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A B S T R A C T   

A set of hands-on activities, that were proposed in an introduction course to machine learning in a Chemical 
Engineering undergraduate course, are presented. The activities aimed to introduce basic concepts of unsuper
vised learning (e.g., clustering) and supervised learning (e.g., classification and regression). Google Colaboratory, 
a cloud service provided by Google for free to promote research in Artificial Intelligence and Machine Learning, 
was used to develop these activities, but the proposed activities can be run similarly in a local Python envi
ronment. The datasets used in the activities are publicly available on websites such as Kaggle and University of 
California (UCI), and a specific example in chemical engineering for the ore grinding process was also used. The 
student’s response to the ML topic within the course was very positive.   

1. Introduction 

1.1. Artificial intelligence and society 

Artificial Intelligence (AI) and Machine Learning (ML) have been 
impacting society (Bryson, 2019). According to Amy Stapleton: “We are 
entering a new world. The technologies of machine learning, speech 
recognition, and natural language understanding are reaching a nexus of 
capability. The end result is that we’ll soon have artificially intelligent 
assistants to help us in every aspect of our lives.” Mark Cuban also 
affirmed: “Artificial Intelligence, deep learning, machine learning —
whatever you’re doing if you don’t understand it — learn it. Because 
otherwise, you’re going to be a dinosaur within 3 years.” Besides, Pro
fessor Aleksander Madry, director of the MIT Center for Deployable 
Machine Learning said: “Machine learning is changing, or will change, 
every industry, and leaders need to understand the basic principles, the 
potential, and the limitations.” 

But what is ML? ML is a subset, one of the most significant, of AI. 
That’s when one mimics human learning. The starting point is a known, 
and meaningful, data set so that you can learn from it. From there you 
can sort, group, and estimate information from the data. Mitchel (2017) 
put the idea in the form of a question: “How can one construct computer 
systems that automatically improve through experience?”. 

In fact, an inversion of the direction of programming occurs (Girm
som (2020)). The conventional modeling and simulation process tradi
tionally used, also in chemical engineering, is composed of the following 

steps: 1- Observe the physical phenomenon; 2- Assume hypotheses; 3- 
Generate a mathematical model from the fundamental equations; 
4-Generate data from the model; 5- Compare the model with experi
mental data. 

The construction of a model by machine learning reverses this order. 
The model is developed from the experimental data. An adapted figure 
from Professor Grimson’s presentation is shown in Fig. 1: 

One can argue: is it a good approach? Big companies have been using 
Machine learning. For example, Watson from IBM recommends treat
ment for different types of cancer. Malluba from Microsoft develops 
deep learning for Natural Language Processing (NLP). Google uses net
works to create relationships between datasets. 

Engineering has also become another major field where AI has been 
making a big impact. Industrial processes usually generate a large vol
ume of data, and often it’s needed to deal with very complex processes 
where usual mathematical modelling based on phenomenological 
models and physical principles becomes nearly impossible to perform. 
That’s where de Data-Driven Modeling comes in handy, requiring just a 
lot of data to accurately describe very complex systems. It’s also 
possible, though not required, to include phenomenological knowledge 
about the system into the IA model, achieving even higher accuracies. 

1.2. Machine learning in chemical engineering 

The work of Professor Venkatasubramanian serves as a valuable 
starting point (Venkatasubramanian, 2019). He highlights several 
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challenging problems, including the development of conceptual frame
works such as hybrid models, mechanism-based causal explanations, 
domain-specific knowledge, discovery engines, and analytical theories 
of emergence. These advanced issues are exemplified by past examples 
like process synthesis and design, modeling environments, molecular 
structure search engines, automatic reaction network generators, and 
chemical entity extraction systems. Furthermore, Professor Venkatasu
bramanian suggests promising innovations for the future, namely: 1) 
recurrent neural networks, where memory is incorporated through long 
short-term memory (LSTM) units; 2) reinforcement learning; and 3) 
statistical machine learning. 

Some works are summarized here in order to show the extent of the 
applications in Chemical Engineering, without trying to exhaust the 
subject. Quaglio et al. (2020) developed an artificial neural network 
with the goal of identifying kinetic models based on experimental data. 
To evaluate the network, the authors conducted a case study involving a 
complex reaction consisting of three compounds and three reactions. 
Alhajeri et al. (2021) studied the dynamic behaviour of nonlinear 
chemical processes. They estimated states using machine learning, to 
apply predictive control. Mowbray et al. (2021) feature a review of 
applications of ML in bioengineering. Some algorithms era discussed as 
Multivariate statistical analysis, Principal component analysis, Support 
vector machines, RNN. Applications can be on bioreactor systems, 
metabolic engineering and biomaterials engineering, or biosensors and 
biodevices. Final models can be used as digital twins, even in high 
dimensional, nonlinear, and stochastic domains. 

ML has been used widely to represent complex models, in order to 
reduce computational time and make the dynamic model treatable. 
Alves et al. (2022) developed a machine learning-based framework for 
process operability using Gaussian Process Regression. 

Some items may be considered by chemical engineering, or, because 
of their importance, should be considered. Campos et al. (2019) dis
cussed the importance of synthetic chemistry in the pharmaceutical 
industry. Some computational tools were evaluated to direct drug syn
thesis. For example, ML makes it possible to find new chemical routes 
not yet found and, with this, to synthesize new drugs. Specifically, it is 
cited as “the use of algorithms (ML) for synthetic route planning to a 
target molecule”. Therefore, ML stands out as a tool for the synthetic 
optimization of targets much higher. 

1.3. Hands-on experiences 

Hands-on activities have always accompanied undergraduate engi
neering courses since it is necessary to talk about theoretical knowledge 
and hands-on capability to solve practical problems. One classic 
example is the use of pilot plants being operated directly by students, 
such as the study of membrane technology by Souto-Melgar et al. 
(2022). 

Another example is to use of computational activities, such as the use 
of CFD, which can be incorporated into the engineering curriculum 
(Adair et al., 2014). Thus, students may better understand the basic 
concepts. 

Broader use of hands-on activities is defining the market and product 
design needs. This was suggested by Galán et al. (2018) in the proposal 
for market needs a strategy in the product project based on the funda
mentals of transport phenomena. 

1.4. Data science in undergraduate chemical engineering course 

Professor Venkatasubramanian is a forerunner in artificial intelli
gence for the undergraduate degree in chemical engineering (Ven
katasubramanian, 1986). For this, he used the concept of knowledge- 
based expert systems (KBES). An introductory-level course in Compu
tational Intelligence was proposed by Venayagamoorthy (2005). Despite 
the growth in the number of publications in ML, Dobbelaere et al. (2021) 
claim that chemical engineers still have limited training in artificial 
intelligence, computer science, and data analysis. 

In the present work, we aim to discuss the design and implementa
tion of a hands-on learning framework developed at the Department of 
Chemical Engineering, for an undergraduate course in Chemical Engi
neering. The hands-on activities covered basic concepts of unsupervised 
learning – clustering – and several techniques in supervised learning – 
classification and regression. The activities also included the study of 
Artificial Neural Networks (ANN), a powerful tool for modelling com
plex relationships in data. The Colab tool was used for the development 
of hands-on activities and validated its effectiveness in training students 
to be confident and self-directed learners. 

2. Methodology 

The methodology used in the case studies can be seen as the basic 
paradigm of ML (Guttag, 2016): 

Set the problem: 
This initial step in the engineering model-building process, which 

may not necessarily involve machine learning, focuses on observing 
the phenomenon, identifying relevant variables, and understanding 
the responses. The goal is to detect any particularities or singularities 
associated with the phenomenon. 
Upload the dataset: 

ML activities rely heavily on substantial datasets, demanding a 
good quality set of information for meaningful outcomes. In real- 
world applications, feature engineering becomes essential to 
manipulate the data effectively. However, for academic courses, 
utilizing pre-existing datasets can be advantageous, as it allows 
students to prioritize the learning of ML algorithms such as clus
tering, classification, and regression techniques. 
Understand its structure: 

When the data comes from public datasets (e.g., Kaggle), the entire 
dataset can be visualized, providing valuable insights into the total 
number of columns (i.e., number of features) and rows (i.e., number 
of observations). Additionally, data visualization methods allow a 
deeper understanding of the inputs’ interrelationships using tech
niques such as heat maps. 
Evaluate the algorithms: 

This activity involves making informed decisions about the 

Fig. 1. Inversion towards programming.  

V. Lavor et al.                                                                                                                                                                                                                                   



Education for Chemical Engineers 46 (2024) 10–21

12

algorithm selection, implementation, and pre-assessment of results. 
For instance, when performing a classification task on a dataset, 
multiple algorithms, such as decision trees and Support Vector Ma
chines (SVM), can be considered. To evaluate the quality of the al
gorithm, the dataset needs to be partitioned into training and testing 
sets, providing the parameters necessary for assessment. 
Evaluate the results: 

Evaluating the results is a crucial activity in all ML applications, 
with each algorithm having its distinct evaluation criteria. For 
instance, in classification tasks, the results can be evaluated using 
metrics like accuracy, precision and the confusion matrix (showing 
the counts of true positives, false positives, true negatives, and false 
negatives), while regression evaluations rely on metrics like mean 
absolute error (MAE) and R2 score. Comparison between different 
methods is a good practice to ensure that the results are consistent 
and aligned with the desired outcomes. However, it is important to 
remember that the modelling and simulation process can always 
have inherent errors. 
Show the results: 

There are several effective ways to present ML results, depending on 
the modelling approach and the characteristics of the data. Heatmaps 
are valuable visualization tools that can reveal relationships and pat
terns between variables. For regression tasks, a 2D plot and graphs (e.g., 
line plots, scatterplots) can offer highly informative representations, 
especially when focusing on one attribute at a time. In the course, we 
place significant emphasis on the importance of result discussion. Stu
dents have the opportunity to create various plots and are encouraged to 
provide meaningful insights derived from them. As part of the weekly 
activities, the students are asked to reflect on the results they obtained 
and participate in discussions related to their findings. This practice 
fosters a deeper understanding of the ML process and its implications. 

The datasets used in this study are readily available on the Internet, 
from sources such as Kaggle and the University of California repository 
(UCI). These easily accessible datasets have captured students’ atten
tion, leading them to focus on problems with less complexity, rather 
than utilizing process variables, which demand a deeper understanding 
of the underlying processes. Nevertheless, the study also involved the 
examination of a typical grinding process to develop an Artificial Neural 
Network (ANN). 

3. Contextualization 

The activities presented here are part of the course PQI 3403 Analysis 
of Chemical Process Industry, which is a topic of the syllabus of the four- 
month course of Chemical Engineering at the University of Sao Paulo, 
Brazil. It has a workload of 60 h and is taught in the first quarter of the 
4th year. 

The Machine Learning topic covered various concepts and algo
rithms, including clustering, classification and regression. Additionally, 
specific algorithms such as ANN, logistic regression, support vector 
machine (SVM), and model metrics were discussed within this context. 
The practical activities were carried out using Google Colab, which is a 
cloud-based environment for Jupyter Notebooks, within the Google 
ecosystem and it is implemented in Python. The course opted for Python 
programming within Google Colab notebooks, not only because of stu
dents’ familiarity with it, developed since the first year of their under
graduate degree but also due to its open-source nature. 

The syllabus of the course PQI 3403 Analysis of Chemical Process 
Industry is:  

1. Presentation of the course; Introduction to Scilab; Tutorial of 
Scilab.  

2. Linear Systems of Algebraic Equations. Sparse matrix. 
3. Qualitative method for solving ODE. Critical points: nodes, sad

dle, center, spiral points. Geometric analysis of linear systems. 

4. Almost linear systems. Phase plane. Phase portrait. Classic dy
namic systems: chemical reacting, pendulum, and population 
balances.  

5. Numerical Methods for Non-linear ODEs with Initial Conditions. 
Euler, Runge-kutta, multistep, and BDF methods.  

6. Numerical Methods for PDE. Finite differences. Fictitious domain 
method. 2D heat diffusion. MOL.  

7. Introduction to Artificial Intelligence: search, learning, 
reasoning.  

8. Machine Learning: clustering, classification, and regression. 
Datasets available on the internet. Ranking metrics. Logistic 
function.  

9. Deep Learning: Artificial Neuronal Networks (ANN). 
10. Stochastic processes: Brownian movement, Wiener process, sto

chastic differential equations. Applications using Python library. 

The details of item 10, Stochastic Processes, can be seen elsewhere 
(Oliveira et al., 2022; Nakama et al., 2017). 

The learning objectives for the hands-on activities are specifically:  

1. Recognize ML basic concepts;  
2. Use the Colab tool to develop the ML basic concepts;  
3. Analyze the datasets;  
4. Carry out clustering by implementing different techniques;  
5. Executing classification using decision tree and SVM;  
6. Implement linear and multilinear regressions;  
7. Generate ANN using the Keras. 

4. Case studies 

Four main topics within machine learning were covered in the 
classroom and transformed into tasks to be developed by students in 
pairs using the Google Colaboratory environment (Bisong, 2019), which 
was introduced in an introductory class. Each task aimed to present the 
students with some of the basic concepts of unsupervised learning – 
clustering – and supervised learning – classification and regression. 
Within supervised learning, particular emphasis was placed on ANN. 

Google Colaboratory, popularly called Colab, is a cloud service 
offered by Google for free to encourage Artificial Intelligence and Ma
chine Learning research. 

Some of the main features of Colab are:  

• It is already configured, and it is not necessary to have a powerful 
personal computer.  

• It’s simple to share, like any file stored in Drive. To understand a 
little better about the environment, one should access the following 
link:https://colab.research.google.com/notebooks/intro.ipynb 

4.1. Clustering 

The main task involved in clustering analysis is to divide the popu
lation into specific groups, so that those belonging to the same group 
have similar characteristics. Several algorithms perform the task based 
on different techniques, such as connectivity-based models (e.g., hier
archical clustering), centroid-based models (e.g., K-Means), 
distribution-based models (e.g., Gaussian), and density-based models (e. 
g., DBSCAM). 

All models are especially useful for certain types of datasets and 
variables, however, the most common ones, and the ones have chosen to 
be presented in the classroom, are the hierarchical algorithms and K- 
Means. 

4.1.1. Dataset 
Two datasets were used to introduce the clustering algorithms to the 

students. The first was the very common Iris flower and consisted of 150 
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samples of 3 different species, and the second dataset is a modified 
dataset, consisting of data from NBA 2020 season players. However, 
only the iris dataset analysis will be informed. The details of each dataset 
are presented in Tables 1 and 2. General dataset information, as well as 
the notebook with the expected analysis, can be found at: https://gith 
ub.com/vitorlavor/education/tree/main/clustering. 

4.1.2. K-means 
The K-Means algorithm performance is based on the inertia criterion 

(or within-cluster sum-of-squares – wcss), Eq. 1. Unlike other algo
rithms, K-Means requires the number of clusters as input to the model. 

Basically, the algorithm divides the dataset of N samples X into user- 
specified K clusters, which is described by μj - the average point of the 
dataset within the cluster. This average point is called centroid. The K- 
means algorithm aims to determine centroids that minimize the inertia, 
or within-cluster sum-of-squares criterion: 

wcss =
∑n

i=0
min(

⃦
⃦xi − μj

⃦
⃦2
) (1) 

The tasks performed by the students were:  

1. Determine the ideal number of clusters using the Knee/Elbow 
method;  

2. Build a K-Means model using the ideal cluster number determined in 
Task 1;  

3. Compare the labels provided by the model with the real labels. 

The expected analysis is demonstrated in Figs. 2 and 3. The Knee plot 
in Fig. 2 displays the behavior of the wcss metric for different numbers of 
clusters. The optimal number of 3 clusters was determined using a knee 
point detection algorithm Satopaa et al. (2011). 

Fig. 3 shows the distinction between species/clusters based on petal 
length and sepal width characteristics. It is possible to observe that the 
K-Means model - Fig. 3b - presented a consistent grouping compared to 
the real labels - Fig. 3a. 

4.1.3. Hierarchical clustering 
The hierarchical algorithm, as the name already implies, seeks to 

build clusters based on hierarchical classes of similarities between 
samples. There are two main methods within the algorithm family:  

• Agglomerative: a bottom-up approach, where each sample starts in 
its isolated cluster and merges with other clusters as they move up 
the hierarchy.  

• Divisive: a top-down approach, where all samples start in a single big 
cluster and split as they go down the hierarchy. 

The results of the hierarchical clustering are usually presented in a 
dendrogram, which is a tree diagram. 

The tasks performed by the students were:  

1. Build a hierarchical clustering model, using the clustering method 
known as single linkage;  

2. Build a dendrogram resulting from the model developed in Task 1;  
3. Analyze the construction of the dendrogram. 

The expected analysis is shown in Fig. 4. It is possible to understand 
the similarities between the samples, as well as to determine the number 
of clusters depending on the desired hierarchical similarity level. 

4.2. Classification 

Classification is supervised learning, where a set of features xi is 
related to labels yj. they form a set of feature/label pairs. From this, it is 
possible to find a rule that allows one to associate a label with a feature 
not yet known. Thus, it is a discrete data set, such as sunny, cloudy, or 
rainy, it’s not a continuous function. 

The classification may or may not be successful. False positives or 
false negatives may occur. Hence several parameters arise that help in 
the evaluation of the efficiency of the classification such as the confusion 
matrix and the receiver operating characteristic curve. 

4.2.1. Dataset 
In this activity, the dataset red_wine_quality.csv (Dua and Graff 

(2017)) was used. The link was given for students to access the data set. 
It is present in Kaggle and UCI repositories. 

The dataset is related to red variants of the Portuguese "Vinho Verde" 
wine. The input variables are 1 - fixed acidity, 2 - volatile acidity, 3 - 
citric acid, 4 - residual sugar, 5 – chlorides, 6 - free sulphur dioxide, 7 - 
total sulphur dioxide, 8 – density, 9 – pH, 10 – sulphates, 11 – alcohol; 
and the output variable (based on sensory data), 12- quality (score be
tween 0 and 10). 

It is not necessary to be a wine connoisseur to understand the 
importance of each of these parameters. An exploratory data analysis 
was done using the heatmap (Fig. 5), which is also an effective visual
ization tool. From the heatmap, it was possible to identify that the 
alcoholic content is the most important (i.e., more correlated) feature to 
predict the wine quality of the wine. 

4.2.2. Decision tree and SVM modeling 
The classification was developed by two approaches: 1- Decision 

Tree and 2-Support Vector Machine (SVM). For data partition, the per
centage of 80–20% was chosen. Activities have been requested:  

a. Evaluate the result of confusion matrices;  
b. Calculate Accuracy, Precision, and Recall metrics for each model;  
c. Analysis of the results. What was the best model?  

a. Evaluate the result of confusion matrices; 

The Seaborn library was used to build the heatmap tool from the 
build confusion matrices, as can be seen in Fig. 5. The two heatmaps 
obtained are relatively similar, presenting the same pattern but with 
slightly different results. Moreover, both models demonstrated superior 
true positive (TP) and true negative (TN) rates, while the false negative 
(FN) and false positive (FP) were comparatively lower, indicating a 
favourable performance. (Fig. 6).  

b. Calculate Accuracy, Precision, and Recall metrics for each model 
using the test dataset; 

Table 3 presents the accuracy, precision, and recall for the two 
models, the decision tree and SVM. The decision tree model showed 

Table 1 
Iris dataset details.  

Variable Sample (N) 

Sepal length [cm]  150 
Sepal width [cm]  150 
Petal length [cm]  150 
Petal width [cm]  150 
Specie [class]  150  

Table 2 
NBA 2020 players dataset details.  

Variable Sample (N) 

Name  426 
Height [m]  426 
Weight [kg]  426 
Position [class]  426  
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Fig. 2. Knee plot for the Iris dataset.  

Fig. 3. Comparison of petal width against petal length for the Iris dataset, using (a) actual labels and (b) predicted labels from a KMeans clustering model. The scatter 
plots show the distribution of data points for each class. 
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Fig. 4. Dendogram diagram for the Iris dataset.  
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better accuracy and precision than SVM. However, the SVM model 
presented a better recall metric.  

c. Analysis of the results. What was the best model? 

Accuracy indicates how much of examples were correctly classified, 
both positive and negative. From this perspective, the decision tree 
represented better the data set. 

The precision indicates how many positives were correctly classified 

Fig. 5. Heat map of red variants of the Portuguese "Vinho Verde" wine.  

Fig. 6. Confusion matrix for (a) decision tree model and (b) SVM model.  

Table 3 
Model metrics calculated on the test dataset.  

Metric Decision tree SVM 

Accuracy  0.77  0.65 
Precision  0.77  0.64 
Recall  0.80  0.87  
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within the universe of positives. In this context, the decision tree also 
presented better performance. 

The recall answers the question of how many positives were 
answered correctly as positive. This is an important question when the 
result is a medical diagnosis. In this area, the SVM model was better. As 
the quality of wine does not involve lives, we can indicate that the de
cision tree model was more efficient. 

4.3. Regression 

Regression is supervised learning as well, but unlike Classification, 
the output takes the form of a continuum function. Linear regression is a 
basic mathematical concept, widely used in various areas of teaching. 
Russell and Norvig (2002) present an equation (Eq. 2) that already 
considers the learning process: 

hw = w0 +w1x (2)  

Where hw is the label associated with the feature x and weights w0 and 
w1, which will be changed by the learning process. 

But the label (hsw) can be a function of more than one feature (xi), as 
is the case of the quality of the wine in the previous item. It now has a 
multivariate linear regression, Eq.3 (Russell and Norvig (2002)): 

hsw = w0 +
∑

i
wixi (3) 

The idea of regression can be used for other functions, that is, what 
should be done is a process of minimizing error when comparing the 
chosen function with the actual data set. 

There is no limit to creativity, especially to solve complex problems. 
Russell and Norvig (2002) discuss regression trees, which are associa
tions between classification by decision tree and regression. Here a 
regression is made for each leaf in the tree. The regression tree was 
suggested in the activity, but students could not alone develop this more 
advanced approach. 

4.3.1. Regressions with public dataset 
Here, the dataset wholesale_customers_data.csv (Kaggle (2021)) was 

used. 
The list of questions was: 

a. Create a heat map and identify the variable with the highest corre
lation with the consumption variable;  

b. Build a simple linear regression model using the identified variable. 

The heatmap points out that the annual spent on cleaning products 
(input Detergent_Paper) is more strongly correlated with the total spent 
on groceries (Fig. 7) since it has the largest correlation module. The 
input Detergent_Paper was then chosen to develop a simple linear 
regression model the predict the total groceries spent with a coefficient 
of determination R2 = 0.8475. This low coefficient of correlation is 
associated with the scattering of the data set, as can be seen in Fig. 8. 

4.3.2. Regressions with generated dataset 
A dataset was generated based on a trend that follows a sine curve, 

with random errors added to the dataset. The dataset points and shape 
can be observed in Fig. 9. 

For the generated dataset, four regression models were developed 
using the Scikit-learn library. The prediction generated by the models 
using a test dataset that consisted of a sequence of numbers starting 
with 0 up to 5 with a step of 0.01. The models are:  
a. Linear regression.  
b. Decision tree (max_depth parameter = 2).  
c. Decision tree (max_depth parameter= 5).  
d. KNN regressor (K-nearest neighbors). 

The linear regression did not effectively capture the characteristics of 
the dataset, as expected. Consequently, other approaches were imple
mented, yielding better predictions. The decision trees proved effective 

Fig. 7. Heatmap for the wholesale customers dataset.  
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Fig. 8. Simple linear regression to predict the total spent on groceries based on the consumption of cleaning products.  

Fig. 9. Dataset generated based on a sine curve with random errors.  
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in identifying the errors, and the deeper decision tree (max_depth = 5), 
as depicted by the red line in Fig. 10, demonstrated a better ability in 
capturing the error patterns in the dataset. Similarly, the KNN algorithm 
demonstrated a similar capacity, as illustrated by the magenta line in 
Fig. 10. 

4.3.3. ANN 
A database related to a real mining processing industry, specifically a 

milling process, was utilized. In the context of mining, milling refers to 
the process of grinding and crushing ore into smaller particles for further 

processing. The grinding process is usually composed of two operations: 
the mill itself and a classification operation, which is usually represented 
by a cyclone. The new ore is fed into the mill together with the cyclone 
underflow (also known as circulating load) and dissolution water. This 
underflow represents the fraction of the ground ore that has not been 
fully ground to the correct particle size and is returned to the mill for a 
new milling operation. The ore that has been correctly ground leaves the 
cyclone as the overflow and proceeds to the next operation. Fig. 11 
shows the flowchart of the grinding process used in the activities. 

Dealing with solids is always a difficult task because the laws 

Fig. 10. Comparison between linear regression, decision tree and KNN regression models.  

Fig. 11. Flowchart of the grinding process.  
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governing the mechanics of solids are complex. For instance, one cannot 
accurately estimate the amount of energy required to carry out the size 
reduction. Therefore, a good choice is to use the history of the process 
data, taking advantage of the Data-Driven modeling approach. 

The idea behind the use was to optimize the process efficiency. The 
hydrocyclones were operating with a much higher solids percentage 
than the ideal, which made its classification worsen and a lot of already 
ground ore was being re-fed into the mill, making the process a lot less 
efficient. However, in order to add the right amount of water to the 
stream feeding the cyclone, it was needed to know the amount of solids 
in this stream. Measuring this quantity is no easy task, and the most 
common equipment for that measurement is based on radioactive beam 
emission which faces severe norms and legislation. To mathematically 
model this process is another difficult task since the model for the 
milling process is both very complex and requires a lot of fitting pa
rameters, which requires a lot of data to be determined. So, by using a 
Neural Network as a black-box model for the system we mitigated this 
physical complexity. 

The process variables measured in real-time and that were used are:  

• Fresh ore feed.  
• Solution water flow rate for the crusher.  
• Solution water flow rate for the hydrocyclone.  
• Crushed solid stream with a certain granulometry.  
• Pressure in the hydrocyclones.  
• Power consumed by crusher. 

Using the dataset contained in the Dados_Moagem.xlsx, the following 
tasks were performed:  

a. Build a Neural Network model using the Keras (TensorFlow) library 
to predict the percentage of solids. Use 60% of the data for training 
and 40% for testing. Note: Before training the model, normalize the 
independent variables.  

b. Adjust the model using 100 epochs.  
c. Make an analysis of the evolution of the mean absolute error (MAE) 

in each epoch.  
d. Perform the forecast of % solids for the following dataset:  

i. Fresh ore feed = 230 kg  
ii. Solution water flowrate for crusher = 20 m3/h  

iii. Solution water flowrate for hydrocyclone = 200 m3/h  
iv. Crushed solid stream with a certain granulometry = 65%;  
v. Pressure in hydrocyclones = 0.55 psi;  

vi. Power consumed by crushers = 3300 W. 

First, the data file is downloaded and normalized using the Z-score 
method, which is one feature engineering technique. Then, the data set 

is divided into training and testing, with a ratio of 60/40%. The next step 
is to build a neural network with 2 inner layers with 64 neurons each. 
The activation function is RELU. The model is generated with 100 
epochs, Fig. 12. The mean absolute error (MAE) was equal to 0.0096. 
The forecast with normalized variables was 80.07% of solids. 

5. Students’ evaluation 

An anonymous online survey was conducted to evaluate students’ 
perceptions regarding three key features: 1) acceptance of the flipped 
learning strategy, 2) level of engagement, and 3) the influence of the 
COVID-19 pandemic on their outcomes. Out of a total of 51 students, 27 
chose to participate in the survey, providing valuable insights. The re
sults can be seen in Fig. 13. 

Regarding the flipped learning strategy, the whole class considered it 
to be adequate, with 77.8% finding it absolutely appropriate, and 22.2% 
finding it appropriate. It’s worth noting that this year, all activities had 
to be conducted remotely due to the COVID-19 pandemic. 

The level of engagement required by the course was found to be as 
expected by 70.4% of the students, while 25.9% perceived it to be higher 
than expected. This positive response indicates that the students were 
actively involved in the course. 

An unexpected result emerged from the survey regarding the influ
ence of the pandemic on the course. Surprisingly, 30.8% of the students 
felt that the pandemic impaired the course, while 38.4% were indif
ferent to its influence. Besides, 30.8% indicated that the pandemic 
improved the course. The remarkably similar responses suggest that 
students have likely adapted to this new reality, finding ways to cope 
with the challenges posed by the pandemic. 

6. Conclusions 

The hands-on ML activities proposed for this chemical engineering 
course, encompassing clustering, classification, and regression 
(including Artificial Neural Networks (ANN)), present a compelling and 
relevant set of skills for undergraduate students in Chemical 
Engineering. 

Clustering serves as an excellent starting point for representing 
datasets using Machine Learning (ML) techniques. The evaluation of the 
iris dataset proved to be an exceptional choice, allowing students to 
analyze the results quickly and accurately. This widely available dataset 
provides ample information that aids in contextualizing the modeling 
process. The impactful results obtained from dendrograms further 
enrich the ML analysis. 

Classification holds significant importance within ML. The wine 
dataset captured the attention and curiosity of the students, elevating 
the activity’s intrigue. The heatmap emerged as a highly meaningful 
method for assessing correlations between attributes. We applied deci
sion trees in conjunction with SVM, evaluating the classification pa
rameters using the confusion matrix, which includes the analysis of true 
positives, false positives, true negatives, and false negatives. Employing 
multiple algorithms contributes to the robustness of the classification 
process, as one method can corroborate the results of another. This led to 
a captivating discussion regarding the precautions necessary when 
applying ML algorithms. 

Furthermore, we developed a neural network for a grinding process 
using data retrieved from an industrial plant unit. This activity provided 
students with the opportunity to evaluate the variables of an actual 
chemical process. Despite its simplicity, the exercise sparked a valuable 
discussion around the direct application of Machine Learning in chem
ical engineering applications. 

Ultimately, we have successfully achieved our learning objectives, 
with students acquiring fundamental concepts about Machine Learning 
(ML). Throughout the learning process, Google Colab proved invaluable, 
offering an easy-to-use environment for thorough dataset evaluation, 
with the appropriate implementation, and analysis of various Fig. 12. Evolution of the MAE with the epochs.  
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algorithms. By covering this range of activities, students gain valuable 
insights into various ML techniques while applying them to relevant 
real-world scenarios, enhancing their understanding of ML within the 
context of Chemical Engineering. 
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