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Abstract. In this note we prove the result: let Ω be a non void open
subset of RN and f a k-generalized differential form on Ω. Moreover,
assume that Ω is star-shaped and that f is a closed form on Ω. Then,
there is a (k − 1)-generalized differential form u on Ω whose differential
is f. This result is a part of what I call internal development of the
Colombeau theory.

Notation In what follows we will adhere to the following conventions:
I :=]0, 1[⊂ R ; I := [0, 1] ⊂ R , N ∈ N∗ is fixed and Ω is a non void
open subset of RN .

For every k ∈ N such that 1 ≤ k ≤ N we denote by

Ak
N := Alt

(
k
(
RN
)

;R
)

the R-vector space of all k-linear alternate forms on Rn (i.e. its domain

is RN×
k

.̂ . .× RN). We extend this definition to the case k = 0 by setting

A0
N = Alt

(
0
(
RN
)

;R
)

:= R.

For a fixed k ∈ N such that 1 ≤ k ≤ N, if I = (i1, . . . , ik), with 1 ≤
i1, i2, . . . , ik ≤ N, we define I∗ := {i1, i2, . . . , ik} and the order of I as being
the number |I| := k. We define

dxI := dxi1 ∧ . . . ∧ dxik
and for each α such that 1 ≤ α ≤ k we set

dxI,îα := dxi1 ∧ . . . d̂xik ∧ . . . ∧ dxik =:
∧
ν 6=α

dxiν .
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242 J. Aragona

Here the symbol ̂ over dxiα indicates that it is omitted.

The symbol
∑′

I means that sommation is restricted to multi-indices

I = (i1, i2, . . . , ik) verifying 1 ≤ i1 < i2 < . . . < ik ≤ N.
It is well known that the sequence

BkN := (dxi ∧ . . . ∧ dxik)1≤i1<···<ik≤N (1)

is an R-basis of Ak
N and using some canonical isomorphisms BkN can be

considered a R-basis of Gr (Ω) := G
(
Ω,Ak

N

)
which is defined in the sequel

[[2] , Ex.7.2.1, (b) Real differential forms]. Also, we will need the following
spaces (see [2], section 7.2) where k ≥ 1 :

EM
[
Ω; Ak

N

]
,N
[
Ω; Ak

N

]
and Gk (Ω) :=

EM
[
Ω,Ak

N

]
N
[
Ω; Ak

N

] .
If k = 0, we have A0

N = R and hence

G0 (Ω) =
EM [Ω,R]

N [Ω,R]
= G (Ω) .

If f =
∑
|I|=k

′fIdx
I ∈ Gk (Ω) we have fI ∈ G (Ω) (= G(Ω,R)) for each I. If

f̂I is any representative of fI then f̂I ∈ EM [Ω] (= EM [Ω;R]) for every I. It
follows that

f̂ :=
∑
|I|=k

′
f̂Idx

I ∈ EM
[
Ω; Ak

N

]
(k ≥ 1)

is a representative of f.

Note that the unitary and commutative ring EM [I×Ω;R] is well defined
since I × Ω is a quasi-regular set (see [1]). Therefore, we can consider the
EM
[
I× Ω;R

]
-free module over BkN (see (1)) that we will denote by

EM
[
I× Ω; Ak

N

]
. (2)

An arbitrary element of EM
[
I×Ω; Ak

N

]
is of the kind

F =
∑
|I|=k

′
FI (ϕ, t, x) dxI (3)

where FI ∈ EM
[
I× Ω;R

]
∀ I, ∀ϕ ∈ A0. Given F as in (3) we define
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∫
0

1

F :=
∑
|I|=k

′


∫
0

1

FI (ϕ, t, x) dt

 dxI (4)

and it is easily seen that

∫
0

1

dxF = d

∫
0

1

F

 . (5)

Before proving (5) let recall that C∞k (Ω) = C∞k (Ω;R) is the set of all k-
differential forms of class C∞ over Ω. An arbitrary element of C∞k (Ω) is of
the form

g = g (x) =
∑
|I|=k

′
gI (x) dxI =

∑
|I|=k

′
gIdx

I

with gI ∈ C∞ (Ω) ∀ I. If U is an open subset of Rp (where p ∈ N∗ is
arbitrarily fixed), µ ∈ C∞ (U ; Ω) and

f̂ =
∑
|I|=p

′
f̂I (ϕ, t, x) dxI ∈ EM

[
I× Ω, AkN

]
,

the pull-back by µ of f̂ , which we will denote by µ∗f̂ , is defined by

µ∗f :=
∑
|I|=k

′ (
f ′I ◦ µ

)
dµI ∈ C∞k (U ;R) .

Lemma 1. (4) =⇒ (5) . More precisely, given F as in (3) (that is F =∑
|I|=k

′FI (ϕ, t, x) dxI) we have (5) , that is

∫
0

1

dxF = d

∫ 1

0

F

 (1.1)

(hence (1.1) = (5)) where we define

∫ 1

0

F :=
∑
|I|=k

′


∫ 1

0

FI (ϕ, t, x) dt

 dxI (1.2)

(hence (1.2) = (4)).
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Proof. Fix any F ∈ EM
[
I× Ω; Ak

N

]
as in (3) , we will need the canonical

form of dxF which is ( for the sake of simplicity we omit the variables
ϕ, t, x):

dxF =
∑
|I|=k

′ N∑
ν=1

∂FI
∂xν

dxν ∧ dxI =

′∑
|K|=k+1

∑
ν,I

εKνI
∂FI
∂xν

 dxK (1.3)

where εKνI = 0 if ν ∈ I∗ := {i1, . . . , ik}, where I = (i1, . . . , ik) with 1 ≤ i1 <
. . . < ik ≤ N or, conversely εKνI is the signature of the permutation which
transforms νI := (ν, i1, . . . ik) into the permutation K = (l1, l2, . . . , lk, lk+1)
of νI verifying

1 ≤ l1 < l2 < . . . < lk < lk+1 ≤ N.

Clearly, the second identity of (1.3) follows from writing dxF in the
canonical form

dxF =

′∑
|K|=k+1

{∑
ν·I
εKνI

∂FI
∂xν

}
dxK . (1.3′)

Computation of
∫
0

1
dxF :

Here we will use (4) and (1.3
′
) obtaining

∫ 1

0

dxF =

′∑
|K|=k+1


∫ 1

0

(∑
ν·I
εKνI

∂FI
∂xν

(ϕ, t, x)

)
dt

 dxI =

=

′∑
|K|=k+1

∑
ν,I

εKνI
∂

∂xν

∫ 1

0

FI (ϕ, t, x) dt

 dxK =

=
′∑

|I|=k

N∑
ν=1

∂

∂xν

∫ 1

0

FI (ϕ, t, x) dt

 ∧ dxν ∧ dxI .
Therefore
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∫ 1

0

dxF =

′∑
|I|=k

N∑
ν=1

∂

∂xν

∫ 1

0

FI (ϕ, t, x) dt

 dxν ∧ dxI . (1.4)

Computation of d

(∫ 1

0

F

)
:

Here we will differenciate (4) getting

d

∫ 1

0

F

 =

′∑
|I|=k

d

∫ 1

0

FI (ϕ, t, x) dt

 ∧ dxI (1.5)

and since clearly we have

d

∫ 1

0

FI (ϕ, t, x) dt

 =
N∑
ν=1

 ∂

∂xν

∫ 1

0

FI (ϕ, t, x) dt

 dxν ,
by inserting the second member of the above identity into the second mem-
ber of (1.5), we can conclude that

d

∫ 1

0

F

 =

′∑
|I|=k

 ∂

∂xν

∫ 1

0

FI (ϕ, t, x) dt

 dxν ∧ dxI .
The above identity together (1.5) proves the result. �

The generalized Poincaré lemma is as follows

Proposition 2. Let Ω be a star-shaped open subset of RN and

f =
′∑

|I|=K

fI (x) dxI ∈ Gk (Ω)

such that df = 0 in Ω. Then there is u ∈ Gk−1 (Ω) such that du = f in Ω.

Proof. Clearly we can assume that x0 = 0, that is Ω is 0-star-shaped. Hence
the map

µ := (t, x) ∈ I× Ω 7−→ µ (t, x) := tx ∈ Ω
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is well defined.
Next, fix an arbitrary representative f̂ =

∑′
|I|=k

fI (ϕ, x) dxI ∈ EM
[
Ω; Ak

N

]
of f ∈ Gk (Ω) which is fixed such that df = 0. The pull-back of f̂ for µ is

µ∗f̂ =
′∑

|I|=k

(
f̂I ◦ µ

)
dµI (2.1)

and since dµi = dµi (t, x) = xidt + tdxi (1 ≤ i ≤ N) we can compute the
factor dµI which appears in (2.1) in terms of the dt, dxi :

If I = (i1, i2, . . . , ik) and 1 ≤ i1 < i2 < . . . < ik ≤ N

then dµI =
k∑
ν=1

(−1)ν−1 xiν t
k−1dt ∧ dxI,îν + tkdxI =

dt ∧
k∑
ν=1

(−1)ν−1 xiν t
k−1dxI,îν + tkdxI .

(2.2)

Next, by replacing the terms dµI which appear in (2.1) by the second

member of (2.2) we get (note that f̂I (ϕ, µ (t, x)) = f̂I (ϕ, tx) since µ (t, x) =
tx):

µ∗f̂ (ϕ, t, x) =

=
∑′
|I|=k

(
f̂I (ϕ, µ (t, x))

){
dt ∧

k∑
ν=1

(−1)ν−1 xiν t
k−1dxI,̂iν + tkdxI

}
dt ∧ f̂0 (ϕ, t, x) + ĝ (ϕ, t, x) where

ĝ = ĝ (ϕ, t, x) :=
∑′
|I|=k

f̂I (ϕ, tx) tkdxI ∈ EM
[
I×Ω; Ak

N

]
and (in fact, a more correct notation would be f̂0

(k) instead of f̂0).

f̂0 = f̂0 (ϕ, t, x) :=

:=
∑′
|I|=k

k∑
ν=1

(−1)ν−1 · f̂I (ϕ, tx)xiν t
k−1dxI,̂iν ∈ EM

[
I×Ω; Ak−1

N

]
(2.3)

Now, note that the differential forms we are working with are completely
general (except the assumption df = 0 in Ω, which don’t appear in the proof
of (2.3′) below). Hence from (2.3) it follows that
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The Poincaré Generalized Lemma 247

∀ f̂ ∈ EM
[
Ω; Ak

N

]
∃ ĝ ∈ EM

[
I×Ω; Ak

N

]
and

∃ f̂0 ∈ EM
[
I× Ω;Ak−1

N

]
such that µ∗f̂ = ĝ + dt ∧ f̂0.

(2.3′)

It is worthwhile to note that in the definitions of ĝ and f̂0 there appear
the claims:

ĝ ∈ EM
[
I× Ω,Ak

N

]
and f̂0 ∈ EM

[
I× Ω; Ak−1

N

]
(2.3′′)

whose proofs, which follow obviously from the moderation of the functions

f̂I (|I| = k) , are trivial. Moreover, it is easily seen that the forms ĝ and

f̂0 of (2.3
′
) there are unique (that is, determined from f̂). Indeed, these

claims follow from the computations in (2.3) and (2.2) which lead to the

expression of µ∗f̂ which appears in (2.3
′
).

Next, from the uniqueness of ĝ and f̂0 in (2.3
′
), it follows that we can

define the linear operator below:

T = Tk : f̂ ∈ EM
[
Ω; Ak

N

]
7−→

∫ 1

0

f̂0
(k) ∈ EM

[
Ω; Ak−1

N

]
(2.4)

for every k = 1, 2, . . . , N (and T = Tn+1 = 0, in this section of this proof,

the index k in Tk or in f̂0
(k) can be of some help).

We are going to prove that

Tk+1

(
df̂
)

+ d
(
Tkf̂

)
= f̂ ∀k = 1, 2, . . . , N, ∀f̂ ∈ EM

[
Ω; Ak−1

N

]
. (2.5)

Indeed, from differentiation in (2.3
′
) and the identity d

(
µ∗f̂

)
= µ∗df̂

we get

µ∗df̂ = dxĝ +
∂ĝ

∂t
dt+ d

(
dt ∧ f̂0

)
and since (see [4, Prop.19.7,p.147]) d

(
dt ∧ f̂0

)
= −dt ∧ dxf̂0 we have

µ∗df̂ = dxĝ + dt ∧
(
−dxf 0 +

∂ĝ

∂t

)
. (2.6)

Now it is clear that (2.6) is a representation of µ∗df of the kind
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A+ dt ∧B

which is formally equal to the identity (2.3
′
) and since this representation

is unique, from the definition of T = Tk we get

Tk

(
df̂
)

=

∫ 1

0

(
−dxf̂0 +

∂ĝ

∂t

)
. (2.7)

From (1.1) in Lemma 1 we have

∫ 1

0

− dxf̂0 = −d

∫ 1

0

f̂0

 ∗
= −d

(
T f̂
)

[(∗) : Indeed,
∫ 1

0

f̂0 = T f̂ from the definition of T = Tk] which implies-

from (2.7) :

T
(
df̂
)

= −d
(
T f̂
)

+

∫ 1

0

∂ĝ

∂t
dt. (2.8)

From the definition of ĝ we have:

ĝ (ϕ, 1, x) = f̂ (ϕ, x) and ĝ (ϕ, 0, x) = 0

and therefore, from (2.8) we get

T
(
df̂
)

+ d
(
T f̂
)

= f̂
(
⇐⇒ Tk+1

(
df̂
)

+ d
(
Tkf̂

)
= f̂

)
(2.9)

which is an identity in EM
[
Ω;Ak

N

]
. Next, we will prove that (2.9) can be

extended to Gk (Ω) . More precisely we will prove that the operator (see
(2.4)):

T = Tk : EM [Ω; Ak
N ] −→ EM

[
Ω; Ak−1

N

]
induces in the quotient another operator

T ∗ = T ∗k : Gk (Ω) −→ Gk−1 (Ω)

such that the diagram below

São Paulo J.Math.Sci. 7, 2 (2013), 241–252
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EM
[
Ω;Ak

N

] T−→ EM
[
Ω; Ak−1

N

]
(2.10) π1 ↓ ↓ π2

Gk (Ω)
T ∗

−−− → Gk−1 (Ω)
commutes (π1 and π2 denote the canonical maps).

It is well known that the existence of a such T ∗ is equivalent to the
inclusion N

[
Ω,Ak

N

]
⊂ Ker (π2 ◦ T ) or

N
[
Ω; Ak

N

]
⊂
{
ĥ ∈ EM

[
Ω; Ak

N

]
| T
(
ĥ
)
∈ N

[
Ω; Ak−1

N

]}
. (2.11)

We will prove (2.11) . Fix f̂ ∈ N
[
Ω; Ak

N

]
arbitrary, then f̂ =

∑
|I|=k

f̂Idx
I ,

where f̂I ∈ N [Ω;R] for all I, which implies (N is an ideal of EM ) that the
function

(ϕ, t, x) ∈ A0 × (I×Ω) 7−→ (−1)ν−1 f̂I (ϕ, t, x)xiν t
k−1 ∈ R

belongs to N [I×Ω;R] for all I and ν. Hence

f̂0 ∈ N
[
I×Ω; Ak−1

N

]
and, as a consequence

T f̂ =

∫ 1

0

f̂0 ∈ N
[
Ω; Ak−1

N

]
which proves (2.11) and hence the existence and uniqueness of the oper-

ator T ∗ = T ∗k such that (2.10) commutes. Finally, we will prove that (2.9)

hold with T ∗ and f instead of T and f̂ respectively. From the commuta-
tivity of (2.10) we get

T ∗ (f) = cl
(
T f̂
)

(2.12)

and therefore

T ∗ (df) = cl
(
T
(
df̂
))

. (2.13)

Note that df̂ is a representative of df therefore we can write it as d̂f ,
that is
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df̂ = d̂f and d (cl (ν̂)) = cl (dν̂) (any ν) (2.14)

which implies (by (2.12) and (2.14)):

d (T ∗f) = d
(
cl
(
T f̂
))

= cl
(
d
(
T f̂
))

.

Hence

d (T ∗f) = cl
(
d
(
T f̂
))

. (2.15)

Now, from (2.13) and (2.15) we get

T ∗ (df) + d (T ∗f) = cl
(
T
(
df̂
))

+ cl
(
d
(
T f̂
))

(2.16)

and from (2.9) , the second member of (2.16) is equal to cl
(
f̂
)

= f, hence

from (2.16) it follows that (remember that T = Tk)

T ∗k+1 (df) + d(T ∗k f) = f. (2.17)

Now, it is enough to define u := T ∗k f ∈ Gk (Ω) and remark that since
df = 0 in Ω and T ∗k+1 is linear, from (2.17) we can conclude that du = f
in Ω. �

Next, we will present, as an application of PROP.2, a local existence
result for the ∂∂ operator. In what follows, Ω denotes an open subset of
Cn (n ∈ N∗ fixed) , p, q ∈ N, 0 ≤ p, q ≤ n and p + q > 0. We also set
G(0,0) (Ω) = G (Ω) . We don’t recall the definition of the spaces G(p,q) (Ω)

of the (p, q)-complex differential forms on Ω. If f ∈ G (Ω) and f̂ ∈ EM [Ω]

is a representative of f, then the conjugate f̂ of f̂ belongs to EM [Ω] and

obviously, if f̂ and f̂1are two representatives of f, then f̂ − f̂1 ∈ N [Ω] .

We denote by f the element of G (Ω) represented by f̂, which is called the
conjugate of f.

For a given

f =

′∑
|I|=p,|J |=q

fIJdz
I ∧ dzJ ∈ G(p,q) (Ω)

we have
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The Poincaré Generalized Lemma 251

f =

′∑
|I|=p,|J |=q

fIJdz
I ∧ dzJ ∈ G(q,p) (Ω) .

Clearly, by conjugation as in the classical case, all the existence results
for the ∂ operator remain valid for the ∂ operator. From this remark, from
Prop.2 and [3,Th.5] we get the following result:

Proposition 3. Let U be an open subset of Cn and g ∈ G(p,q) (U) such that
dg = 0 in U, where 1 ≤ p, q ≤ n. Then, for each a ∈ U there are an open
neighborhood W of a and v ∈ G(p−1,q−1) (W ) verifying

∂∂v = g in W.

Proof. The proof is easy and consists in the application of the Poincaré
Lemma for the operators d, ∂ and ∂. Fix a ∈ U arbitrary and consider
an open 0-start-shaped neighborhood N1 of a contained in U. Then, since
dg = 0 in U, from Prop.2 there exists h ∈ Gr−1 (N1) such that

dh = g in N1 (3.1)

where r := p+ q is the total degree of g. Now, we have

Gr−1 (N1) = ⊕
1≤l≤r

G(l−1,r−l) (N1) (3.2)

hence

h =
r∑
l=1

h(l−1,r−l) which h(l−1,r−l)G(l−1,r−l) (N1) ∀ l = 1, 2, . . . , r. (3.3)

Then we can conclude that in N1 we have (see (3.1)):

g = dh =
(
∂ + ∂

)
h = ∂h+ ∂h =

r∑
l=1

∂h(l−1,r−l) +
r∑
l=1

∂h(l−1,r−l),

which implies:

G(p,q) (N1) 3 g = dh = A+ b, where

A :=
r∑
l=1

∂h(l−1,r−l) and B :=
r∑
l=1

∂h(l−1,r−l).
(3.4)

São Paulo J.Math.Sci. 7, 2 (2013), 241–252



252 J. Aragona

Therefore, we can write the identity dh = A+B in (3.4) in the form

dh = ∂h(p−1,q) + ∂h(p,q−1) in N1 (3.4′)

and in N1 :

∂h(l−1,r−l) = 0 ∀ l 6= p

∂h(l−1,r−l) = 0 ∀ l 6= p+ 1.

Therefore

∂h(p,q−1) = ∂h(p−1,q) = 0 in N1. (3.5)

Finally, from [3,Th.5] there exists a bounded open set N2 verifying a ∈
N2 ⊂ U and there are u1, u2 ∈ G(p−1,q−1) (N2) such that

∂u1 = h(p,q−1) and ∂u2 = h(p−1,q) textin N2

which, by (3.4
′
), implies in W := N1 ∩N2 :

g = dh = ∂h(p−1,q) + ∂h(p,q−1) = ∂
(
∂u2

)
+ ∂ (∂u1) = ∂∂ (u2 − u1) .

This proves our result by setting

v := u2 − u1 ∈ G(p−1,q−1) (W ) .

�
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