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Abstract
Dengue is a mosquito-borne viral disease that poses significant public health challenges
in tropical and sub-tropical regions worldwide. Surveillance systems are essential for
dengue prevention and control. However, traditional systems often rely on delayed data,
limiting their effectiveness. To address this, nowcasting methods are needed to estimate
underreported cases, enabling more timely decision-making. This study evaluates the
value of using Google Trends indices of dengue-related keywords to complement official
dengue data for nowcasting dengue in Brazil, a country frequently affected by this dis-
ease. We compare various nowcasting approaches that incorporate autoregressive fea-
tures from official dengue cases, Google Trends data, and a combination of both, using a
naive approach as a baseline. The performance of these methods is evaluated by now-
casting weekly dengue cases from March 2024 to January 2025 across Brazilian states.
Error measures and 50% and 95% coverage probabilities reveal that models incorpo-
rating Google Trends data enhance the accuracy of weekly nowcasts across states and
offer valuable insights into dengue activity levels. To support real-time decision-making,
we also present Dengue Tracker, a website that displays weekly dengue nowcasts and
trends to inform both decision-makers and the public, improving situational awareness of
dengue activity. In conclusion, the study demonstrates the value of digital data sources in
enhancing dengue nowcasting, and emphasizes the value of integrating alternative data
streams into traditional surveillance systems for better-informed decision-making.

Author summary
Dengue is a mosquito-borne viral disease that poses significant public health challenges
in tropical and sub-tropical regions worldwide. Surveillance systems are crucial for
dengue prevention and control. Unfortunately, traditional systems often rely on delayed
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data, limiting their effectiveness. To address this, nowcasting methods are needed to esti-
mate underreported cases, enabling more timely decision-making. This study evaluates
how Google Trends indices of dengue-related keywords can complement official dengue
data to improve nowcasting of dengue in Brazil, a country frequently affected by this
disease. We compare the performance of various nowcasting approaches that incorporate
Google Trends data with other approaches that rely solely on official reported cases data,
assessing their accuracy and uncertainty in nowcasting weekly dengue cases fromMarch
2024 to January 2025 across Brazilian states. To support real-time decision-making, we
also present Dengue Tracker, a website that displays weekly dengue nowcasts offering
valuable insights into dengue activity levels. The study demonstrates the potential of
digital data sources in enhancing traditional surveillance systems for better-informed
decision-making.

Introduction
Dengue is a vector-borne disease transmitted by Aedesmosquitoes, which poses a signifi-
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cant global health threat, particularly in tropical and subtropical regions [1]. Dengue symp-
toms range from mild (fever, headache, rash, and muscle and joint pain) to severe forms
like dengue hemorrhagic fever, which can cause bleeding, plasma leakage, and organ failure,
increasing the risk of death [2]. While the disease does not spread from person to person, it
can still lead to large outbreaks, especially in densely populated urban areas where mosquitoes
breed in stagnant water. Several factors contribute to the prevalence of dengue, including cli-
mate, urbanization, and socio-economic disparities [3]. Additionally, global warming and
increased international travel have expanded the geographic range of dengue [4].

In 2024, Brazil faced a severe dengue epidemic, with 9.48 million suspected cases and 5.32
million confirmed cases as of August [5]. This surge has made Brazil the most affected coun-
try in the Americas. The increased incidence is thought to be possibly attributed to factors
like early transmission seasons, climate change, and the presence of all four dengue serotypes
[6,7].

The extensive impact of dengue underscore the importance of research and the ability to
predict its outbreaks. Surveillance systems play a crucial role for guiding strategies for pre-
vention and control, but traditional surveillance systems often rely on delayed or incomplete
data due to underreporting, healthcare infrastructure limitations, and time lags in laboratory
testing. For example, in Brazil, a suspected dengue case is required by law to be reported by
authorized health professionals in the Notifiable Diseases Information System (SINAN) [8].
However, according to [9], less than 50% of dengue cases are reported within the first week,
no more than 75% are reported within four weeks, and fewer than 90% are reported within
nine weeks. This latency necessitates nowcasting methods to estimate occurred-but-not-yet-
reported disease cases for real-time decision-making.

Several nowcasting techniques have been developed in different settings. For example,
[10] employed reverse-time discrete hazard functions and maximum likelihood estimation to
handle reporting delays and nowcast AIDS cases in Canada. A Bayesian hierarchical model
was proposed by [11] to improve prediction and management of a Shiga toxin producing
Escherichia coli that caused a major outbreak in Germany in 2011. The model combined a
survival regression model for the delay distribution, and a quadratic spline for the epidemic
curve, utilizing the generalized Dirichlet distribution for flexibility in handling uncertainty.
[12] proposed a Bayesian hierarchical model that jointly estimates the expected number of
deaths, and the reporting delay distribution to nowcast COVID-19 fatalities in Sweden. This
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model offers enhanced predictive performance and flexibility by incorporating leading indica-
tors such as the number of reported cases and COVID-19 associated ICU admissions.

A nowcasting by Bayesian smoothing approach capable of producing nowcasts in multiple
disease settings was developed by [13]. This approach learns the reporting delay distribution
and the time evolution of the epidemic to produce nowcasts in both stable and time-varying
case reporting settings. The approach was tested on dengue in Puerto Rico and influenza-
like illness (ILI) in the United States. [14] presented a framework for addressing reporting
delays in malaria surveillance in Guyana. The method combines a data imputation model
and network models to refine case estimates using historical data, neighboring region data,
and precipitation levels. [15] introduced a Bayesian framework with sliding windows for
dengue surveillance in Bangkok, Thailand, addressing reporting delays by accounting for spa-
tial and temporal variations. A Bayesian hierarchical model for dengue nowcasting in Brazil
was developed by [9]. This approach uses a Negative Binomial distribution for the reported
cases with mean explained by spatial, temporal, and delay information, offering a robust cor-
rection to the reported cases. This model is used by the InfoDengue system to nowcast dengue
in Brazilian municipalities [16].

The implementation of these methods are complex and requires extensive data on the
historical weekly reported cases for the disease under consideration. In recent years, meth-
ods utilizing digital data, such as Google Trends indices and Twitter (now X) information on
disease-related keywords, have shown notable improvement in understanding and predict-
ing disease activity levels. These methods leverage real-time search query data to enhance the
accuracy of traditional models, allowing for more timely and reliable public health responses.

For example, [17] utilized used search query logs and modeling techniques such as Elastic
Net regularized regression and Gaussian Process regression to nowcast influenza-like illness
in the USA. [18] used an ARIMA model augmented with Google Flu Trends data for nowcast-
ing influenza outbreaks in the USA. They showed the incorporation of real-time search query
data improves prediction accuracy compared to a model that uses only case data.

A Hidden Markov Model combining cases and Google Trends information for disease pre-
diction was proposed by [19]. The model incorporated an autoregressive component describ-
ing case counts and a linear covariate representing Google Trends. The model was applied to
predict dengue in Brazil, Mexico, Thailand, Singapore, and Taiwan, as well as influenza-like
illness in the USA [20].

In [21], authors utilized Baidu search query data, which is similar to Google Trends, to
nowcast hand, foot, and mouth disease across China. They utilized a meta-learning frame-
work to dynamically select among predictive models including Principal Component Anal-
ysis, LASSO, Ridge Regression, and ARIMA.They showed the inclusion of Baidu Index data
enhances prediction accuracy by providing real-time public interest metrics correlated with
hand, foot, and mouth cases.

[22] used Twitter data to monitor dengue in Brazil. First, they analyzed tweet sentiments to
filter tweets indicative of actual cases, and found a high correlation of the number of dengue-
related tweets with official dengue data. Then, they constructed a regression model for pre-
dicting the number of dengue cases using the proportion of dengue-related tweets, and used
it to develop a monitoring system that generated weekly heatmaps of dengue across cities in
Brazil.

Although dengue surveillance systems in Brazil have not widely incorporated Google
Trends data into predictive models, there is limited but growing evidence of its potential util-
ity. For instance, [23] and [24] explore correlations between Google Trends and dengue and
yellow fever outbreaks in São Paulo, while [25] presents a forecasting method that leverages
sparse representations of Google Trends, electronic health records, and time series data across
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several countries, including Brazil. These developments highlight the importance of explor-
ing alternative approaches for real-time dengue monitoring. To this end, in this paper we
assess the value of Google Trends to nowcast weekly dengue cases in Brazilian states by fitting
models that integrate reported dengue cases provided by the primary national tracking sys-
tem InfoDengue, and Google Trends indices of dengue-related keywords. Then, we compare
nowcasts produced by models that utilize only reported dengue cases, only Google Trends
data, and a combination of both, with the model provided by InfoDengue [16]. As a baseline,
we also use a naive approach where nowcasts are considered as the reported cases the pre-
vious week. Our aim is to evaluate the value of real-time Google Trends data in producing
accurate nowcasts using simple models that do not rely on incomplete recent case data, and
to determine whether these nowcasts can compete with more complex and time-consuming
models.

Additionally, recognizing the importance of timely and accurate data for dengue surveil-
lance, we developed the Dengue Tracker website (https://diseasesurveillance.github.io/dengue-
tracker/). This site is updated with weekly nowcasts for each Brazilian state, and presents
information through interactive maps and time trend plots to inform decision-makers and the
public about dengue activity levels in real-time.

Materials and methods
Study region
Brazil is divided into 26 states and one federal district, each with unique climatic and socio-
economic characteristics that impact dengue transmission and control (Fig 1).

Fig 1. Map of South America with Brazil highlighted in gray (left), and map of the 26 states and the Federal District of Brazil (right). Administrative boundaries
from South American countries obtained from Natural Earth [26] using the R package rnaturalearth [27]. Administrative boundaries of Brazilian states obtained from
the Brazilian Institute of Geography and Statistics (IBGE) [28] using the R package geobr [29].

https://doi.org/10.1371/journal.pntd.0012501.g001
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Several factors significantly contribute to the proliferation of dengue outbreaks in Brazil
[30]. Climate change, characterized by increased temperatures, has diminished geographi-
cal barriers to dengue transmission, particularly in southern Brazil, by reducing the seasonal
cold periods that typically inhibit mosquito propagation. In the Amazon region, climatic
changes have made previously protected areas more susceptible to dengue outbreaks [6,7].
Rapid urbanization has led to high population densities in large cities, fostering environments
conducive to mosquito breeding due to inadequate infrastructure, such as insufficient piped
water and waste management systems [31]. Furthermore, high connectivity within Brazil’s
urban network exacerbates the risk of disease spread [30].

Fig 2 illustrates the seasonal pattern of monthly dengue incidence rates in Brazilian states
from January 2010 to April 2025, aggregated at the state level, with data sourced from Info-
Dengue [32]. The figure reveals a seasonal pattern, with dengue outbreaks typically occurring
from January to May. In certain regions, such as Acre, Rondônia, Mato Grosso, and Goiás in
southwestern Brazil, outbreaks may even commence in November or December. The spread
of the disease is generally minimal during the winter months. Moreover, it is observed that
dengue outbreaks tend to be more severe every three to four years. This periodicity could
be influenced by El Niño, which significantly impacts weather patterns in certain areas of
Brazil [33]. Notably, the states of Acre, Espírito Santo, Goiás, Mato Grosso do Sul, Paraná,
Rio Grande do Norte, São Paulo, and Tocantins experience a more substantial impact from
dengue, as indicated by consistently higher incidence rates.

Dengue case data
The InfoDengue system [34] provides comprehensive data on dengue and other arboviruses
across Brazil, offering detailed insights into regional variations, trends, and severity of out-
breaks. Accessible at https://info.dengue.mat.br/, the platform aggregates data provided from
the Notifiable Diseases Information System (SINAN) to present dengue cases by epidemio-
logical week and municipality. In Brazil, whenever a physician identifies a suspected dengue
case, this case must be reported within a week in SINAN. Even though there are probable and
laboratory confirmed cases, the InfoDengue system uses all dengue suspected cases reported
in SINAN to provide early warnings as soon as possible. This is because probable and labora-
tory confirmed cases are prone to more sources of delay, and the likelihood of false-negative
dengue results is high.

Despite being a reliable source of information, the cases shown in InfoDengue suffer from
reporting delays. As mentioned in [9], although in principle dengue is meant to be reported
within seven days, in practice no more than 90% of the cases are reported within 9 weeks.
The difference between the provisional and final dengue cases represents the delay that needs
to be accounted for in the nowcasting models. In addition, InfoDengue provides nowcasts
and comprehensive visualizations into the geographic and temporal distribution of dengue,
making it an essential tool for timely decision-making and proactive response to emerging
outbreaks.

Google Trends data
Google Trends (https://trends.google.com/trends/) is a tool that provides anonymized and
aggregated insights into global search behaviors. The Google Trends index for a specific key-
word at a given time ranges from 0 to 100, calculated by dividing the number of searches for
that keyword by the total number of searches in a specific region and timeframe, enabling fair
comparisons between search terms, locations, and periods.

PLOS Neglected Tropical Diseases https://doi.org/10.1371/journal.pntd.0012501 August 18, 2025 5/ 21

https://info.dengue.mat.br/
https://trends.google.com/trends/
https://doi.org/10.1371/journal.pntd.0012501


ID: pntd.0012501 — 2025/8/20 — page 6 — #6

PLOS NEGLECTED TROPICAL DISEASES Dengue nowcasting in Brazil by combining official surveillance data and Google Trends

Fig 2. Dengue incidence rate (cases per 100k people) on a log10 scale in Brazilian states from January 2010 to April
2025, showing a seasonal pattern, with outbreaks typically occurring between January and May.

https://doi.org/10.1371/journal.pntd.0012501.g002

Here, we utilize Google Trends data to understand dengue search behavior patterns
that could complement official dengue data. To select the keywords for the Google Trend
indices to include in the models, we calculated the Pearson correlation between country-level
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aggregated dengue cases and the Google Trends index for various dengue-related keywords
identified in [35]. We used data from January 1, 2013, to December 31, 2023, with correla-
tions computed using monthly resolution data, as Google Trends data cannot be obtained at
a finer temporal resolution for periods exceeding five years and two months.

Google Trends indices for the keywords ”sintomas dengue” (r = 0.93) and ”dengue”
(r = 0.90) showed the strongest correlations with dengue cases. However, the two terms
were highly intercorrelated (r = 0.97), raising concerns about multicollinearity if both were
included in the models. Additionally, the ”sintomas dengue” series was sparse. Therefore, to
balance predictive strength and model stability, we decided to incorporate only the Google
Trends index for the keyword ”dengue” into our models.

Nowcasting methods
We evaluate the performance of several approaches for nowcasting the weekly number of
dengue cases in each Brazilian state. Specifically, we use five approaches: 1) a model that uses
only official dengue case data; 2) a model that uses only Google Trends data; 3) a model that
integrates both official dengue case data and Google Trends indices; 4) a Bayesian nowcasting
approach implemented in the InfoDengue system; and 5) a naive approach that predicts cases
based on the previous week’s data.

Models are evaluated using a moving window strategy, where each model is trained on
a fixed-size window of historical data. Nowcasts are then generated for the last week of the
window based on this training. The window advances by one week iteratively, producing a
sequence of nowcasts over time that will be compared with the actual number of cases using
several error and uncertainty measures.

In this study, we began recording the weekly number of dengue cases from InfoDengue
on epidemiological week 10 of 2024 (March 3). Due to reporting delays, the initially reported
number of cases is considerably lower than the actual number. Each week, InfoDengue
updates the case numbers, continuing this process for up to approximately 10 weeks [9].
To determine the number of weeks after which case counts can be considered complete,
we computed the cumulative reporting proportions across time and states (Fig A in S1
Text). We observed that a 15-week cutoff captures the 95% reporting threshold in nearly
all states – only Amapá, Minas Gerais, and Rio Grande do Sul fall slightly short, and even
for those, the difference from their average delay is minimal. Based on this, we selected 15
weeks as the point beyond which reported case counts are taken to reflect the true number
of cases.

We started by producing a nowcast for week 10 of 2024 (March 3, 2024), using models
trained on data from the past three years, from epidemiological week 6 in 2021 to epidemio-
logical week 6 in 2024 (February 7, 2021, to February 4, 2024), 156 weeks in total. The mod-
els were trained using data that excluded the four most recent weeks, and provided a nowcast
for the current number of dengue cases (four weeks ahead). We decided to exclude the most
recent four weeks of training data to balance maintaining recent information with discarding
incomplete data. During this period, the reported dengue cases do not accurately reflect the
actual numbers, with less than 75% of cases being reported within four weeks [9].

This procedure is repeated by moving the window forward by one week for 46 weeks,
obtaining nowcasts for epidemiological weeks 10 of 2024 to 3 of 2025 (March 3rd 2024 to
January 12th, 2025). By computing error metrics and uncertainty intervals over multiple
windows, this approach is particularly useful for validating models in dynamic and seasonal
contexts, providing robust insights into nowcasts accuracy.
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Let ct represent the actual number of dengue cases at week t, and let yt represent the official
number of dengue cases reported at week t. As previously discussed, yt is lower than ct due to
reporting delays, and we are interested in obtaining a nowcast ̂ct. Here, we assume the actual
number of cases ct is the number of dengue cases reported in InfoDengue 10 weeks after t. In
addition, let xn,t be the Google Trends index for the nth keyword at week t.

The nowcasting approaches considered include DC (Dengue Cases), GT (Google Trends),
and DCGT (Dengue Cases and Google Trends), which use information only from dengue
cases, only from Google Trends, and a combination of both datasets, respectively. These mod-
els use historical reported dengue cases yt excluding the most recent weeks to produce now-
casts ̂ct. That is, the models are trained using only data for which we expect yt ≈ ct. In addi-
tion, a Bayesian nowcasting model and a naive approach are also considered. The descriptions
of the five nowcasting approaches are as follows.

DC
The DCmodel employs a Seasonal Autoregressive Integrated Moving-Average (SARIMA)
model using dengue case data [36]. The SARIMA model is represented by a set of parameters
equal to (p,d, q)× (P,D,Q, S), where p represents the order of auto-regression, q is the the
order of moving-average, and d symbolizes differencing by which non-stationary time series
are transformed into stationary time series. The time series yt can be modeled as a SARIMA
(p,d, q)× (P,D,Q, S) as follows:

ΔdΔD
S yt = 𝜇 +

p

∑
n=1

𝜙nΔdΔD
S yt–n +

P
∑
n=1

ΦnΔdΔD
S yt–Sn +

q

∑
n=1

𝜃n𝜖t–n

+
Q

∑
n=1

Θn𝜖t–Sn + 𝜖t, 𝜖t iid∼N (0,𝜎2) (1)

GT
The GT model uses a linear model using an intercept and the Google Trends index for the
keyword ”dengue” as a covariate.

yt = 𝜇 +
K
∑
i=1
𝛽ixi,t + 𝜖t, 𝜖t iid∼N (0,𝜎2) . (2)

DCGT
The DCGT model uses SARIMA with eXogenous factors (SARIMAX) [36] to combine
dengue cases with Google Trends indices. The exogenous part is traditionally treated as an
input unaffected by the outcome. In this application, however, Google Trends indices are
driven by dengue incidence. Here, the time series yt can be written as the mathematical for-
mulation of a SARIMA (p,d, q)× (P,D,Q, S)model with Google Trends as variable x as
follows:

ΔdΔD
S yt = 𝜇 +

p

∑
n=1

𝜙nΔdΔD
S yt–n +

P
∑
n=1

ΦnΔdΔD
S yt–Sn +

q

∑
n=1

𝜃n𝜖t–n

+
Q

∑
n=1

Θn𝜖t–Sn +
K
∑
i=1
𝛽ixi,t + 𝜖t, 𝜖t iid∼N (0,𝜎2) , (3)

where ΔdΔD
S yt = (1 – B)d(1 – B)Dyt and B is the back-shift operator.
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InfoDengue
InfoDengue provides nowcasts using a Bayesian hierarchical model where the observed num-
ber of events yt,d,s at time t reported after d time units in spatial location s is assumed to follow
a Negative Binomial distribution with mean 𝜆t,d,s and dispersion 𝜙 [9]. Specifically,

yt,d,s ∼NegBin(𝜆t,d,s,𝜙), (4)

with mean E[yt,d,s] = 𝜆t,d,s and variance Var[yt,d,s] = 𝜆t,d,s(1 + 𝜆t,d,s/𝜙). To capture the temporal
and spatial variability of yt,d,s, the mean is expressed as

log(𝜆t,d,s) = 𝜇 + 𝛼t + 𝛽d + 𝛾t,d + 𝜂w(t) + 𝜓s + 𝛽d,s + X′t,d,s𝛿. (5)

Here, 𝜇 represents the overall mean on the log scale, and X′t,d,s is a matrix of temporal,
delay-related, and spatially varying covariates with associated parameter vector 𝛿. 𝛼t and 𝛽d
capture time and delay structure means, respectively, modeled as first-order random walks.
The model also includes random effects 𝛾t,d to capture the interaction between time and delay,
and a seasonal component 𝜂w(t). Finally, 𝜓s represents spatial variability, and 𝛽d,s captures
how the delay structure varies across different spatial locations.

Naive
The naive approach uses the number of cases reported in the previous week as the nowcast of
week t:

̂ct = yt–1. (6)

Accuracy and uncertainty metrics
We assessed the performance of each nowcasting approach using several error measures. In
addition, we computed the 95% and 50% coverage probabilities, which represent the propor-
tion of times actual cases were covered by the 95% and 50% uncertainty intervals, respectively.
Let ̂ct and ct represent the predicted and actual number of dengue cases, respectively, at time
t, where t = 1,… ,n. We computed evaluation metrics for the nowcasting weeks. These include
the Root Mean Squared Error (RMSE), which measures the square root of the average squared
differences between the predicted and actual values as

RMSE = [1/n
n
∑
t=1
( ̂ct – ct)2]

1/2

, (7)

and the Root Mean Squared Percentage Error (RMSPE) as the square root of the average
squared percentage errors:

RMSPE = {1/n
n
∑
t=1
[( ̂ct – ct) /ct]2}

1/2

. (8)

RMSPE is useful when the relative error is more meaningful than the absolute error, high-
lighting proportional discrepancies. We also computed the logarithmic score (logscore), a
proper scoring rule that evaluates the full predictive distribution. Assuming ct ∼N ( ̂ct, 𝜎2

t ),
where ̂ct is the point-nowcast and 𝜎t its predictive standard deviation, the logscore is defined
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as

logscore = –
1
n

n
∑
t=1

log[ 1
𝜎t
√
2𝜋

exp(– (ct– ̂ct)2
2𝜎2

t
)]. (9)

A lower logscore indicates a better probabilistic forecast.

Implementation
All analyses were performed using the statistical software R version 4.4.3 [37]. Nowcasts and
95% and 50% confidence intervals for the DCGT and DC models were obtained using the
function auto.arima() from the forecast package using the default maximal orders
[38]. Results for the GT model were obtained with the linear model function lm() from
R. For reproducibility purposes, data and code to apply these methods are provided in the
GitHub repository https://github.com/diseasesurveillance/dengue-tracker/tree/main/paper.

Results
This section presents the error and uncertainty measures obtained for each method across all
states. Results are not shown for Espírito Santo as this state stopped reporting dengue cases
to the federal governement since epidemiology week 16 of 2024 (April 14), resulting in miss-
ing case counts from that date onwards. Furthermore, the data for epidemiology week 24 of
2024 (June 9) was not uploaded by InfoDengue, so this week’s comparison was skipped in
our analysis. For comparisons requiring this week’s data as the “true value”, the data from
epidemiology week 25 of 2024 (June 16) were used.

Tables 1 to 4 present the error measures obtained for each state and nowcasting approach,
where red indicates the best performance, and blue represents the second-best performance
model.

Table 1 presents the RMSE values for prediction errors of each model. Overall, the GT
model performed the best among the five approaches, achieving the most accurate predictions
in 12 out of 26 states evaluated. The InfoDengue and DCGT models showed comparable per-
formance, excelling in 10 and 3 states, respectively. Conversely, the DC and naive approaches
performed the worst. The former one only performs the best in São Paulo, and the later one
yields no advantage in any states. In several states, such as Pará, Paraíba, Pernambuco and
Rio de Janeiro, the GT model considerably outperformed the second-best models (the error
of the second-best performing model was more than about 1.5 times the error of the best-
performing model). The smallest errors were observed in Roraima, all below 100, whereas São
Paulo exhibited the largest errors, ranging from approximately 28,000 to 45,000, reflecting the
unbalanced disease burden across states.

RMSPE (Table 2) values indicate that the top model remains GT, and the other models
are less competitive. Across states, the ranking by decreasing number of states with lowest
RMSPE is GT, followed by DCGT, then InfoDengue, DC, and finally the naive approach.
For RMSPE, GT leads in 17 states, while DCGT and InfoDengue leads in 4 different states.
The DC model only leads in 2 states, and the naive approach does not outperform in any
states. Moreover, in many states, there is a notable difference between the performance of the
best and second-best models. For example, in Alagoas, Amapá, Minas Gerais and Pará the
error of the second-best performing model was more than about 1.5 times the error of the
best-performing model.

As shown in Table 4, the GT model achieves the best (lowest) logscore in 18 of 26 evalu-
ated states, making it the top performer in the majority of states. The DCGT approach comes
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Table 1. RMSE obtained for each state and nowcasting approach. Red and blue represent the best and the second
best performances respectively (the lowest and the second lowest error).

DCGT DC GT InfoDengue Naive
Acre 312.88 318.62 282.33 376.52 358.8
Alagoas 227.45 267.59 448.52 207.46 376.73
Amapá 147.12 140.42 114.06 190.68 287.16
Amazonas 105.42 286.71 97.82 192.3 232.48
Bahia 6039.85 10545.61 4198.09 8770.68 5148.4
Ceará 535.42 541.32 1415.7 364.29 640.09
Distrito Federal 2852.67 2520.59 1673.02 1949.51 2119.02
Espírito Santo - - - - -
Goiás 342330 218082.08 3622.88 2651.6 5833.3
Maranhão 227.65 419.62 222.01 567.9 350.53
Mato Grosso 584.93 911.6 436.12 509.35 1093.76
Mato Grosso do Sul 493.71 546.41 500.67 1996.55 833.92
Minas Gerais 12789.48 13415.67 12942.06 10837.09 34615.34
Pará 522.67 565.1 293.79 649.33 754.16
Paraíba 384.31 616.74 158.61 292.55 339.61
Paraná 10646.04 10275.83 5109.95 3102.5 11463.52
Pernambuco 745.59 814.96 519.87 902.92 1046.99
Piauí 227.62 182.96 241.9 114.95 296.35
Rio de Janeiro 2068.78 6044.89 1903.36 8468.87 4372.11
Rio Grande do Norte 282.33 424 319.4 174.85 239.63
Rio Grande do Sul 4495.9 3520.09 3853.64 1763.9 4080.09
Rondônia 138.04 338.82 121.9 284.95 213.8
Roraima 47.38 47.74 38.72 33.73 49.23
Santa Catarina 4797.95 4931.92 6097.02 5460.02 9197.25
São Paulo 45085.82 27931.58 31150.25 37001.61 63894.79
Sergipe 73.23 122.74 123.14 430.91 135.22
Tocantins 206.23 268.35 206.64 140.32 195.09

https://doi.org/10.1371/journal.pntd.0012501.t001

out best in 6 states, while the DC model leads in only 2 states. Looking at second-best fin-
ishes, DCGT is runner-up in 16 cases, DC in 8, and GT in 3. These results indicate that a pure
Google Trends signal tends to yield the most accurate nowcasts overall, with the other two
time series models performing only modestly across states.

Fig 3 displays boxplots of the differences between the nowcasts and the actual number of
dengue cases across Brazilian states. Models are sorted by their mean absolute error, from
lowest to highest, allowing for a clear comparison of performance. Fig 4 complements this by
providing a visual summary of the top-performing nowcasting models across Brazilian states,
based on multiple evaluation metrics, highlighting GT and InfoDengue as the best methods
overall.

Table 3 displays the 95% and 50% coverage probabilities obtained for each state and now-
casting approach. In these tables, results for InfoDengue and the naive approach are not
included. For InfoDengue, nowcasts for this method are provided at municipality level, while
our analysis is conducted at the state level. We cannot simply aggregate uncertainty intervals
from InfoDengue to make the comparison. As to the naive approach, this simply uses as now-
casts the reported cases from last week, and does not provide any intervals. For the 95% cov-
erage probabilities, we found that all three models exhibited high coverage rates which are
around 95% for some states, if the best model according to this criterion is considered. The
best performance model is GT, achieving the highest coverage in 17 different states. DCGT
model and DC model achieved the highest coverage in 11 and 10 states respectively.
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Table 2. RMSPE obtained for each state and nowcasting approach. Red and blue represent the best and the
second best performances respectively (the lowest and the second lowest error).

DCGT DC GT InfoDengue Naive
Acre 0.62 0.61 0.55 0.57 2.51
Alagoas 0.52 0.72 0.36 0.66 3.53
Amapá 2.5 2.45 1.04 3.52 100.64
Amazonas 0.25 0.36 0.34 0.5 1.36
Bahia 0.46 0.6 0.43 0.38 1.53
Ceará 0.4 0.41 0.49 0.54 3.98
Distrito Federal 0.57 0.52 0.34 0.3 0.41
Espírito Santo - - - - -
Goiás 0.49 0.55 0.29 0.36 1.19
Maranhão 0.52 0.86 0.33 1.59 10.39
Mato Grosso 0.35 0.7 0.2 0.41 1.08
Mato Grosso do Sul 0.38 0.36 0.25 0.72 2.96
Minas Gerais 2.03 2.46 0.29 3.59 7.8
Pará 1.17 2.06 0.44 0.87 5.92
Paraíba 0.43 0.83 0.15 0.24 0.54
Paraná 0.28 0.32 0.21 0.93 0.62
Pernambuco 0.36 0.65 0.24 0.44 1.7
Piauí 0.7 0.67 0.35 0.6 1.68
Rio de Janeiro 0.38 0.42 0.28 0.34 1.24
Rio Grande do Norte 0.32 0.77 0.21 0.38 0.58
Rio Grande do Sul 0.5 0.41 0.46 0.89 0.76
Rondônia 0.49 0.61 0.46 1.87 9.24
Roraima 0.45 0.45 0.52 0.43 1.15
Santa Catarina 0.34 0.34 0.44 0.68 0.74
São Paulo 0.54 0.43 0.27 0.44 1.04
Sergipe 0.25 0.47 0.33 0.54 1.42
Tocantins 0.41 0.44 0.45 0.33 0.5

https://doi.org/10.1371/journal.pntd.0012501.t002

For the 50% coverage rate, model DC and DCGT yield better coverage probabilities. They
have the best coverage rate in 13 and 10 states respectively. GT only obtains the best perfor-
mance in seven states. However, across most states, the empirical 50% coverage rates slightly
exceed the nominal 50%, suggesting that the 50% prediction intervals are somewhat conserva-
tive.

Fig 5 shows the weekly nowcasting results for each method. The green lines represent the
reported cases for a given epidemiological week after 15 weeks. We consider these values as
the true number of cases to benchmark the models’ performance. Notably, the orange lines
representing the number of suspected cases reported each week are consistently the low-
est, serving as a practical “lower bound”, with various models employed to adjust this lower
limit. Overall, the GT nowcasts (red lines) align closely with the true values in many regions
– for example, in Amazonas, Acre, and Rio de Janeiro – while the InfoDengue forecasts (pur-
ple lines) tend to perform particularly well in several others, such as Ceará, Paraná, and Rio
Grande do Sul. Both approaches capture the general temporal trends with good accuracy and
each outperforms the other in roughly half of the states. By contrast, the DCGT model still
adds value in certain areas (e.g. Amazonas, Acre, Mato Grosso do Sul), and the DC forecasts
can appear more variable, making them somewhat less reliable overall.

Dengue Tracker website
Timely and accurate information on dengue cases is crucial for prevention and control. We
developed the Dengue Tracker website (https://diseasesurveillance.github.io/dengue-tracker/)
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Table 3. 95% coverage probabilities (left) and 50% coverage probabilities (right) obtained for each state and
nowcasting approach. Red represent models closest to nominal coverage, with preference given to those with
higher values in case of ties.

95% coverage probabilities 50% coverage probabilities
DCGT DC GT DCGT DC GT

Acre 0.93 0.93 0.84 0.53 0.51 0.53
Alagoas 0.93 0.84 1 0.42 0.58 0.67
Amapá 0.84 0.84 0.87 0.31 0.31 0.38
Amazonas 1 1 1 0.62 0.69 0.51
Bahia 0.91 0.89 0.8 0.6 0.53 0.47
Ceará 0.91 0.93 0.96 0.69 0.73 0.42
Distrito Federal 0.89 0.91 0.89 0.44 0.51 0.31
Espírito Santo - - - - - -
Goiás 1 0.97 0.78 0.67 0.61 0.49
Maranhão 0.93 0.84 0.91 0.62 0.56 0.64
Mato Grosso 0.91 0.82 1 0.64 0.56 0.64
Mato Grosso do Sul 1 1 1 0.78 0.8 0.53
Minas Gerais 0.82 0.84 0.98 0.38 0.47 0.51
Pará 0.84 0.93 0.89 0.51 0.67 0.29
Paraíba 0.93 0.93 0.98 0.8 0.78 0.76
Paraná 0.98 0.96 0.98 0.82 0.76 0.64
Pernambuco 0.84 0.93 1 0.67 0.62 0.67
Piauí 0.96 0.98 0.98 0.6 0.76 0.62
Rio de Janeiro 0.98 0.96 0.98 0.67 0.62 0.53
Rio Grande do Norte 0.96 0.96 1 0.64 0.67 0.64
Rio Grande do Sul 0.91 0.98 0.84 0.58 0.78 0.51
Rondônia 1 1 1 0.82 0.71 0.44
Roraima 0.93 0.93 0.96 0.67 0.69 0.6
Santa Catarina 1 1 0.8 0.69 0.78 0.42
São Paulo 0.7 0.89 0.93 0.43 0.57 0.55
Sergipe 0.95 0.93 1 0.73 0.73 0.57
Tocantins 1 1 0.93 0.55 0.61 0.48

https://doi.org/10.1371/journal.pntd.0012501.t003

to provide weekly updates on the number of official dengue cases per state in Brazil, as well as
at the country level. Additionally, the website provides corrected case counts incorporating
information from Google Trends (using our GT model) and also the InfoDengue results. We
believe these reports will assist policymakers in understanding dengue levels and guide their
decisions.

Each week, the number of dengue cases is downloaded through InfoDengue’s API,
and the Google Trends information for the specific keywords is downloaded from
https://trends.google.com/trends/. Data are download from the last 5 years up to the week
we are interested in nowcasting. At the country level, Dengue Tracker shows the dengue inci-
dence rate through an interactive choropleth map. Besides, it depicts the time series of the
number of cases, the fitted model, and the corrections from both our model and InfoDengue’s
for each state in a plot with the shape of Brazil. Reports are also provided for each state. The
website is built using RMarkdown [39] and GitHub Pages. The graphic components are built
using ggplot2 [40], plotly [41], geofacet [42] and leaflet [43].

Discussion
Reporting delays in surveillance data make traditional surveillance systems ineffective for
planning and control. In this paper, we compared the usefulness of integrating Google Trends
information for dengue nowcasting in Brazil with other analytical approaches that rely solely
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Table 4. Logscore obtained for each state and nowcasting approach. Red and blue represent the best and the
second best performances respectively (the lowest and the second lowest logscore).

DCGT DC GT
Acre 6.82 6.81 6.83
Alagoas 6.75 7.19 6.53
Amapá 8.97 8.94 7.14
Amazonas 6.09 6.61 6.21
Bahia 9.06 9.24 11.17
Ceará 7.15 7.2 8.37
Distrito Federal 7.79 7.78 7.74
Espírito Santo - - -
Goiás 8.43 8.62 8.36
Maranhão 5.81 7.06 5.79
Mato Grosso 7.61 8.54 7.04
Mato Grosso do Sul 7.34 7.5 6.89
Minas Gerais 15.23 16.99 9.46
Pará 9.6 10.6 7.59
Paraíba 7.39 8.37 6.19
Paraná 9.4 9.59 8.84
Pernambuco 8 8.31 7.15
Piauí 6.23 6.2 5.69
Rio de Janeiro 8.15 8.35 8.11
Rio Grande do Norte 6.54 7.44 6.06
Rio Grande do Sul 8.37 8.33 8.54
Rondônia 5.95 6.34 5.87
Roraima 5.15 5.16 5.09
Santa Catarina 9.07 9.16 9.84
São Paulo 12.79 11.18 10.51
Sergipe 5.61 6.29 5.84
Tocantins 6.5 6.62 6.62

https://doi.org/10.1371/journal.pntd.0012501.t004

on reported data. Specifically, we evaluated the error and uncertainty produced by approaches
that used only Google Trends information (GT), only dengue case data (DC), and a combina-
tion of both (DCGT). In addition, we compared these results with the nowcasting algorithm
provided in InfoDengue and a naive approach, where the number of cases in a given week was
nowcasted as the number of cases reported in the previous week.

Our study demonstrates the effectiveness of combining Google Trends information with
reported case data for nowcasting dengue in Brazil. We show that using the reported number
of cases as the nowcast for the following week, as done in the naive approach, is insufficient
for real-time monitoring since it considerably underestimates the actual number of dengue
cases. Overall, the GT model demonstrates the lowest error across most states, outperforming
other models in all metrics, with InfoDengue ranking second. In contrast, neither DCGT nor
DC provides notable improvements in nowcasting accuracy. The results, as illustrated through
boxplots and accuracy metrics, confirm that incorporating Google Trends data effectively
enhances predictive performance.

We could not provide comprehensive comparisons across all models and measures due
to fundamental methodological differences. The naive model produces only point predic-
tions without uncertainty bounds, while InfoDengue provides municipality-level nowcasts
that cannot be meaningfully aggregated to state-level comparisons. Despite these constraints,
our GT model demonstrated competitive point prediction performance against both models
where direct comparisons were feasible.
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Fig 3. Boxplots of differences between the nowcasts and actual dengue cases in Brazilian states.Models are sorted in ascending order of
their mean absolute difference. Box colors represent different models. Black dots represent outliers in the distribution of differences between the
nowcasts and the actual case counts, and purple dots indicate the mean difference.

https://doi.org/10.1371/journal.pntd.0012501.g003
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Fig 4. Map of Brazilian states indicating the top-performing nowcasting models based on selected evaluation metrics, with GT and InfoDengue performing best
overall. Administrative boundaries of Brazilian states obtained from the Brazilian Institute of Geography and Statistics (IBGE) [28] using the R package geobr [29].

https://doi.org/10.1371/journal.pntd.0012501.g004

In our analyses, we initially selected a moving window of 3 years (from 2021-02-07 to
2024-02-04) to ensure sufficient training data while excluding anomalous dynamics during
the early COVID-19 period in 2020. We also conducted a sensitivity analysis using alterna-
tive window sizes of 1 year (from 2023-02-05 to 2024-02-04) and 2 years (from 2022-02-06 to
2024-02-04). These results are presented in S2 Text. We observed that the performance of DC
and DCGT models is more sensitive to changes in the training window size. However, this
variation does not alter the overall conclusions of the study, as the relative model performance
and key findings remain consistent across all tested window sizes.

We also assessed the performance metrics for several nowcast horizons: the current week,
one week prior, two weeks prior, and three weeks prior. The results indicate that InfoDengue’s
errors shrink steadily as we move from the current week to one, two, and three weeks back –
its nowcasts for older weeks are more accurate than for the most recent week. The other mod-
els do not show this pattern. This may happen because InfoDengue leverages the full report-
ing�delay distribution (including the most recent four weeks), while the other models omit
those weeks and therefore cannot capture the same delay dynamics. These results are shown
in S3 Text.

In our study, we excluded Espírito Santo from model comparisons because the state ceased
reporting dengue cases. However, it is possible to fit an appropriate GT model using histori-
cal data and continue nowcasting with Google Trends data, even after reporting has stopped
— this approach was actually implemented on the Dengue Tracker website. Another note-
worthy case is Rio de Janeiro, where changes in the notification system’s infrastructure and
workflow were introduced during the epidemic to achieve a faster response. This shift was not
captured by InfoDengue, leading to nowcasts that considerably overestimated the actual num-
ber of cases fromMarch to April, whereas GT’s nowcasts were much closer to the true figures.
In these situations, our Google Trends-only model continued to produce timely estimates
and was even adopted by the Ministry of Health in Rio de Janeiro when the official feeds
failed. Although the Google Trends model sometimes outperforms and sometimes underper-
forms the other approaches, that variability highlights the need for multiple, complementary
nowcasting methods rather than reliance on a single system.
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Fig 5. Model predictions for epidemiological weeks 10 of 2024 to 3 of 2025 (March 2024 to January 2025).The green
line represents the true number of cases (reported after a 15-week delay) used as the benchmark, while the orange line
shows the suspected cases that are reported each week, reflecting reporting delays. Overall, GT and InfoDengue provide
the most accurate forecasts, staying closest to the green line compared to DC and DCGT. Goiás predictions were capped to
35,000 cases to mitigate the impact of overfitting observed on subplot in the DC and DCGT models for several weeks.

https://doi.org/10.1371/journal.pntd.0012501.g005

One limitation of our study is that Google Trends data is inherently biased since not all
individuals use Google to search for dengue-related information. This bias may result in
underrepresentation of specific populations or regions, potentially affecting the accuracy of
our models. Further research is needed to understand how different population groups use
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Google to search for dengue information, how to select dengue-related keywords that accu-
rately reflect disease transmission, and to develop models that integrate Google Trends and
dengue case data in the most effective way.

Our models rely on assumptions of normality and homoscedasticity, which are not fully
satisfied in all cases. Nevertheless, the models exhibited strong predictive performance, as
well as trustworthy uncertainty quantification. Developing models with more flexible error
structures remains an important direction for future research. Moreover, in this study, we
employed statistical models that excluded the most recent weeks of incomplete information
to generate dengue nowcasts. Although this approach allowed us to demonstrate the superior
performance of approaches using Google Trends data compared to models relying only on
reported cases, further work could be done to develop models that utilize incomplete data to
further improve predictive accuracy, although this would come at the cost of relying on more
data sources than the current GT model.

In addition, the models used in this study are limited in their ability to detect sudden
changes in dengue incidence, since they heavily rely on historical data. This limitation hinders
their effectiveness in identifying abrupt outbreaks or sharp increases in cases. Future research
will explore more flexible approaches to improve responsiveness. Additionally, we plan to
investigate the incorporation of variables like climate and socio-economic factors, known to
influence dengue transmission, into future models. Moreover, we intend to develop spatial
models that allow us to obtain nowcasts at finer geographical resolutions, such as microgre-
gion or municipality levels [44]. This enhancement will provide localized nowcasts, enabling
more precise public health interventions.

Effective and timely communication of dengue activity levels is crucial for planning and
response efforts in public health. To address this need, we also developed Dengue Tracker
(https://diseasesurveillance.github.io/dengue-tracker/index.html), a system designed to aggre-
gate, analyze, and visualize dengue case data. This system provides weekly nowcasts at the
state level in Brazil, aiding decision-makers and the public in understanding current risk lev-
els. The Dengue Tracker website is updated weekly and features interactive maps and time
series plots that dynamically present the latest dengue information across Brazil. By integrat-
ing our nowcasting models that use Google Trends information into this platform, the website
delivers real-time alerts and trend analyses for better disease prevention and control.

In conclusion, our study presents a promising approach to improving dengue surveil-
lance in Brazil by leveraging Google Trends data, which relies on an entirely different source
of information than official case reports. This allows the model to remain functional even
when official data are delayed or unavailable. Rather than replacing traditional models, our
approach offers a valuable complement, helping ensure that surveillance does not depend on
a single source of information. This enhances situational awareness for public health author-
ities and the general public, facilitating timely responses to changes in dengue activity and
ultimately helping to reduce the impact of dengue and improve population health.
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