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mechanism study of the hydroboration reaction of internal alkynes
catalyzed by Ag(I)-IMes and Cu(I)-IMes complexes. A detailed
analysis of the mechanism’s steps revealed that Cu(I)-IMes exhibits
superior efficiency, showing a more favorable energy pathway than
Ag(1)-IMes. The IGM method was crucial for quantifying
molecular interactions, highlighting essential differences in binding
forces between catalysts and substrates throughout the catalytic
steps. For Cu(I)-IMes, the migratory insertion step (TSI)
demonstrated a barrier 2.5 times lower than its Ag(I)-IMes
counterpart. Additionally, the protonation step (TS2) exhibited
lower energy for Cu(1)-IMes compared to Ag(I)-IMes, indicating a
more efficient formation of the desired f-product. The results also suggest that Cu(I)-IMes operates on a more efficient pathway,
with lower energy for the catalytic cycle. These findings, coupled with detailed analyses of molecular interactions using the IGM
method, provide an enhanced understanding of the reaction mechanism, highlighting the promising efficacy of Cu(I)-IMes as a
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catalyst in hydroboration reactions.
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Boron-containing molecules are essential from both academic
and industrial standpoints, finding extensive applications in
organic synthesis, biologically active agents, and functional
molecular systems.'~* Organoboron compounds have con-
sistently demonstrated their role as robust and reliable building
blocks, enabling a wide range of transformations in organic and
organometallic compounds. The application of transition
metals to catalyze the hydroboration reaction has increased
in recent years,’”'" which has been primarily attributed to
incorporating catalysts based on Earth-abundant metals,
thereby expanding the scope to encompass a broader range
of organic substrates.'” ™"

Over the past decade, significant interest has been drawn
toward the catalyzed hydroboration reaction, which serves as a
powerful and direct approach to reducing a wide range of
unsaturated compounds, including imines, nitriles, carbonyls,
alkenes, amides, and even carbon dioxide.”*™**

More specifically, the selective transformation of alkynes
into alkenes through transition metal-catalyzed hydroboration
has emerged as a particularly versatile and selective reaction
with the application of the resulting alkenyl organoboron
compounds in various fields, including organic chemistry,
polymers, and agrochemicals.”**’
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It is possible to find several experimental protocols for
transition metal-catalyzed hydroboration”®™** and transition
metal-free hydroboration®*™*” in the literature. Among coinage
metals, Cu(I)-catalyzed borylation reactions”®™** and Ag()-
catalyzed reactions”**~*’ have gained substantial attention in
recent years.

Yoshida and co-workers pioneered an innovative approach
to Ag-catalyzed alkyne hydroboration. They investigated the
catalytic hydroboration employing the Ag—NHC (N-hetero-
cyclic carbene) complex with alkynes, using B,Pin, [bis-
(pinacolato)diboron] and KOtBu in methanol (Scheme 1a).
The researchers achieved 85% yield of the hydroborated alkene
by using 1-phenyl-1-propyne as substrate and an NHC ligand
of the imidazole-2-ylidene type, 1,3-bis(2,4,6-trimethylphenyl)-
1,3-dihydro-2H-imidazole-2-ylidene (IMes), to obtain addition
at the B-position as the major product. However, when using
the ligand 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene
(IPr), the reaction did not proceed, indicating its low activity.
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Scheme 1. Hydroboration of Alkynes Catalyzed by Ag and Cu Complexes
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Interestingly, an impressive yield of 98% was obtained for the
same reaction employing a terminal alkyne in the presence of a
Cu-IMes catalyst, where, similarly to the Ag catalyst, the f-
product was also predominantly obtained.”

Recently, Zhang and collaborators reported the first study of
an alkyne hydroboration reaction using a Cu—NHC catalyst of
the thiazole type, specifically Cu(I)-thiazol-2-ylidenes (TPr).>"
They achieved a 90% yield of a trisubstituted vinylboronate
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through S-hydroboration with greater than 95:5 regio- and Z-
selectivity, using 1-phenyl-1-propyne as the substrate. Accord-
ing to the authors, the use of a thiazole ligand results in higher
reactivity compared to imidazole-class ligands like IPr. In this
context, a computational DFT study was conducted to
investigate the hydroboration reaction of a terminal alkyne,
addressing the different energies obtained for the same
reaction using IPr and TPr ligands. The energy profiles

https://doi.org/10.1021/acsorginorgau.5c00004
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Scheme 2. Plausible Catalytic Cycle of Copper- and Silver-Catalyzed Hydroboration of Alkynes”
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(1) insertion of the alkyne into the catalytic active species (Ag-CAT and Cu-CAT) through transition state TSI, affording intermediate (Int2).
(II) protonation via the addition of MeOH at TS2, yielding hydroboration product. (III) 6-bond metathesis between the metal alkoxide and
diboron, B,(pin),, regenerating the active catalytic species and yielding MeO—B(pin) as a reaction byproduct (TS3)

revealed that the IPr ligand requires higher energies in the
catalytic cycle, which corroborates with the experimental data
indicating its low reactivity (Scheme 1b).”"

Therefore, the mechanistic understanding of these reactions,
especially the factors underlying regioselectivity, is of para-
mount importance and a crucial step in the further develop-
ment of such reactions for the borylative transformations of 7-
systems. While some computational studies on alkyne
hydroboration using a monoboron source (H-Bpin) are
documented,>*” 275 to the best of our knowledge,
mechanistic studies for such reactions employing a diboron
source (B,pin,) remain limited.

Herein, we systematically employed theoretical calculations
to investigate the hydroboration reaction of an internal alkyne,
catalyzed by Ag(I)-IMes. Our efforts were dedicated to shed
light on the experimental regioselectivity described by Yoshida
and colleagues. To expand the scope of our theoretical
investigation of the same reaction using an identical substrate,
this time employing a Cu-IMes catalyst, we integrated the
experimental insights from Yoshida’s research, along with the
experimental and theoretical data provided by Zhang et al.”'
We carried out a comparative effect between Ag and Cu-
(IMes) catalysts using precise energies obtained for the
catalytic cycle profiles of each catalyst. Furthermore, a
qualitative and quantitative analysis of intermolecular inter-
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actions based on the independent gradient model (IGM)>’
method is presented to support the energy data and to
investigate the nature of regioselectivity. Thus, this study
provides a comprehensive theoretical interpretation of the
hydroboration reaction employing B,pin,, potentially serving
as a valuable guide for upcoming related experimental work.

All density functional calculations were carried out in the Gaussian 09
(Rev. D.01) suite of quantum chemical programs.”® We performed
geometry optimizations and frequency calculations in the solvent
phase using the hybrid density functional B3LYP*~®" with semi-
empirical D34 dispersion corrections (B3LYP-D3), incorporating
solvent effects via the continuum solvation model SMD®* for toluene.
The SDD (Stuttgart/Dresden) quasi-relativistic pseudopotential®
and associated basis set were applied to the metal atoms (Ag or Cu),
while the 6-31G(d,p)66 basis set described all other atoms. Vibrational
frequency calculations were performed to determine that the local
minima have zero imaginary frequencies and the transition state (TS)
structures have exactly one imaginary frequency corresponding to the
desired eigenmode. TS structures were also verified by intrinsic
reaction coordinate (IRC) etnetl}/sis.67’68 To improve accuracy,
energies were also computed by applying the domain-based local
pair natural orbital coupled-cluster theory, including singles, doubles
and “semi-canonical” Perturbative triples approximation, known as
DLPNO-CCSD(T0),””"® together with the def2-TZVP’' atomic

https://doi.org/10.1021/acsorginorgau.5c00004
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Figure 1. Gibbs free energy diagram (in keal/mol) for the silver-catalyzed hydroboration of the alkyne 1. Pathway « is shown in red, while pathway

B is shown in green.

basis set and matching auxiliary basis sets. Predefined thresholds,
including NormalPNO, were requested in the ORCA 4.2 program.72
Free energies reported in the text refer to electronic energies obtained
with DLPNO—CCSD(TO0)/def2-TZVP, which were corrected by free
energy contributions at 298.15 K and solvent contributions at 1 mol-
L~!' obtained with DFT computations
[AGaog.15k, smp, pLeNO-CCsp(To) -

The recently introduced topological analysis based on the electron
density p (ED) descriptor g™ interaction score””* and intrinsic
bond strength index (IBSI) index”® were used in the corresponding
transition state geometries to identify and quantify molecular
interactions. Similarly to the noncovalent interaction analysis (NCI)
approach, the independent gradient model (IGM) approach®’
provides an intuitive spatial map of local repulsive, nonbonding,
and attractive interactions materialized by isosurface density gradients.
However, unlike NCI, the IGM approach can quantify the interaction
between two fragments through descriptor, 5gj"‘er.76 Additionally, it
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provides a score that internally probes the strength of a given pair of
atoms in a molecular situation, IGM—5gPair, through the IBSI. The
resulting g isosurfaces, representing the interaction regions, are
colored according to the ED value using the sign of the second
eigenvalue of the ED Hessian (4,). A blue—green—red color code is
then used, as follows: blue for strongly attractive, green for van der
Waals, and red for strongly repulsive interactions.

We also investigated the origin of regioselectivity in the Cu- and
Ag-catalyzed systems. For this and also to support the energy data, we
performed bond strength analysis based on the IBSI obtained by IGM
approach. The IGMPlot code®” with quantum mechanical electron
density (B3LYP-D3/def2-TZVP) was applied for bond strength
analysis based on the IBSI by IGM approach. The qg = IVp'™|/IVpl
descriptor, with Vp'®™ being the upper limit of the Vp for the ED
gradient, is used in the IGMplot to color points in the 5g(p) plots.
The 3D isosurface representations were generated using the VMD

https://doi.org/10.1021/acsorginorgau.5c00004
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Figure 2. Relative Gibbs free energies for a and f TSs in the migratory insertion and protonation steps of the Ag-catalyzed mechanism.

software.”” Molecular structures were prepared using CYLView

(http: // www.cylview.org).78

A brief general description of the computational methods is
included in the Supporting Information, as suggested by one of the
reviewers.

Inspired by Yoshida’s experimental investigations,”” we have
proposed a plausible mechanism for hydroboration of alkynes
catalyzed by Ag. We extend the same mechanistic framework
to the analogous reaction catalyzed by Cu. As illustrated in
Scheme 2, the initial step (I) involves insertion of the alkyne
into the catalytic active species (Ag-CAT and Cu-CAT)
through transition state TS1, affording intermediate (Int2).
This intermediate is subsequently protonated via the addition
of MeOH at TS2, yielding hydroboration product. The
protonation of Int2 then yields the hydroboration products
through an elimination process (II). In these two primary
stages, two distinct pathways are conceivable, dictating the
regioselectivity of the reaction, either positioning the phenyl
group on the same carbon as the B(pin) moiety, denoted as
the a-position, or on the adjacent carbon, designated as the f-
position. The concluding step (III) encompasses the o-bond
metathesis between the metal alkoxide and diboron, B,(pin),,
regenerating the active catalytic species and yielding MeO—
B(pin) as a reaction byproduct (TS3).
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Despite the previous experimental exploration of Ag and Cu-
catalyzed hydroboration reactions with internal alkynes, no
computational investigation has been reported. Thus, we
calculated the catalytic cycles using DFT to elucidate the
mechanisms and understand the origin of the selectivity. The
catalytic cycles of both Ag and Cu were modeled based on
Yoshida’s proposal.50 Thus, we considered elaborate mecha-
nisms within the closed-shell singlet state for Ag (I) and Cu
(I), with the catalytic cycle originating from the active CAT.

We performed a study to discern the relative efficacy of Ag
and Cu catalysts in internal alkyne hydroboration. This
investigation sought to determine which catalyst demonstrates
superior performance. Toward this end, we leveraged energy
data obtained through quantum calculations and supplemented
our analysis with quantitative insights derived from the IGM
approach, which characterizes the strength of molecular
interaction.

3.2.1. Reaction Mechanism. As shown in Figure 1, the
Ag(I) catalyst (Ag-CAT) and the substrate, 1-phenyl-1-
propyne (1), gradually attracted each other to form the Ag-
Intl adduct. However, this first step produces two possible
complexes as intermediates. The first possibility is the insertion
at the a-position, denoted as Ag-Intl-a. The alkyne triple
bond at the a-position located near the Ag(I) center is
activated, and the C—B and C—Ag bonds facilitate a concerted
migratory insertion through the transition state Ag-TSl-a,
associated with a barrier of 26.5 kcal/mol and resulting in the
formation of the Ag-Int2-a intermediate. The second

https://doi.org/10.1021/acsorginorgau.5c00004
ACS Org. Inorg. Au 2025, 5, 181-193
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possibility refers to the f-position insertion (Ag-Int1-f). The
computational results indicate that Ag-TS1-f displays lower
energy levels with a barrier of 21.1 and AG* = 28.2 kcal/mol.
Consequently, Ag-TS1-f is 6.3 kcal/mol more stable than its
a-position counterpart (Figure 2). Subsequently, the proto-
nation step takes place through the addition of methanol
across the borylalkenyl M—C bond. As evidenced by the
energy profile in Figure 1, protonation of TS2-f is more
favorable than that of Ag-TS2-a (Figure 2). The Gibbs free
energy of the favored Ag-TS2-f leads to the experimentally
observed major hydroboration product (product-3).”° In the
favored transition states (Ag-TS1-f# and Ag-TS2-f), the
phenyl group positions away from the B(pin), on the adjacent
carbon, while in the disfavored TSs, it is on the same carbon
bearing the bulky B(pin) ligand. The calculations suggest that
higher energies are due to steric hindrance. Moreover, the
elimination step dictates the stereoselectivity. These results
corroborate the experimental observation, which predom-
inantly yields the f-product.

Finally, catalyst regeneration occurs through a four-
membered transition state, Ag-TS3, with an activation free
energy of 7.1 kcal/mol. The mechanism proceeds in a
concerted regime, yielding MeO—B(pin) as a byproduct and
effectively regenerating the active catalytic species, Ag-CAT.

3.2.2. Origins of Regioselectivity. The initial two steps
of the reaction mechanism are directly involved with the a/p-
regioselectivity (Figure 3). For TSI, it is noteworthy that
although the distance between Ag and B atoms varies by only
0.01 A between the a- and f-positions, the bond strength
between these atoms favors TS1-a (IBSI = 0.229) over TS1-f
(IBSI = 0.221). This distinction is also reflected in the subtle
change in the isosurfaces, with TS1-a predominantly appearing
in blue. As for the C—B bond, the shorter bond distance in
TS1-f (2.18 A) results in a higher bond strength (IBSI =
0.191) compared to TS1-a (IBSI = 0.176 exhibits indices
following the increased stabilization of the transition state with
the breaking of the Ag—B bond and the formation of the C,—B
bond. In the protonation step, the interactions involving the
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breaking of the Ag—C,. The stronger bond between Ag—O,
with IBSI = 0.123 and the lower IBSI index for the Ag—C,
bond (IBSI = 0.129 exhibits a stronger bond (characterized by
more attractive interactions) between Ag and C, atoms (IBSI
= 0.150), rendering the cleavage of this bond more challenging
than the f-regioisomer.

These findings are aligned with the bond distances and
energies determined for each transition state.

3.3.1. Reaction Mechanism. The first step involves the
migratory insertion of the active specie (Cu-CAT) into the
alkyne triple bond, 1-phenyl-1-propyne (1), leading to the
formation of the Cu-Int2 adduct (Figure 4). The barrier for
this step is 11.2 kcal/mol for Cu-TS1-a and 8.3 kcal/mol for
Cu-TS1-f. Consequently, Cu-TS1-f# presents a distinct
stability advantage of AAG* = 3.9 kcal/mol (Figure 5).

The concept distinguishing between the a- and S-positions
remains consistent with the explanation provided in Section
3.2. The protonation step occurs through methanol addition
via transition state TS2, associated with a barrier of 16.5 kcal/
mol for a-protonation and 15.5 for f-protonation, Figure 4.
The thermodynamic energies shows that protonation via Cu-
TS2-f is more favorable than protonation via Cu-TS2-a,
AAG* = 7.2 kecal/mol (Figure 5).

The calculations with copper indicate that higher energies
result from the same steric hindrance observed for Ag analogs
and that the elimination step dictates regioselectivity, mainly
producing the p-product. These findings corroborate earlier
computational studies on the hydroboration of terminal and
internal alkynes, which showed the impact of steric effects on
the regioselectivity of hydroboration reactions favoring p-
product formation.”' The tendency is also observed for
catalysts containing other metals.”

Next, catalyst regeneration takes place through addition of
B,(pin),, generating a four-membered transition state, Cu-TS3
with an activation free energy of 4.6 kcal/mol. This process
operates in a concerted manner, in which formation and
breaking of bonds occur simultaneously, yielding the MeO—
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B(pin) species as a byproduct and restoring the active catalytic
species, Cu-CAT. Additionally, the results are compelling
evidence that the catalytic cycle for the hydroboration reaction
of internal alkynes is exergonic, with an overall AG of —78.6
kcal/mol. The elimination step governs stereoselectivity.”’

3.3.2. Origins of Regioselectivity. As depicted in Figure
6a, the bond distance between C1 and Cu atoms is consistent
at 1.97 A for both transition states. However, the interaction in
TS1-f is slightly stronger (IBSI = 0.367), resulting in lower
energy than TS2-a by 3.9 kcal/mol.

For the protonation step (Figure 6b), we observe that the
bond strength between H and C1 atoms is higher in TS2-8
(0.334 versus 0.329). This observation aligns with the energy
data obtained from our quantum calculations, indicating that
the f-position of the alkene is more accessible. Consistently,
the bond between O and H atoms in methanol exhibits a lower
covalent character for TS2-f (IBSI = 0.688), requiring less
energy to break compared to the a-position (IBSI = 0.705). As
a result, we observe a stronger interaction between Cu and O
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atoms in TS2-f (IBSI = 0.165), in an energetically more
favorable pathway than its a-position counterpart.

After providing a comprehensive description of the mecha-
nisms and effects of regioselectivity in the hydroboration
reaction of 1-phenyl-1-propyne catalyzed by Ag- and Cu-
(IMes), we present a recent approach that highlights the main
differences between the catalysts studied in this work. Here, we
will consider only the B-position geometries, which exhibit
pathways of lower energy, as explained in Sections 2.2.1 and
3.3.1. Figure 7 shows a comparative overview of the energy
profiles for the reaction under investigation. We can observe
that, while the Ag-catalyzed reaction follows a plausible
pathway, it is noteworthy that the reaction path for Cu
catalysis follows a lower energy route.

For the Ag (IMes)-catalyzed reaction, the highest energy
barrier is 21.1 kcal/mol and occurs in the migratory insertion
step between Ag-TS1 and Ag-Intl. In contrast, for the Cu-
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catalyzed reaction, the barrier associated with the same step is
only 8.3 kcal/mol, 2.5 times lower than its Ag analog. In the
protonation step, even though the energy of Cu-TS2 is slightly
higher than Ag-TS2, the barrier associated with this step favors
the elimination of the alkene with IMes-Cu by 3.2 kcal/mol.
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Thus, the mechanism for the 1-phenyl-1-propyne reaction in
the presence of Cu-IMes catalyst described here follows a more
favorable energy pathway than the Ag-IMes catalyst. Despite
using a different substrate, the energy obtained for the

protonation step followed by f-elimination is similar to the
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Table 1. Inter-fragment Analysis.”

8" (a.u)
Score Ag Cu
[1] 2.269 2.297
[1a] 0.9597 0.9438
[1b] 1.3090 1.3530
[2] 0.6429 0.3841
[3] 0.1074 0.3053 — -

“FRAG]1:1-phenyl-1-propyne. "FRAG2: catalyst with M = Ag or Cu. “IGM scores for TS1 using QM treatment. [1] represents full [1a] + [1b];
[1a] non-bonding interaction (4, > 0); [1b] bonding interaction (1, < 0); [2] weak interactions; [3] strong interactions (covalent).

barriers associated with using a highly efficient Cu-(TPr)
catalyst.”’

In order to clarify the role of intermolecular interactions
involved in TS1, we performed an analysis of noncovalent
interactions by using the local IGM-5g™*" descriptor. The
molecular fragments, as well as the strength of the
intermolecular interactions are described in Table 1.

After establishing the effects governing selectivity, we focus
on the f-position to analyze the interactions involving silver
and copper catalysts. Therefore, we chose to assess the
interactions involved in the highest energy transition state
(TS1), which includes the alkynyl moiety and the catalyst.

The 5g™¢ [1] score corresponds to the addition of all
interactions between fragments (0 < 4, < 0). Accordingly, we
observe that the Cu-catalyst exhibits a lower repulsive

interaction ([1a] 0.9438) and a stronger attractive
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interaction ([1b] = 1.3530) compared to the Ag-catalyst,
resulting in a higher g™ [1] (2.297).

Focusing on attractive interactions (4, < 0), we observe that
the interaction between the alkynyl group and the active
catalytic species has a more pronounced covalent character for
the Cu-(IMes) ([3] = 0.3053), which is nearly three times
greater than the same interaction for the Ag-(IMes) ([3] =
0.1074). This result corroborates the greater stabilization of
TS1-Cu, which exhibits an energy value that is more than 10
kecal/mol lower than that of TS1-Ag (16.3 versus 28.2 kcal/
mol).

It is worth noting that the scores quantifying only attractive
interactions (4, < 0) are extracted from the 2D-plot signature,
(Figures 8a and 9a). It is clear that Cu-IMes exhibits stronger
interactions, particularly between the metal and C1 atoms
when compared to the same Ag-catalyst. The isosurfaces reflect
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of theory.

the values, showing the highest density for the Cu—Cl1
interaction (Figures 8b and 9b).

Therefore, the results based on DFT calculations and
interaction analyses using the IGM-approach indicate that the
Cu-catalyst demonstrates higher catalytic efficiency compared
to the Ag-catalyst for the hydroboration reaction of 1-phenyl-1-
propyne in the presence of methanol and B,(pin),. The z-
backdonation effect metal—ligand is closely associated with the
observations made here, leading us to conclude that electronic
effects are responsible for the energy differences obtained for
the Ag and Cu catalysts, as shown by Nolan et al.”’ In their
study, the authors described the M-Cc,pene bond in M-NHC
complexes as a coordination bond formed by the interaction
between the lone pair of electrons on the carbon atom in the
heterocyclic carbene and the empty orbital of the metal.
Although the lone pair on the carbon atom of the NHC acts as
a strong o-donor, enabling the formation of stable metal- NHC
complexes with most transition metals, the weak z-back-
donation ability of silver, compared to other transition metals,
results in a weaker Ag—C,pene bond than typically observed in
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M-Ccypene bonds of other metal-NHC complexes, such as
those involving Cu. This difference is partly attributed to bond
length, as the Ag—Cc,pene bond is longer than M-Cg,pene
bonds in comparable metal- NHC complexes, thereby reducing
the Lewis acidity of Ag(I).79

The insights presented herein have the potential to furnish
valuable guidance to experimental research groups employing
transition metal catalysts in exploration boron incorporation
reactions within unsaturated substrates.

In summary, this study has provided a detailed theoretical
investigation into the hydroboration reaction of internal
alkynes, catalyzed by both Ag(I)-IMes and Cu(I)-IMes
complexes. Through DFT calculations, we have clarified the
reaction mechanisms, origins of regioselectivity, and the
comparative effectiveness of Ag and Cu catalysts. The
hydroboration process proceeds through a multistep catalytic
cycle, in which the initial insertion of the alkyne into the M—B
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bond and subsequent protonation and elimination steps are
crucial in determining the reaction’s regioselectivity.

Both Ag and Cu catalysts favor the formation of S-products
due to lower energy barriers and more stable intermediates at
the p-position, corroborated by experimental data. The
regioselectivity is primarily governed by steric effects, as the
a-position experiences higher energy barriers during the
insertion and elimination steps. IGM analysis through the
IBSI index supports this finding. Additionally, Cu-IMes
catalysts exhibit lower energy pathways compared to Ag-
IMes catalysts, making them more efficient. The energy barrier
for the migratory insertion step is significantly lower for Cu
(8.3 kcal/mol) compared to Ag (21.1 kcal/mol), further
supporting the superior catalytic performance of Cu. The
weaker Lewis acidity of Ag reduces its interaction strength with
the substrate and limits its ability to stabilize key intermediates,
explaining the difference in efficiency.

Furthermore, noncovalent interaction analysis reveals that
Cu-catalysts have stronger covalent character interactions and
less repulsive forces than Ag-catalysts, accounting for the
greater stabilization and lower energy profiles of the Cu-
catalyzed reactions. Additionally, our findings align with
previous studies on copper-catalyzed borylation, which high-
light the important roles of steric bulk and Lewis acidity in
determining regioselectivity.*”®'

Ultimately, results herein provide crucial mechanistic
insights and quantitative data, which can serve as a guide for
future experimental efforts in the field of alkyne hydroboration,
particularly with regard to the optimization of catalytic
processes. Furthermore, the IGM study sheds light on the
strength of M—L interactions, thereby explaining the higher
efficiency of Cu catalysts over Ag.

The data underlying this study are available in the published
article and its Supporting Information.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsorginorgau.5c00004.
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