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ABSTRACT

Diamond hosts a variety of lattice defects, among which nitrogen-vacancy (NV) centers stand out due to their relevance in quantum photonics with optically
addressable qubits. Yet, the complex laser-material interactions governing its formation are not fully understood, and the influence of laser parameters on NV
generation still raises open questions. Here, we investigate the generation of NV centers using principal component analysis (PCA) and artificial neural networks
(ANNG5) as predictive tools based on femtosecond laser parameters. Experimental results from femtosecond laser micromachining of diamond provided the dataset for
our analysis. We employed PCA to reduce data dimensionality and uncover dominant experimental trends, while a multilayer perceptron model was trained to
predict NV center generation under simulated conditions. GridSearch optimization and Leave-One-Out cross-validation (LOOCV) ensured the best performance and
robustness of the ANN. Our results reveal that NV center generation is directly proportional to laser peak fluence and inversely proportional to pulse duration and
excitation wavelength. Notably, PCA and ANN modeling independently converged on consistent trends, reinforcing the reliability of the observed parameter-defect
relationships. This convergence supports the development of predictive frameworks for controlled color center generation in diamond with greater precision.

1. Introduction

Machine learning (ML) is a branch of computer science that explores
the ability of algorithms to learn and solve problems by mimicking
human intelligence [1]. Artificial neural networks (ANNs) are ML
models inspired by the architecture of biological neural systems, created
by simulating a network of artificial neurons. The way that ANNs “learn”
depends on the input data and can generally be classified into super-
vised, unsupervised, and semi-supervised learning [2]. In supervised
learning, the ANN adjusts its internal weights based on labeled examples
to minimize the error between predicted and actual outputs [3], while
unsupervised ANNSs, such as autoencoders, learn data patterns without
predefined labels [4]. Semi-supervised models combine both labeled
and unlabeled data to improve generalization in scenarios with limited
experimental information [5]. In this work, we employed a supervised
ANN model known as a multilayer perceptron. Its training process relies
on a backpropagation algorithm combined with an optimization method
to iteratively minimize a loss function, typically defined as the sum of
squared differences between predictions and targets [6-8]. These
properties make ANNs highly versatile and particularly suited for
modeling systems where multiple interdependent variables influence
the outcome.

Given their ability to handle complex tasks, ANNs have been applied
across a wide range of domains. In photonics, they are effective tools for

* Corresponding author.
E-mail address: crmendon@ifsc.usp.br (C.R. Mendonca).

https://doi.org/10.1016/j.optmat.2026.117917

accelerating the intricate design process of advanced photonic devices
and structures [9-11]. Previous studies have used ANNs to predict
optimal parameters, for instance, in laser microdrilling of titanium
nitride-alumina composites [12] and to model the relationship between
laser micromachining parameters and quality outcomes for AISI H13
hardened tool steel [13]. Additionally, they have been used to predict
the optimal machining parameters for generating the maximum groove
depth in tungsten-molybdenum high-speed steel [14], assist in the 3D
printing of microneedle-based devices [15], and help predict the
wettability of microtextured surfaces [16]. These studies highlight the
strength of ANNs in modeling and optimizing complex laser-based
fabrication processes, offering faster, cheaper, and more scalable ac-
cess to optimal conditions than would be feasible through experiments
alone.

Nitrogen-vacancy (NV) color center defects consist of a substitu-
tional nitrogen atom associated with a vacancy in a nearby lattice site in
diamond. Their long spin coherence times, combined with optical
addressability enabled by the interplay between optical and magnetic
resonance techniques, make the negatively charged NV~ centers strong
candidates for room-temperature quantum technologies [17-23]. To
this end, femtosecond laser micromachining offers a promising route for
the localized generation of such defects, which is an essential step to-
ward scalable quantum applications. However, the process remains
challenging to control, as defect formation depends on a combination of
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sample-specific aspects and interrelated laser parameters, such as peak
fluence, wavelength, and pulse duration. The sensitivity of the outcome
to slight variations, along with the high dimensionality of the parameter
space, makes it challenging to anticipate results or define optimal
fabrication parameters solely through experimental exploration.

Here, we applied ANNSs to predict the generation of NV centers in
diamond given specific microfabrication parameters. A Yb:KGW
femtosecond laser system was used to generate NV color centers in a
CVD diamond sample, providing the dataset for our computational
analysis. As a preliminary step before regression analysis, principal
component analysis (PCA) was performed to analyze the dataset struc-
ture, identify outliers, and reveal major trends among the variables. PCA
offers a more streamlined approach than traditional exploratory
methods because it transforms correlated variables into orthogonal
components that explain most of the variance. This dimensionality
reduction enables a quantitative visualization of key trends in 2-3 di-
mensions, which is particularly helpful when there are many predictors
relative to the sample size. Additionally, it reduces noise and the risk of
overfitting, as the first few principal components capture the primary
trends.

A multilayer perceptron regression model was optimized and trained
to predict the generation of laser-induced NV centers using the fabri-
cation parameters as inputs. Leave-One-Out cross-validation (LOOCV)
was employed to ensure robust generalization of the ML algorithm.
These tools independently demonstrated that NV center generation in-
creases with laser peak fluence and decreases with both pulse duration
and excitation wavelength. The combination of PCA for dimensionality
reduction and regression-based ANN proved to be a compelling meth-
odology for predictive modeling in laser-material interactions, reducing
the need for experimental trial-and-error approaches in identifying
optimal laser configuration.

2. Methodology
2.1. Dataset

We used a dataset comprising 75 experimental observations derived
from laser-generated NV centers in diamond. NV color centers were
produced via fs-laser processing of a CVD diamond sample purchased
from Element Six, with nitrogen and boron impurity of 0.1 and
0.05 ppm, respectively. The method relies on the generation of va-
cancies as a result of the fs-laser interaction, which can lead to the NV
centers formation these vacancies are located near nitrogen impurities
[18,24,25]. Such processing was performed using a Yb:KGW femto-
second laser system emitting pulses at 1030, 515, or 343 nm. A Pockels
cell-based pulse selector controlled the repetition rate from 100 Hz to
1 MHz and a built-in stretcher-compressor unit tuned the pulse duration
between 185 fs and 1 ps. A 40 x /0.65 NA microscope objective focused
the beam on the sample, which was mounted on a computer-controlled
three-axis motorized translation stage.

Areas of approximately 100 x 100 pm2 were laser-processed, under
different conditions, on the surface of the diamond sample using a
scanning speed of 10 pm/s. For each wavelength, 343, 515, and
1030 nm, the pulse duration ranged from 185 fs to 1 ps. The peak fluence
was varied from the minimum value required to induce any modification
in the material up to the maximum value preceding the prominent onset
of graphitization, that is, before the accumulation of residual lattice
damage. This procedure resulted in 75 distinct structures. After irradi-
ation, the sample was annealed at 680 °C to promote vacancy diffusion
(thereby increasing the probability of NV center generation) and remove
most of the amorphous carbon generated by the ablation process.
Chemical cleaning was subsequently performed using an acid mixture to
remove residual impurities from the CVD diamond processing. NV
centers were identified using confocal microscopy (Zeiss model LSM-
780) with 543 nm laser excitation, collecting the emission at
621-700 nm to capture NV~ fluorescence, whose zero-phonon line lies
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at 637 nm [26-28], and via ODMR (Optically Detected Magnetic
Resonance) measurements. Fig. 1 displays typical zero-field ODMR re-
sults, where the microwave frequency was swept around the 2.8 GHz
values with a 1 MHz step. The decrease in the signal around the
2850 MHz frequency further confirms the presence of the NV~ in the
microstructures — a characteristical NV~ behavior [29-31]. We quanti-
fied NV~ formation by measuring the bright red emission area as a
percentage of the irradiated region. More specifications regarding the
NV center generation can be found in Ref. [32]. Fig. 2 shows the
micromachined structures obtained at different laser fluences.

2.2. Principal components analysis

We employed PCA as an unsupervised data exploration to reveal
underlying patterns and relationships within the dataset. The primary
objectives were to reduce dimensionality while retaining the most
relevant variance, visualize the data distribution in a lower-dimensional
space, and identify potential clusters and outliers [33,34]. Unlike pre-
dictive modeling approaches, PCA does not infer causal relationships;
instead, it provides a comprehensive overview of data structure, aiding
in the interpretation of experimental trends.

Principal component analysis is most effective when variables
exhibit statistical dependence, as it seeks to transform correlated vari-
ables into a set of orthogonal principal components [33,35]. The cor-
relation matrix, shown in Fig. 3, displays the Pearson correlation
coefficients between all variables of the original dataset.

Bartlett's sphericity test was used to evaluate the suitability of the
dataset for PCA by testing whether the correlation matrix significantly
deviates from an identity matrix of the same dimension [36]. In this
case, a p-value of 4.4 x 107*® confirmed the viability of the dataset for
PCA application. Before building the PCA model, we standardized the
data using the Z-score transformation, as defined by

xij — fj

2= s (@9)]

in which x; is the original value of the j-th variable for the i-th
observation, X; is the mean of the j-th variable across all observations,
and s; is the standard deviation of the j-th variable. Each value was
adjusted by subtracting the mean and then scaling by the standard de-
viation [37]. This step is necessary to prevent the PCA model from being
disproportionately influenced by variables with larger numerical ranges.

We applied a cumulative variance threshold of 80 % to determine the
number of principal components to use in the PCA model. This threshold
represents a balance between capturing sufficient information and
maintaining model simplicity. It serves as a reliable retention criterion
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Fig. 1. — Zero-field ODMR measurement of the micromachined area at 515 nm.
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Fig. 2. — Confocal microscopy images of the micromachined structures on the surface of a CVD diamond sample. Micromachining was performed at 515 nm with
1000 fs pulses, using fluences of 0.79 J/cm? (A), 1.05 J/cm? (B), and 1.26 J/cm? (C).
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Fig. 3. Correlation matrix showing the pairwise relationships between the
experimental parameters used as input for PCA. Notably, fluence and wave-
length are strongly correlated (r = 0.84), while temporal width exhibits low
correlation with other variables.

to ensure the model's robustness in terms of cumulative variance,
considering the sample size. The PCA results were then analyzed using
score and loading plots. The score plot visualizes the distribution of the
new data points along the principal component axes, enabling the
identification of patterns and clusters. In contrast, the loading plot
represents the contribution of each original variable to the principal
components, highlighting the correlation between variables. Specif-
ically, an angle 6 < 90° indicates a positive correlation, 6 ~90° suggests
that the variables are independent, and 6 > 90° signifies a negative
correlation between variables [34,38].

2.3. Artificial neural network

As part of our ANN-based regression framework, we adopted a su-
pervised learning approach using the MLPRegressor (MLP) from the
scikit-learn library [39]. Laser fluence, wavelength, and pulse duration
were the predictor variables used by the MLP to predict the generation of
NV centers. Table 1 illustrates a portion of the experimental dataset used
to train and test the MLP model. We applied the StandardScaler to the
input variables to normalize the data and improve the convergence of
the model [40,41]. This pre-processing is an essential step, as it speeds
up computational calculations and improves accuracy [42,43]. Stand-
ardScaler standardized the data by using Eq. (1) [44]. No additional data
transformation techniques were applied, and the original variables

Table 1
— Reduced experimental dataset. Behavior of NV center area (%) as a function of
wavelength (nm), pulse duration (fs), and fluence (J/cm?).

Wavelength (nm) Pulse duration (fs) Fluence (J/cm?) NV area (%)

1030 216 0.47 0.5
1030 216 0.56 0.3
515 185 0.14 0.2
515 185 0.2 0.4
343 185 0.16 0.9
343 185 0.22 1.4
343 500 0.37 1.8

remained unchanged. Following standardization, the hyperparameters
of the MLP were tuned to refine its performance further.

The performance of artificial neural networks is strongly influenced
by the configuration of user-defined parameters [45,46]. They have
several adjustable hyperparameters that shape their architecture and
influence their effectiveness [47]. To identify the optimal configuration
for the MLP model, tuning was carried out using GridSearch in a train
set, which involves an exhaustive search within predefined limits for
each hyperparameter of the ANN. For this purpose, the dataset was
randomly split into 75 % for training and 25 % for testing, using the
train_test_split function with the random_state parameter set to 42 to
ensure reproducibility. Leave-One-Out (LOOCV) cross-validation was
used during hyperparameter tuning process to evaluate the model's
generalization capability. In LOOCV, each iteration selects a single
sample as the test set, while the remaining N-1 samples are used for
training, repeating this procedure for all N samples in the dataset. This
approach is particularly suitable for small datasets, as it maximizes the
use of available data and provides an unbiased estimate of model per-
formance [48,49]. The tuning process focused on optimizing the size of
the hidden layers, the activation function, the optimization algorithm
and the regularization parameter.

The configuration that yielded the best predictive performance in the
tuning process consisted of two hidden layers with 21 and 10 neurons,
respectively. The model employed the relu activation function, and the
'Ibfgs' solver, a quasi-Newton optimization algorithm well-suited for
small datasets. A regularization strength of 0.1, initial learning rate of
0.01, and a fixed random seed of 42 were used. The performance of the
best model was evaluated using the lowest mean absolute percentage
error (MAPE), a widely adopted metric known for its interpretability and
relevance in regression tasks [50,51]. These hyperparameters were then
used to train a final model on the entire training set, which was subse-
quently used to make predictions on the external test set. The global
predictive performance of the ANN was assessed using four commonly



M.N. Saraiva et al.

used regression metrics: mean squared error (MSE), mean absolute error
(MAE), MAPE, and the coefficient of determination (R?). All imple-
mentations were carried out in Python using the scikit-learn, NumPy,
and pandas libraries.

3. Results and discussion
3.1. Unsupervised ML analysis

Fig. 4 shows the cumulative variance for each principal component
(PC), indicating that the first two principal components account for 88 %
of the data's variability, with PC1 contributing the largest share at 58 %.

The loading plot, also known as cos2(0) plot, in Fig. 5 shows the
variable distribution in the new principal components space. Specif-
ically, the loading represents the Pearson correlation between the
principal components used and the original variables as given by

2
cos®(v;, PCy) = #, 2

> (In)*

n=1

where I represents the loading value for the j-th variable in the k-th

principal component and YF_; (ljn)2 the sum of the square of all the
variable loadings. Therefore, the greater the component load, the more
influence the variable has on that component [52,53]. In this case, the
graph can be used to confirm that the variables are well represented by
PC1 and PC2 and that no information is being lost in the other
components.

Fig. 5(A) demonstrates that the first two principal components
effectively capture the variance of all variables, whereas Fig. 5(B) in-
dicates that higher order components contribute negligibly. These re-
sults support the dimensionality reduction approach with minimal
information loss.

The NV area is mainly described by PC2. Based on its relative angular
orientation in the component space, a positive correlation is observed
with the ablation threshold fluence and the component, while a negative
correlation exists with the pulse duration. Additionally, there is no
correlation with the excitation wavelength. These findings suggest that
maximizing the NV center area depends on applying higher fluence and
shorter pulse duration, regardless of the wavelength used. This trend can
be experimentally observed in Fig. 2, which suggests that increasing the
peak laser fluence leads to a greater likelihood of defect formation. To
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Fig. 4. Cumulative variance explained by the principal components (PCs). The
first two PCs capture approximately 88.4 % of the total variance, surpassing the
80 % threshold. This indicates that the dataset's underlying structure can be
effectively represented in two dimensions with minimal information loss.
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further support these results, however, it is essential to analyze the
distribution of the observations. This relationship is illustrated in the
correlation biplot presented in Fig. 6, which provides a simultaneous
visualization of both variables and observations. Such representation
allows for the joint interpretation of their orientations in the score and
loading plots [33,54].

Each point in the biplot corresponds to an observation from the
original dataset. To help visualization of data clustering, a 95 % confi-
dence ellipse was plotted. The data related to 1030, 515, and 343 nm are
represented in red, green, and blue colors, respectively.

All the observations are primarily distributed along the PC1 axes,
indicating effective clustering for the three excitation wavelengths,
although 1030 nm shows the highest data dispersion. The overlap be-
tween the 343 and 515 nm groups suggests a significant similarity in
their data distribution. The biplot also allows for the interpretation of
the correlation between the original variables and the distribution of
observation: data points oriented in the same direction as a given vari-
able can be interpreted as exhibiting similar behavior.

Notably, the NV area is primarily associated with PC2, whereas PC1
most strongly describes all the other variables. These findings suggest
that experimental conditions (increasing fluence while reducing the
pulse duration) in the positive PC2 region yield larger NV areas. In
contrast, the distribution along PC1 reveals that the data points corre-
sponding to 343 nm and 515 nm lie in the negative region of this
component, in opposition to the direction of the loadings associated with
fluence and pulse duration. This suggests that optimal NV generation for
these wavelengths is achieved at lower fluences and shorter pulse du-
rations, supporting the experimental hypothesis that shorter wave-
lengths require lower energy inputs for efficient defect formation.
Finally, the data points corresponding to 1030 nm are more dispersed
and located along the positive axis of PCl, indicating a stronger
dependence on fluence. This suggests that higher fluence levels are
required to compensate for the lower photon energy at this wavelength,
resulting in less efficient defect generation compared to shorter
wavelengths.

These findings demonstrate the effectiveness of PCA as an explor-
atory tool for interpreting the dataset. By uncovering interdependencies
among variables and identifying dominant trends, PCA enables
informed decision-making for subsequent analyses, such as predictive
modeling with ANNs [36,53,55].

3.2. Predictive measurements

A slight linear trend is observed in the predictions of the non-tuned
model, as shown in Fig. 7(A) and (B). Prediction accuracy improves as
the data points approach the identity line (y = x) and as R? approached
unity. Likewise, MSE, MAE, and MAPE values closer to 0 indicate better
performance. Table 2 shows that the external validation (Fig. 7(B))
yielded a slightly higher R? value than the internal validation (Fig. 7
(A)), with a difference of approximately 0.05. This low difference be-
tween training and testing is desirable, as it indicates good generaliza-
tion and low overfitting. However, the MAPE of 35 % in the test set and
49 % in the train set using LOOCV reinforce that the non-tuned MLP was
not capable of accurately predicting the formation of NV color centers
and required further optimization.

Results for the tuned MLP are presented in Fig. 8(A) (internal vali-
dation) and Fig. 8(B) (external validation). The metrics summarized in
Table 2 indicate that the tuned MLP model exhibits greater explanatory
power compared to its non-tuned counterpart. Considering the R? of the
test set, more than 90 % of the variation in experimental values can be
explained by the predicted values of the tuned model. The difference
between the validation scenarios is 0.06 for this R?, indicating that the
MLP does not suffer from significant overfitting and was capable of
generalizing well the unseen data. A slight dispersion in the predictions
for the external test set is expected, as this data was not involved in the
training process.
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Fig. 6. Correlation biplot of the PCA scores and loadings, colored by laser
wavelength. The PCA model reveals clear clustering of the data according to
wavelength (343, 515, and 1030 nm), with partial overlap between 343 and
515 nm groups. The direction of the arrows reflects how each experimental
parameter contributes to this separation.

optimization on the predictive accuracy of the model, yielding more
precise and reliable predictions. The optimized model was subsequently
used to identify the combination of experimental parameters that
maximizes or minimizes the percentage area of NV color center.

The ANN was supplemented with manually entered data at a fixed
wavelength of 800 nm, while pulse duration and fluence were system-
atically varied within the bounds of their experimentally observed
ranges, in steps of 50 fs and 0.05 J/cm?, respectively. Table 3 shows that
maximizing laser peak fluence and minimizing the excitation wave-
length led to increased defect generation. However, pulse duration does
not exhibit a clear influence, as it is predicted to be maximized in both
scenarios, whether aiming to increase or decrease the percentage area of
NV color centers. The discrepancy between PCA and ANN results
regarding pulse duration likely stems from limitations in the dataset and
methodological differences. The PCA emphasized global linear variance
trends, while the ANN tried to capture nonlinear correlations that may
require larger datasets to stabilize and produce accurate predictions.

Table 2
Performance metrics for non-tuned and tuned MLPRegressor.

Model MLP
Table 2 demonstrated that hyperparameter tuning significantly Default Tuned
improved the performance of the MLP model, with improvements
. . . . Validation Internal External Internal External
observed across all evaluation metrics. In external validation, the rela-
tive error reduction from the non-tuned to tuned model was 62 % for the MSE 0.17 0.16 0.09 0.06
MSE, 45 % for MAE and 42 % for MAPE. For internal validation, the 11:/[42515 " 0?‘31 35 0?'33 17 0?‘17 2 ;‘18
. 0 0 0 0
reduction was 45 % for the MSE, 46 %.for.MAE and 65 % for MAPE. RI2] 0.76 0.81 0.87 0.3
These results underscore the substantial impact of hyperparameter
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Table 3
Simulated optimal experimental values for maximizing and minimizing the NV
color center generation via fs-laser micromachining.

Wavelength (nm) Pulse duration (fs) Fluence (J/cm?) NV area (%)

343 535 1.42 5.6663
515 535 1.42 4.8845
800 585 1.42 3.8287
1030 500 1.42 3.1534
343 1000 0.14 0.0967
515 1000 0.14 0.0009
800 235 0.19 0.0005
1030 985 0.51 0.0004

Therefore, the weak influence of pulse duration, as expressed in Tables 3
and is caused by the restricted data size and the complex interplay be-
tween fluence and temporal width in the proper NV center generation.
These results are consistent with the behavior observed in the orig-
inal experimental data on vacancy generation (Fig. 2), as well as with
the PCA-based interpretation. While previous analyses suggested an
inverse relationship between pulse duration and defect formation, this
effect appears to have a limited impact on the percentage area of NV
center percent area when fluence is kept constant. Overall, the findings
demonstrate that even a relatively simple ANN, when properly tuned,
can extract relevant patterns from limited datasets and offer comple-
mentary insights into NV center generation experiments. However, it is
important to note that the observed inverse correlation between exci-
tation wavelength and NV center generation reflects dataset-specific
trends rather than a universal physical law. Factors such as absorption
depth, nonlinear ionization thresholds, and lattice damage mechanisms
— none of which were explicitly modeled here — can significantly
modulate this behavior, as well as a larger set of experimental data.
Despite higher laser fluences increasing the overall defect density,
the presented results do not directly assess whether the generated de-
fects preserve the quantum properties required for quantum photonics
applications (e.g., spin lifetimes, linewidths). Further experimental
studies, such as optically detected magnetic resonance (ODMR) mea-
surements, would be valuable in determining whether NV centers pro-
duced with higher laser fluences exhibit the same quantum properties as
those produced under other experimental conditions. This perspective
constitutes an interesting direction for future work within this topic.

4. Conclusions

In summary, we applied computational tools to address a multivar-
iate photonics problem involving interdependent experimental

parameters. Dimensionality reduction and neural network methods
were employed to analyze and predict nitrogen-vacancy (NV) center
generation in diamond through femtosecond laser micromachining,
with the goal of identifying key trends that could guide cost-effective
optimization strategies. Principal component analysis, using a cumula-
tive variance threshold of 80 %, reduced the data to a low-dimensional
space in which two components explained 88 % of the total variance.
The first principal component (PC1) alone accounted for 58 %, high-
lighting the dominant influence of fluence and the pulse duration over
the excitation wavelength. The distribution of observations indicated
that optimal NV center generation at 343 nm and 515 nm occurs at
lower fluences, whereas 1030 nm requires significantly higher fluence
levels. The implementation of a MLPRegressor (MLP) neural network
with Leave-One-Out cross-validation (LOOCV) yielded a high coefficient
of determination on unseen data (R? = 0.93) and low prediction errors
for NV centers generations (MAPE = 20 %). The simulated predictions
were consistent with the trends identified by PCA, demonstrating that
the combined use of PCA and MLP offers a robust and complementary
approach to data-driven analysis. We identified key experimental trends
that can support the development of more efficient and cost-effective
strategies for fs-laser generation of NV center in diamond.
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