𝑄
(12)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 1

180 (𝜆12 − 2)(𝜆34 + 2)(7 + 𝜆12 − 𝜆34 + 3𝜆14𝜆23 + 2𝜆13𝜆24),

𝐴
(12)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(12)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4), 𝐵

(12)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐵

(12)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4),

𝐴
(12)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(12)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
24𝜆12𝜆13𝜆34

(𝜆12 − 1)(2 − 𝜆13 + 𝜆34 − 2𝜆13𝜆34),

𝐴
(12)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(12)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) −

1
24𝜆12𝜆24𝜆34

(𝜆12 + 1)(𝜆23 + 2), (A.5)

𝐴
(12)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(12)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1), 𝐴

(12)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(12)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1),

𝐵
(12)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(12)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
36𝜆12𝜆13𝜆34

(𝜆13 − 2)
(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
,

𝑄
(13)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

1
120 (𝜆12 + 2)(8 + 𝜆12 + 5(𝜆13 + 1)𝜆23),

𝑄
(13)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = − 1

180 (𝜆12 + 2)(𝜆34 − 2)(7 − 𝜆12 + 𝜆34 + 3𝜆14𝜆23 + 2𝜆13𝜆24),

𝐴
(13)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(13)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4), 𝐵

(13)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐵

(13)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4),

𝐴
(13)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(13)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
24𝜆12𝜆13𝜆34

(𝜆12 + 1)(2 + 𝜆13 − 𝜆34 − 2𝜆13𝜆34),

𝐴
(13)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(13)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) +

1
24𝜆12𝜆24𝜆34

(𝜆12 − 1)(𝜆23 − 2), (A.6)

𝐴
(13)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(13)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1), 𝐴

(13)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(13)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1),

𝐵
(13)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(13)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
36𝜆12𝜆13𝜆34

(𝜆13 + 2)
(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
,

𝑄
(14)
1 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

1
120 (𝜆12 + 2)(2 − 𝜆12 + 5(𝜆13 − 1)𝜆23),

𝑄
(14)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =

1
180 (𝜆12 + 2)(𝜆34 + 2)(3 − 𝜆23 + 𝜆14 + 3𝜆14𝜆23 + 2𝜆13𝜆24),

𝐴
(14)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(14)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) +

1
12𝜆12𝜆14𝜆34

(2 − 𝜆12𝜆13),

𝐴
(14)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(14)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) −

1
24𝜆12𝜆13𝜆34

(𝜆12 + 1)(2 − 𝜆13 + 𝜆34 − 2𝜆13𝜆34),

𝐴
(14)
4 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(14)
1 (𝜆3, 𝜆2, 𝜆1, 𝜆4) +

1
24𝜆12𝜆24𝜆34

(𝜆12 + 1)(𝜆23 − 2),

𝐴
(14)
5 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(14)
1 (𝜆4, 𝜆2, 𝜆3, 𝜆1), (A.7)

𝐴
(14)
6 (𝜆1, 𝜆2, 𝜆3, 𝜆4) =𝐴

(14)
1 (𝜆4, 𝜆3, 𝜆2, 𝜆1) −

1
12𝜆13𝜆14𝜆24

(2 − 𝜆24𝜆34),

𝐵
(14)
2 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(14)
1 (𝜆1, 𝜆3, 𝜆2, 𝜆4) +

1
18𝜆12𝜆14𝜆34

(
2 − 𝜆14𝜆23 + 𝜆12𝜆34

)
,

𝐵
(14)
3 (𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝐵

(14)
1 (𝜆1, 𝜆4, 𝜆3, 𝜆2) +

1
36𝜆12𝜆34

(
2 − 𝜆13𝜆24 − 𝜆12𝜆34

)
.

Data availability
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Data will be made available on request.
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