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Abstract. In this note we prove the result: let 2 be a non void open
subset of RY and f a k-generalized differential form on Q. Moreover,
assume that (2 is star-shaped and that f is a closed form on 2. Then,
there is a (k — 1)-generalized differential form u on © whose differential
is f. This result is a part of what I call internal development of the
Colombeau theory.

Notation In what follows we will adhere to the following conventions:

I:=]0,1[CcR ; I:=[0,1] CR , N € N*is fixed and 2 is a non void
open subset of RY.

For every k£ € N such that 1 < k < N we denote by

Al =it (* (RY)R)
the R-vector space of all k-linear alternate forms on R"™ (i.e. its domain

is RVNx = x RY). We extend this definition to the case k = 0 by setting

A} = At (O (RY);R) =R

For a fixed k € N such that 1 < k < N, if I = (i1,...,4), with 1 <
1,12, ..,ix < N, we define I := {iy,i9,...,i;} and the order of I as being
the number |I| := k. We define

da! = dzi, N\... Ndx;,
and for each « such that 1 < o < k we set

dalte = dz;, /\d/:c,\lC AL Ndxg, =: /\dxiy.
v#o
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242 J. Aragona

Here the symbol ~ over dx;, indicates that it is omitted.
The symbol Y means that sommation is restricted to multi-indices

I = (i1,12,...,1) verifying 1 <i; <ig <...<ix < N.
It is well known that the sequence

Bk = (da:i/\.../\dxik)lgi1<m<ik§N (1)
is an R-basis of A?V and using some canonical isomorphisms B?V can be
considered a R-basis of G, () :=G (Q, Aﬂ“\,) which is defined in the sequel

[[2], Ex.7.2.1, (b) Real differential forms|. Also, we will need the following
spaces (see [2], section 7.2) where k > 1 :

Ak Ak _ Eu [ AR
Ent [QAN] N [Q,AN} and G, () := Nl
If k =0, we have A?V = R and hence
Em[QR]
Go (22) = NOLR] =G (Q).
If f= > 'frdx! € G, () we have fr € G () (= G(Q,R)) for each I. If

=k
f1 is any representative of fr then fr € Exr [ (= Enr [ R]) for every I. It
follows that

fi= Zlfjdm] €éu [Q;A?”V} (k>1)
\I|=k
is a representative of f.

Note that the unitary and commutative ring Ex/[I x ; R] is well defined
since I x ) is a quasi-regular set (see [1]). Therefore, we can consider the
Em [I x Q;R]-free module over Bf; (see (1)) that we will denote by

e [i x Q; A’fv} . 2)
An arbitrary element of £yf [I x €2, Aﬂ“\,] is of the kind

F=3 "Fr(pt,2)da (3)
)=k

where F; € Ep ﬁ X Q;]R] V I, Vy € Ag. Given F as in (3) we define

S&o Paulo J.Math.Sci. 7, 2 (2013), 241-252



The Poincaré Generalized Lemma 243

/1F:: 3 /lFl(ga,t,x)dt dz! (4)

0 |7|=k 0

/1d$F:d /1F . (5)

0 0

and it is easily seen that

Before proving (5) let recall that C;° (2) = C;° (€2;R) is the set of all k-
differential forms of class C* over Q. An arbitrary element of C;° (Q2) is of

the form
/ /
g=g@@) = gr(@de’ = grda'
\I|=k 1=k

with gr € C>*°(Q) V I. If U is an open subset of R? (where p € N* is
arbitrarily fixed), u € C* (U;Q) and

f: Z/f] (p,t,x) de! € & [I X Q,Alfv} ,
[7|=p

the pull-back by u of f, which we will denote by u*f, is defined by

prf = Z/(ffou)duf €C” (UsR).
=

Lemma 1. (4) = (5). More precisely, given F as in (3) (that is F =
S>'Fr (o, t,2) dzt) we have (5), that is

\I|=k
/ldxF:d /lF (1.1)

0 0
(hence (1.1) = (5) ) where we define

1 , 1
/F:: Z /F] (o, t,a)dt § da’ (1.2)

0 1=k "o
(hence (1.2) = (4)).
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Proof. Fix any F' € &y ﬁ x € A’f\,] as in (3), we will need the canonical
form of d,F which is ( for the sake of simplicity we omit the variables
¢, t,2):

!/

doF = ZZaFId Ndz' = ) Zaﬁgg dz®  (1.3)

[1|=k v= 1 |K|=k+1 | v,I

where 51[/{1 =0ifv eI :={i,... i}, where I = (i1,... i) with 1 <iy <
. < 1 < N or, conversely 551 is the signature of the permutation which
transforms vI := (v, i1, ...14) into the permutation K = (I1,l2,...,lk, lk+1)

of vI verifying

1<h<ly<...<lp<lps1 <N

Clearly, the second identity of (1.3) follows from writing d,F in the
canonical form

OFy
d.F K : 1.3/
- > s 1)
|K|=k+1
Computation of fld:cF :
0
Here we will use (4) and (1.3") obtaining

/

/1d”“’F: 2 /(ZKafw,tm)>dt dz! =

0 |K[=k+1 ("0

/

- Z quza /1FI (o, t,z)dt | pda®™ =

|K|=k+1 | vI 0

*ZZ

/FI o, t, ) dt Adz, Adz'.
[|=kv= 1

Therefore
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/dF ZZ@ /FI o,t,x)dt | dr, Adxl. (1.4)

|[I|=kv=1 0

Computation of d <f1F> :
0

Here we will differenciate (4) getting

/ Zd /FI (oot 2) dt | A da! (1.5)

0 |1|=k 0

and since clearly we have

N

1 1
d /F](%t,x)dt :Z ai /FI(go,t,x)dt dx,,
0

0 v=1

by inserting the second member of the above identity into the second mem-
ber of (1.5), we can conclude that

1 1
d /F =) aiy /Fl(go,t,x)dt dz, A dz’.
0

0 |7|=k

The above identity together (1.5) proves the result. O

The generalized Poincaré lemma is as follows

Proposition 2. Let Q be a star-shaped open subset of RN and

f= fo )dz! € Gy, (Q)

[|=K
such that df =0 in Q. Then there is u € Gp—1 () such that du = f in Q.

Proof. Clearly we can assume that xg = 0, that is 2 is O-star-shaped. Hence
the map

wi=(t,x) eIXxQr— p(t,z) :=tr €
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is well defined. R
Next, fix an arbitrary representative f = >' f1 (o, z) dz’ € Enr [ AR
=k

of f € G (Q) which is fixed such that df = 0. The pull-back of ]?for b is

W= 2/: (ff o u) dp’ (2.1)

=k

and since du; = du; (t,x) = z;dt + tdr; (1 <i < N) we can compute the
factor du! which appears in (2.1) in terms of the dt, dw; :

IfI:(il,iQ,...,ik) and 1 <1 <ig<...<ip, <N

—1)" Ly, th1dt A dati 4 iRl =
A v (2.2)

(=1)v 1 :c,-ytk_lda:]’i; + thdx!.

NIk

then du! =

1%

dt A

Nk

Il
—

1%

Next, by replacing the terms du! which appear in (2.1) by the second

member of (2.2) we get (note that fr (o, p(t,x)) = fr (¢, tz) since u (t,x) =
tx):

u*fA(scli,t,x) =
= 5 (Ffilpontta) {dt A S (L1 gy theldglRe ”kdf”l}
=k v=1
dt A fO(p,t,7) + G (o, t,x) where

G=0(pt,x) = Y fr (g, tx) thdz! € Enr [IxQ; AR
|I|=k

and (in fact, a more correct notation would be ]/”Pk) instead of J/”D)
k P=Ppta) =
= Z/ > (—1)”*1 . f[ (p,tx) xiutk_ldxﬁ” c &y [IXQ;A’]“\,_l}
[ |=kv=1

(2.3)

Now, note that the differential forms we are working with are completely
general (except the assumption df = 0 in 2, which don’t appear in the proof
of (2.3') below). Hence from (2.3) it follows that
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V fe&n[AL] 3G€&n IxAL]  and

-~ 2.3
aﬁ)egM[IxQAk 1} such that i f =g+ dt A V. (2.3)

It is worthwhile to note that in the definitions of g and ]?0 there appear
the claims:

Gelu [I X Q,AM and f° € &y [1 % Q Aﬁv—l] (2.3")

whose proofs, which follow obviously from the moderation of the functions
fr (JI| = k), are trivial. Moreover, it is easily seen that the forms g and

]a) of (2.3') there are unique (that is, determined from f) Indeed, these
claims follow from the computations in (2.3) and (2.2) which lead to the

expression of ,u*fwhich appears in (2.3).

Next, from the uniqueness of § and f° in (2.3), it follows that we can
define the linear operator below:

1
T=T,:f€&y Q Ak / 0, € gM A’;V—l} (2.4)
0
for every k =1,2,...,N (and T = T,,+1 = 0, in this section of this proof,
the index k in T} or in J/”Pk) can be of some help).

We are going to prove that

Tyir (df) +d (ka) — FVk=1,2,...,N, V] € &y [Q; A’;‘V—l] . (25)

Indeed, from differentiation in (2.3/) and the identity d (u*f) = u*df
we get

w17, ~, 09 20
udf_d$g+§dt+d<dmf)

and since (see [4, Prop.19.7,p.147]) d (dt A fb> = —dt A dx]/”b we have

~ =R oaq
prdf = dug + dt A <—dxf 04 ai) . (2.6)

Now it is clear that (2.6) is a representation of p*df of the kind
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A+dtNB

which is formally equal to the identity (2.3") and since this representation
is unique, from the definition of T'= T}, we get

T (df) - /1 <—d$fb + ?5) . (2.7)
0

From (1.1) in Lemma 1 we have

[ ap=-al [7)za(rf)

0 0
[(+) : Indeed, ['f° = TF from the definition of T = T},] which implies-
0
from (2.7) :

T (df) —d (Tf) + /?ﬁdt. (2.8)

0

From the definition of § we have:

~

g(p,1,z) = f(p,z) and g (¢,0,2) =0
and therefore, from (2.8) we get

A~

T(df)+d(17)=F (<= Ton(af) +a(nF)=F) (29

which is an identity in Ens [ Am . Next, we will prove that (2.9) can be
extended to Gy (2) . More precisely we will prove that the operator (see

(2.4)):
T =T : En A% — En [Q; A?V—I]

induces in the quotient another operator

T = T,: : Qk (Q) — gk,1 (Q)
such that the diagram below
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Ea [0 AK] D e [Q;A’j\fl}
(2.10) m 1 m

*

T
Gr () ——— = Gr_1 ()
commutes (7 and mo denote the canonical maps).

It is well known that the existence of a such T™ is equivalent to the
inclusion N [, AX] € Ker (mp0T) or

N [Q;AM c {ﬁ € &y [Q;Aﬁfv} T (ﬁ) eN [Q;A?V—l} } (2.11)

We will prove (2.11) . Fix ]/”\6 N [Q; A?V] arbitrary, then ]?z > ]?Id:L‘I,

=k

where f; € N'[Q;R] for all I, which implies (A is an ideal of £y/) that the
function

(p,t,2) € Ag x (IxQ) — (=1)" " fr (o, t, ) 2 t" 1 €R
belongs to N [Ix;R] for all I and v. Hence

PenN [IxQ;A’;;l}

and, as a consequence
N 1
Tf = / Pen oAk
0
which proves (2.11) and hence the existence and uniqueness of the oper-

ator T = Ty such that (2.10) commutes. Finally, we will prove that (2.9)

hold with 7™ and f instead of T" and ]? respectively. From the commuta-
tivity of (2.10) we get

T* (f) = c (Tf) (2.12)

and therefore

T* (df) = cl (T (df)) . (2.13)

Note that d]? is a representative of df therefore we can write it as (Zf ,
that is
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df = df and d(cl (D)) = cl (dD) (any v) (2.14)
which implies (by (2.12) and (2.14)):

d(T*f) = d (cz (Tf)) —d (d (Tf)) :

Hence

d(T*f) = cl (d (Tf)) . (2.15)
Now, from (2.13) and (2.15) we get

T (df) + d(T"f) = el (T (df ) ) + el (a(77)) (2.16)

and from (2.9), the second member of (2.16) is equal to ¢l (]?) = f, hence
from (2.16) it follows that (remember that T' = T},)

Ti (df) + AT f) = f. (2.17)

Now, it is enough to define w := T} f € G (©2) and remark that since
df =0 in Q and T}, is linear, from (2.17) we can conclude that du = f
in Q. O

Next, we will present, as an application of PROP.2, a local existence
result for the 90 operator. In what follows, 2 denotes an open subset of
C"  (neN*fixed),p,g € N, 0 < p,g < nand p+ q > 0. We also set
G(0,0) (2) = G(Q2). We don’t recall the definition of the spaces G, 4) (2)

of the (p, g)-complex differential forms on Q. If f € G () and feénQl
is a representative of f, then the conjugate fof fbelongis to En [Q] and
obviously, if f and J/"\lare two representatives of f, then ]?— ]?1 e N[Q].

We denote by f the element of G () represented by f, which is called the
conjugate of f.

For a given

f= Y fudd ndz' € Gy (Q)
[|=p,|J]=q
we have
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f= Y fudz ndz € G,y (Q).

[I|=p,|J|=q

Clearly, by conjugation as in the classical case, all the existence results
for the 9 operator remain valid for the 0 operator. From this remark, from
Prop.2 and [3,Th.5] we get the following result:

Proposition 3. Let U be an open subset of C"* and g € G, ) (U) such that
dg =0 in U, where 1 < p,q < n. Then, for each a € U there are an open
neighborhood W of a and v € G(,_1 4—1) (W) verifying

00v =g in W.

Proof. The proof is easy and consists in the application of the Poincaré

Lemma for the operators d,d and 0. Fix a € U arbitrary and consider
an open 0-start-shaped neighborhood Nj of a contained in U. Then, since
dg = 0 in U, from Prop.2 there exists h € G,_1 (N7) such that

dh =g in N; (3.1)
where 1 := p + ¢ is the total degree of g. Now, we have

Gro1(N1) = @ Gauo1,—1) (N1) (3.2)
1<I<r
hence

h = hq_1,—1 which hg_1,_ Gy 1,1 (N1) VI=1,2,...,r. (3.3)
=1

Then we can conclude that in N7 we have (see (3.1)):

g=dh=0+0)h=0h+0h=> 0hq_1,_1y+ Y Ohg_1, 1,
=1 =1
which implies:

Gpg) (N1) 2 g=dh=A+b, where

A = lZ@h(l_l,r_l) and B := lzgh(l—l,'l’—l)' <34)
=1 =1
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Therefore, we can write the identity dh = A+ B in (3.4) in the form

dh = 8h(,_1 4y + Oh(pe—1) in N1 (3.4)
and in NV :
Ohq 1, y=0VI1#p
85(17177«,[) =0VI 75 p+ 1.
Therefore

8h(p’q,1) = gh(pfl,q) =0 in N1. (35)

Finally, from [3,Th.5] there exists a bounded open set Ny verifying a €
No C U and there are uj, us € g(p_Lq_l) (N3) such that

8U1 = h(p,qfl) and 5“2 = h(

which, by (3.4'), implies in W := N; N Ny

p—1,q) textin Ny

g=dh = ah(p—l,q) + gh(p,q—l) =0 (511,2) + 0 (8u1) =90 (’LLQ — ul) .

This proves our result by setting

vi=1uz —u1 € Gpo1,4-1) (W)
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