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 a b s t r a c t

This paper develops a robust fault detection and isolation (FDI) strategy for a class of uncertain 
continuous-time switched affine systems when the system state is not fully available for measurement, 
and all system sensors are prone to permanent abrupt bounded faults. The FDI strategy is obtained 
by designing a number of FDI devices equal to the number of sensors. First, we give linear matrix 
inequalities conditions to design a bank of full-state Luenberger observers in a pseudo-dedicated 
scheme with guaranteed S− and L∞ performances to work as residual error generators (REGs). In the 
sequence, considering an extension of the concepts of weak and strong detectability and novel concepts 
of weak and strong isolation, residual evaluation functions are defined, and threshold functions are 
designed considering the gains and parameters obtained in the REG design, taking into consideration 
the smallest fault magnitude to be detected to achieve a mixed S−/L∞ performance. An Algorithm to 
determine a piecewise constant threshold function is proposed to obtain less conservative constraints 
in the optimization problem. Furthermore, parameter-tuning algorithms are proposed to obtain local 
optima thresholds and REGs to satisfy weak isolation conditions over a range of uncertainties. Finally, 
a Cuk DC–DC converter is considered to demonstrate the effectiveness of the proposed approach.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Observer-based strategies working as residual error gener-
ators for mitigating disturbances and detecting faults in dy-
namic systems have gained prominence in the literature. Recent 
advancements in isolating, reconstructing, and mitigating the 
effects of disturbances, as well as addressing a class of com-
munication attacks have appeared (Rinaldi, Menon, Edwards, 
Ferrara, & Shtessel, 2021). In the context of switched systems 
switched, Marouani, Nguyen, Dinh, and Raïssi (2024) and Hao 
and Huang (2024) propose observers to detect faults in discrete-
time switched systems and Ali et al. (2024) designs observers 
with a guaranteed H∞/H− attenuation /sensitivity performance 
for a class of continuous-time switched systems under sensor 
faults and disturbances. In Rinaldi, Cucuzzella, Menon, Ferrara, 
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and Edwards (2022), the authors propose an observer-based 
approach to detect load-altering attacks in switched systems 
that may cause critical faults, while Ribeiro, Carneiro, Costa, and 
Oliveira (2022) considers switched Markovian jump systems in 
the design of the residual error generators to detect covert attacks 
in cyber–physical systems. Fault detection and isolation (FDI) 
strategies for a class of continuous-time switched affine systems 
strategies for switched affine systems are proposed in Li, Ma, 
and Zhao (2021) and Carneiro, Silva, Faria, Magossi, and Oliveira 
(2021). Although, fault-tolerance switching laws for uncertain 
continuous-time switched affine systems (SAS) subject to additive 
sensor faults have been considered in the literature (Carneiro, 
Faria, Silva, Zilli, & Oliveira, 2024), the problem of FDI of multi-
ple permanent faults in uncertain SAS using an observer-based 
approach with sensitivity and attenuation performances under 
permanent faults and uncertainties is not extensively discussed 
in the literature.

Usually, to guarantee the detection and isolation of
multiple sensor or actuator faults in a system, a bank of observer-
based residual error generators can be designed in a gener-
alized observer scheme (GOS) or dedicated observer scheme 
(DOS) (Blanke, Kinnaert, Lunze, & Staroswiecki, 2016; Commault, 
data mining, AI training, and similar technologies.
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Dion, Sename, & Motyeian, 2002), such that it is possible to 
determine which component is faulty without the need to esti-
mate the fault magnitude. The recent work Sacchi, Incremona, 
and Ferrara (2023), proposes an active FDI structure to detect 
and isolate multiple faults by using a mixed model-based and 
data-driven strategy using a bank of observers, but the authors 
consider an estimation of the fault magnitude, which can be 
challenging to obtain for uncertain SAS. On the other hand, to 
determine only the location of the fault,i.e., which component is 
faulty, the classical DOS guarantees better fault isolation at the 
cost of observability reduction and less robustness, whereas GOS 
improves the observability and robustness properties (Capisani, 
Ferrara, De Loza, & Fridman, 2012), but multiple faults cannot 
be detected. Thus, a mixed structure using the philosophy of 
dedicated fault detection with a dedicated observer scheme by 
preserving observability, as in the GOS, is an alternative when 
all sensors are prone to faults, and multiple faults should be 
detected.

However, to achieve fault isolation, the observers must be 
sensitive to a specific set of sensor faults and robust against 
uncertainties and faults that do not belong to the set of faults 
to be detected (Blanke et al., 2016). An alternative to guarantee 
attenuation and sensitivity performance is by designing the gains 
of the observers considering a mixed H−/H∞ performance, as 
in Ali et al. (2024), Du, Yang, Zhao, and Tan (2020), Hao and Huang 
(2024), Su, Fan, and Li (2019). However, H∞-based strategies are 
not suitable to the design fault detection observers with a given 
attenuation performance for certain classes of bounded faults, 
particularly permanent faults, which are faults that can last for 
long periods since their magnitude does not trigger any protective 
device (Greber, Fodor, & Magyar, 2020). Specifically, when the 
magnitude of the fault remains greater than zero for all time after 
the fault occurrence, performances such as the H∞-based cannot 
be applied, and L∞-based performances as in Li et al. (2021), Xie, 
Zong, Yang, Chen, and Shi (2022) need to be considered. More-
over, to the best of our knowledge, a comprehensive sensitivity 
performance for permanent sensor faults in uncertain SAS has not 
been reported in the literature, although Reppa, Timotheou, Poly-
carpou, and Panayiotou (2017) proposes an optimization method 
to obtain the gains of the observers to enhance sensitivity to 
permanent faults.

Also, concepts such as weak or strong detectability can be 
considered as a property of the residual generator with respect 
to permanent faults, as in Blanke et al. (2016), Reppa, Polycarpou, 
and Panayiotou (2016), Reppa et al. (2017), and the observer 
design can take these concepts into consideration. In addition, 
weak and strong isolation concepts are introduced in Gertler 
and McAvoy (1997), but this topic is not widely explored in the 
FDI literature. Furthermore, with the assumption that all sensors 
are prone to faults and the system is subject to uncertainties, 
it is challenging to provide full fault isolation since the residual 
error generator can be affected by uncertainties and by faults 
that are not supposed to be detected, referred to as remaining 
faults, which highlights the importance of the establishment of 
residual evaluation functions as in Reppa, Timotheou, Polycarpou, 
and Panayiotou (2018), such that a fault is detected whenever 
the magnitude of this function is greater than a given threshold. 
Moreover, the selection of thresholds must account for the effects 
of uncertainties and residual faults to prevent false alarms (Alwi, 
Edwards, & Tan, 2011), and a method to obtain the threshold 
values for uncertain SAS has not yet been addressed.

This paper addresses the critical issue of fault detection and 
isolation for a class of continuous-time uncertain SAS when all 
sensors are subject to additive permanent faults, and the system 
state is not fully available for measurements. The strategy pro-
posed in this paper is applied for situations where the classical 
2

dedicated observer and generalized schemes cannot be applied 
to detect and isolate faults in multiple sensors, where multiple 
faults, which may be simultaneous, are detected by using a strat-
egy to infer that if two or more residuals are affected, then faults 
occur in different sensors. The main contributions of this paper 
are summarized as follows:

(1) Differing from the classical and generalized dedicated ob-
server schemes, we consider a pseudo-dedicated observer 
scheme for the FDI strategy with a bank of full-order ob-
servers working as residual error generators, where the 
observer of index ℓ is designed to detect faults in the 
sensor of the same index, whereas the effect of system 
uncertainties and faults in other sensors are attenuated in 
the residual error generator.

(2) We guarantee S− and L∞ performances in the observer’s 
design, improving robustness and observability properties 
in relation to the classical dedicated observer scheme, and 
the stability of each residual error generator is analyzed in 
terms of linear matrix inequalities (LMIs).

(3) We extend the definition of strong and weak detection 
given in Reppa et al. (2018) by including a desired fault 
magnitude to be detected and a range of uncertainties 
in which weak or strong isolation are guaranteed. This is 
achieved by considering threshold functions obtained using 
the solution of LMI-based optimization problems, ensuring 
a mixed S−/L∞ sensitivity/attenuation performance.

(4) We provide a tuning algorithm to improve the sensitiv-
ity/attenuation performance of all residual error genera-
tors.

The remaining of the paper is organized as follows. Section 2 
presents the mathematical background for the main results, and 
Section 3 presents the problem formulation. Section 4 presents 
the main results on the design of FDI devices. Section 5 shows 
numerical results obtained by applying the proposed strategy 
for the detection and isolation of sensor faults in a DC–DC Cuk 
Converter. Finally, Section 6 presents the conclusion and future 
directions of the current work.

Notations
The symbol ⋆ denotes the transposed element in symmetric 

matrices, (′) indicates transpose and † denotes the right pseudo-
inverse. For symmetric matrices, M ≺ 0 (M ≻ 0) indicates that 
M is negative (positive) definite and M ⪯ 0 (M ⪰ 0) indicates 
that M is negative (positive) semi-definite. The operator He(M)
denotes the following sum of matrices: He(M) :=

(
M + M′

)
. 

The maximum and minimum eigenvalue of a square real matrix 
M is denoted as λmax(M) and λmin(M), respectively. For A and 
B positive definite matrices, A ⪰ B implies that A − B ⪰ 0. 
The set composed by the first M  positive integers is denoted 
by IM := {1, . . . ,M }, where M  is a finite positive integer 
corresponding to the number of system modes. For a matrix in the 
set M = {M1, . . . ,Mi, . . . ,MM }, λmax(Mi) := max

i∈IM
(λmax(Mi)) and 

λmin(Mi) := min
i∈IM

λmin(Mi). The set of real non-negative numbers 
is denoted by R+. The ∞-norm of a function f : R → R in 
the Lebesque measurable space L∞ is denoted by ∥f ∥L∞  where 
∥f ∥L∞ := sup

τ∈[T0,t]
(|f (τ )|) with |f | the absolute value of f , and the 

1-norm of f  in the Lebesgue measurable space L1 is denoted by 
∥f ∥L1 . The Euclidean norm of a vector x ∈ Rn is denoted by ∥x∥. A 
C1 is function is a continuous function which is differentiable and 
has a continuous fist time derivative. The notation sign(f ) is the 
signum function, where sign(f ) = 1, if f > 0, sign(f ) = −1, if f <
0 and sign(f ) = 0, if f = 0.
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2. Preliminaries

The following definitions and results are required to obtain the 
main contributions developed in this work.

Definition 1.  Let f : R→ R and let η > 0 be a scalar. Functionals 
G : R× R+ → R and F : R× R+ → R are defined as

G(f , t) :=
∫ t

0
e−η(t−τ )f (τ )dτ (1)

F(f , T0, t) :=
∫ t

T0

e−η(t−τ )f (τ )dτ . (2)

Lemma 1.  Let f := ∥v∥2 with v : Rq
× R+ → R, bounded and 

measurable on [T0, t]. The equality ∥v∥2L∞ = η sup
[T0,t]

F(f , T0, t) holds, 
where F(·, ·, t) is defined in (2).

Proof.  The proof is a direct application of Theorem 8.8 on 
page 128 of Wheeden and Zygmund (1977), where g(t − τ ) :=
ηe−η(t−τ ), p := ∞, p′ := 1, 1

p +
1
p′ = 1, and the supremum is 

taken over function g(t − τ ), in which ∥g(t − τ )∥L1 ≤ 1.

Lemma 2 (Khargonekar, Petersen, & Zhou, 1990).  For any real 
matrices of appropriate dimensions M,N, constant ε > 0 and a 
time-varying matrix F(t) satisfying F(t)′F(t) ≤ I for any t ≥ 0
we have M ′F(t)N + N ′F ′(t)M ⪯ ε−1M ′M + εN ′N.

Definition 2 (Permanent Abrupt Fault (Reppa et al., 2016)).  Let 
θ (t) be the time profile, which includes the time duration and 
the evolution mode of occurrence or disappearance, and φ(t) be 
a function that represents the signature of a fault f , respectively. 
A permanent abrupt fault is defined as f (t) = θ (t)φ(t− tf ), where 
φ1 ≤ |φ| ≤ φ2,∀t ≥ 0, φ1 ∈ R+, φ2 ∈ R+, θ (t) = 0,  if t < tf  or 
θ (t) = 1 if t ≥ tf , where tf  is the instant of the first occurrence 
of the fault, formally defined as tf := min{t ∈ R+ : ∥f (t)∥ ≥ φ1}.

Definition 3 (FDI Device).  An FDI device is a system com-
posed of an observer-based residual error generator and residual-
evaluation-based functions such as residual evaluation, threshold, 
and alarm, whose objective is to detect and isolate specific faults.

3. Problem formulation

We consider a class of continuous-time uncertain SAS subject 
to additive permanent abrupt sensor faults as1

Gσ :
{
ẋ = (Aσ +∆Aσ )x+ bσ , x(0) = x0
y = Cσ x+ Fσ fs,

(3)

where σ (·) : R+ → IM  is a piecewise constant switching 
signal that selects a known mode i in the set IM , x ∈ Rn is 
the state, y ∈ Rp is the output, with p < n, fs ∈ Rp is the 
sensor faults vector, corresponding to an exogenous signal that 
affects the output measurements, with 0 ≤ ∥fs∥ ≤ f max,∀t ≥ 0, 
where f max > 0 is a finite constant given by the designer and 
fs(0) = 0. The matrices Ai ∈ Rn×n, bi ∈n×m, Ci ∈ Rp×n and 
Fi ∈ Rp×p represent state, input, output and fault distribution 
matrices, respectively and Ci is full row rank for all i ∈ IM . For 
every i ∈ IM , matrices ∆Ai ∈ Rn×n have the following form (Elias, 
Faria, Araujo, Magossi, & Oliveira, 2022): 
∆Ai = δa(t)Qi, |δa(t)| ≤ δ, ∀i ∈ IM ,∀t ≥ 0, (4)

1 For some switched power electronic systems representation, the vector bσ
in (3) can be expressed as bσ = Bσ u(t), where u ∈ Rm is an external input 
assumed to be constant for all t ≥ 0 and Bσ  is an input matrix. Since u is a 
constant vector, then b  is an affine term.
σ

3

where Qi := MiNi are given for all i ∈ IM , and δa : R →
[−δ, δ] are unknown functions and δ ∈ [0, 1] is a constant to 
be given. The matrices Mi ∈ Rn×mA ,Ni ∈ RmA×n, with mA =

max
i∈IM

(rank(Qi)) are matrices that represent structured uncertain-
ties and are obtained by using full rank factorization (Piziak & 
Odell, 1999).

To obtain the detection and isolation for each system sensor 
among a number of p sensors, the following assumptions are 
considered.

Assumption 1.  The system in (3) is not fully available for 
measurements, the pairs (Ai, Ci) are observable for all i ∈ IM  and 
each sensor fault f ℓ for all ℓ ∈ F is considered to be a permanent 
abrupt fault based on Definition  2, with f = f ℓ, tf = tℓf .

Assumption 2.  All sensors are prone to bounded faults, all 
sensor faults may occur simultaneously, and for all i ∈ IM , Fi
are assumed to be diagonal with rank(Fi) = p.

Assumption  2 represents a critical condition where all sensors 
could be permanently damaged. Although all the sensor faults 
may occur simultaneously, they are independent, i.e., a fault in a 
sensor does not depend on the occurrence of faults in any other 
sensor.

Let F := {1, . . . , p} be the set of all fault indices, and let 
F := {f ℓ ∈ R : ℓ ∈ F} be the set of all sensor faults, where 
function f ℓ ∈ L∞,∀ℓ ∈ F represents the ℓth fault function in the 
ℓth position of vector fs. Since Fσ  is assumed to be diagonal for 
any σ = i, i ∈ IM , we split the matrices Fi in (3) into p × i
different matrices Dℓi ∈ Rp, where each Dℓi  matrix represents 
the ℓth column of Fi, such that Fifs =

∑p
ℓ=1 D

ℓ
i f
ℓ. Let now dℓf :=[

f 1, . . . , f ℓ−1, f ℓ+1, . . . f p
]
, dℓf ∈ L∞, dℓf ∈ Rp1 , p1 := p− 1, ℓ ∈

F define a vector of the remaining faults, i.e., a vector containing 
all faults except the ℓth fault, and let Eℓi ∈ Rp×p1  be matrices 
composed by the columns of Fi except the ℓth column. The system 
in (3) is then rewritten as follows: 

Gℓσ :
{ẋ = (Aσ +∆Aσ )x+ bσ
y = Cσ x+ Dℓi f

ℓ
+ Eℓi d

ℓ
f .

(5)

The objective of this paper is to design a number of p FDI devices 
as in Definition  3, where each ℓth FDI device is designed to detect 
and isolate each permanent abrupt sensor fault f ℓ even under 
the presence of multiple sensor faults, i.e., each fault f ℓ must 
be detected. Uncertainties and remaining faults dℓf  must remain 
undetected in the ℓth FDI device, for some uncertainty functions 
satisfying (4) and for any dℓf ∈ Dℓ, with Dℓ obtained as 

Dℓ
= {dℓf ∈ R : 0 ≤ ∥dℓf ∥ ≤ dℓmax}, (6)

where dℓmax ≤ f max represents the bound of the magnitude 
of faults vector fs when all sensor faults occur simultaneously, 
except for the ℓth fault, and constants f ℓmax ≤ f max are known and 
represents the maximum bound of the magnitude of each sensor 
fault, satisfying 

0 ≤ ∥f ℓ∥ ≤ f ℓmax. (7)

We also propose an FDI strategy for the class of systems Gσ  under 
a measurable switching signal σ , assuming that the solutions of 
the system in (3) are bounded.

3.1. Structure of the observer-based residual error generators

To obtain the bank of residual error generators in a pseudo-
dedicated scheme, let zℓ ∈ Rn and rℓ ∈ Rp be the state estimate, 
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ˆ

and a residual error signal, respectively. For each ℓ ∈ F, the 
residual error generator is designed as follows: 

Gℓσ :

{
żℓ = Aσ zℓ + bσ + Lℓσ (y− Cσ zℓ),

rℓ = Rℓσ (y− Cσ zℓ),
(8)

where Lℓi ∈ Rn×p are the observer gain matrices and Rℓi ∈ Rp×p

are gain matrices for the residual error signal, with Rℓi ≻ 0,∀i ∈
IM , ℓ ∈ F.

Let eℓz = x−zℓ denote the estimation error. Then, the dynamics 
of the error eℓz are given by 
ėℓz = (Aσ − LℓσCσ )e

ℓ
z − Lℓσ

(
Dℓσ f

ℓ
+ Eℓσd

ℓ
f

)
+∆Aσ x

rℓ = Rℓσ
(
Cσ eℓz + Dℓσ f

ℓ
+ Eℓσd

ℓ
f

)
.

(9)

Considering linear dynamics, the estimation error in (9) can be 
decomposed in terms of fault and remaining faults as eℓz := eℓf+e

ℓ
d, 

rℓ := rℓf + rℓd  and system (9) can be represented by{
ėℓf = (Aσ − LℓσCσ )e

ℓ
f − LℓσD

ℓ
σ f
ℓ

rℓf = Rℓσ
(
Cσ eℓf + Dℓσ f

ℓ
)
,

(10){
ėℓd = (Aσ − LℓσCσ )e

ℓ
d − Lℓσ E

ℓ
σd

ℓ
f +∆Aσ x

rℓd = Rℓσ
(
Cσ eℓd + Eℓσd

ℓ
f

)
,

(11)

where pairs (eℓf , rℓf ), (eℓd, rℓd ) represent the pairs of estimation and 
residual error signals regarding f ℓ and dℓf  in the presence of 
uncertainties, respectively, and eℓf (0) = 0.

Now, define the set 
Ω0 = {x(0) ∈ Rn

: ∥x(0)∥2 ≤ ω2
0}, ω0 ∈ [0,∞), (12)

with ω0 a known constant. The initial condition of systems in 
(8) (9) and (11) is obtained considering x(0) ∈ Ω0 satisfying 
Assumption  3.

Assumption 3.  For any initial condition x(0) ∈ Ω0 there exists 
a switching signal σ  that ensures that the trajectories of system 
(3) are bounded.

From (12) and Assumption  3, the following set can be defined 

Ωx := {x(t) ∈ Rn
: ∥x(t)∥2 ≤ ω2,∀t ≥ 0}, (13)

where ω0 ≤ ω and Ω0 ⊆ Ωx, under switching signal σ . Then, the 
following proposition can be proved.

Proposition 1.  Consider x(0) ∈ Ω0 as in (12) and σ (0) = σ0 ∈
IM  in system (3), where σ0 is known. By assuming that zℓ(0) :=
C†
σ (0)y(0), initial estimation errors ez(0) and ed(0) will also belong to 
Ω0.

Proof.  Since fs(0) is assumed to be zero, an estimative for the 
initial condition x(0) in (3), denoted by x∗(0), can be found by 
solving the following least squares minimization problem: 
min

x(0)∈Rn
∥Cσ (0)x(0)− y(0)∥, (14)

where x∗(0) = C†
σ (0)y(0) is the optimal solution. Therefore, by 

making zℓ(0) := x∗(0) = C†
σ (0)y(0),∀ℓ ∈ F we obtain:

∥e(0)∥ := ∥x(0)− zℓ(0)∥ = ∥x(0)− C†
σ (0)y(0)∥

≤ ∥x(0)∥ ≤ ω0, (15)

where inequality (15) is obtained as zℓ(0) = x∗(0) = 0, it is the 
worst-case solution of the optimization problem (14). Therefore, 
ez(0) ∈ Ω0. Moreover, from fs(0) = 0, it follows that ef (0) = 0, 
whereas e (0) = e (0). Thus, we can conclude that e (0) ∈ Ω .
z d d 0

4

The gains Lℓi  and Rℓi  of the residual error generators in (8) 
are designed to make the system in (10) achieves an S− sen-
sitivity performance and system (11) achieves L∞ attenuation 
performance defined in the sequence.

Definition 4 (S− Sensitivity Performance).  System in (10) has a 
S− sensitivity performance if its trajectories are bounded and 
there exists a sensitivity gain β > 0 such that ∥rℓf ∥L∞ >

β∥f ℓ∥L∞ , ∀∥f
ℓ
∥L∞ ̸= 0.

Definition 5 (L∞ Performance).  System in (11) has a guaranteed 
robust L∞ attenuation performance if its trajectories are bounded 
and there exist positive attenuation gains γ ℓ, εℓx , η, ϑ such that 
∥rℓd∥L∞ ≤

√
γ ℓ∥dℓf ∥

2
L∞ + ε

ℓ
xω

2 + ηϑ,∀ℓ ∈ F, where ω > 0 is a 
given constant satisfying 
Ω := {x(t) ∈ Rn

: max
i∈IM
∥Nix(t)∥2 ≤ ω2,∀t ≥ 0}. (16)

3.2. Residual-evaluation-based functions

The residual evaluation process is performed using residual 
evaluation functions denoted by Jℓ : Rp

× R+ → R+ which 
are function of each residual error signal rℓ. Threshold functions 
denoted by Jℓth : R+ → R+ are designed to satisfy Jℓth(t) ≥
∥rℓd (t)∥L∞ , ∀ℓ ∈ F,∀t ≥ 0, which means that a threshold 
function must be obtained so that Jℓth(t) is greater than the max-
imum value of ∥rℓ(t)∥ when ∥f ℓ∥ = 0, ∥dℓf ∥ = dℓmax and the 
uncertainties are obtained for δa(t) ∈ [−δ, δ] that maximizes 
∥Nix(t)∥2, i ∈ IM . Moreover, the output of each ℓth FDI device 
is a binary scalar corresponding to alarm functions as follows: 

aℓ(t) =
{
1, if J(rℓ, t) ≥ Jℓth(t)
0, otherwise.

(17)

When aℓ(t) = 1, the fault in sensor ℓ is detected, whereas aℓ(t) =
0, means that sensor ℓ is assumed to be fault-free. Denoting a ∈
Rp as the output vector of the FDI device containing all alarms 
in each ℓ ∈ F row, multiple faults are detected if 

∑
ℓ∈F a

ℓ > 1, 
and the non-zero rows of a represents a fault in the ℓ ∈ Fth
sensor. Furthermore, for a SAS under uncertainties and multiple 
faults, we propose a detection strategy that considers the smallest 
magnitude for a fault to be detected, according to the following 
definition, based on Reppa et al. (2017). 

Definition 6.  Let tℓf  be the first time of the fault occurrence, as 
in Definition  2, aℓ(t) ∈ {0, 1} be the output of the FDI device as in 
(17), and T ℓD ≥ tℓf  be the time when the FDI device is triggered2 
by the permanent fault f ℓ, satisfying 
T ℓD := min{t ∈ [tℓf ,∞) : aℓ(t) = 1}. (18)

The smallest fault magnitude to be detected, of f ℓ, denoted as f ℓmin
is defined as follows: 
f ℓmin = ∥f

ℓ(T ℓD)∥ ≤ f ℓmax. (19)

Instead of the classical definitions as given in Blanke et al. 
(2016), and Reppa et al. (2018), instead of considering the detec-
tion of faults when ∥f ℓ∥ > 0, the strong and weak detectability 
definitions in this paper are obtained when f ℓ ∈ Fℓ

min, where Fℓ
min

is given by Fℓ
min = {f

ℓ
∈ R : f ℓmin ≤ ∥f

ℓ
∥ ≤ f ℓmax}, which means 

that the magnitude of f ℓ is greater than a desired f ℓmin, with an 
upper bounded given by f ℓmax whenever f ℓ ∈ Fℓ

min. Moreover, we 
consider that a small time delay in strong detection is allowed. 

2 An FDI device is triggered if its alarm function value is different from zero.
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The conditions in which a fault is detected, along with the novel 
definitions of strong and weak detectability with respect to a 
given f ℓmin, considering alarm functions aℓ as in (17), tℓf , f ℓmin and 
T ℓD as in Definition  2, are given next. 

Definition 7 (Fault Detectability).  For a given f ℓmin ∈ (0, f ℓmax], 
fault f ℓ is detectable with respect to f ℓmin if there exists a residual 
evaluation function J(rℓ), a threshold function Jℓth(t) and a finite 
time T ℓD ≥ tℓf , such that aℓ(T ℓD) = 1 when ∥f ℓ(T ℓD)∥ = f ℓmin.

Definition 8 (Strong Detectability).  A fault f ℓ is strongly de-
tectable with respect to a given f ℓmin if f ℓmin is detectable, aℓ(t) =
1,∀t ≥ T ℓD and f ℓ ∈ Fℓ

min,∀t ≥ T ℓD .

Definition 9 (Weak Detectability).  A fault f ℓ is weakly detectable 
with respect to a given f ℓmin if f ℓ is detectable and aℓ(t) = 1 only 
for some t ≥ T ℓD even if f ℓ ∈ Fℓ

min for all t ≥ T ℓD .

Complete fault isolation of f ℓ, as defined in Blanke et al. 
(2016), is achieved when aℓ(t) = 1 if, and only if, ∥f ℓ∥ > 0, for 
any t ≥ tℓf , which means that remaining faults and uncertainties 
must not trigger the FDI device. In this paper, we propose less re-
strictive conditions for fault isolation considering a given smallest 
fault magnitude to be detected for fault f ℓ, as defined as follows. 

Definition 10 (Fault Isolation).  For a given f ℓmin ∈ (0, f ℓmax], the 
fault isolation of a fault f ℓ is achieved if f ℓ is strongly detectable 
and aℓ(t) = 0,∀t < tℓf .

When fault isolation as in Definition  10 is achieved, remaining 
faults and uncertainties will not trigger the FDI device, and a fault 
f ℓ ∈ Fℓ

min is guaranteed to be detected. However, fault isolation 
may not be guaranteed for some range of uncertainties. In the 
sequence, we give the definitions of weak and strong isolation 
with respect to the effect of the uncertainties in the FDI devices 
for uncertain SAS as in (5), and uncertainties functions satisfying 
(4) for a δ ∈ [0, 1] to be found. Furthermore, in the next section, 
we provide the main results in the design of the FDI devices for 
each f ℓ ∈ F . 

Definition 11 (Weak Isolation).  For a given f ℓmin, the weak fault 
isolation of a fault f ℓ is achieved if, for any dℓf ∈ Dℓ, δa ∈ [−δ, δ], 
and some δ ∈ [0, 1] fault isolation is guaranteed.

Definition 12 (Strong Isolation).  For a given f ℓmin, the strong 
isolation of fault f ℓ is achieved if, for any dℓf ∈ Dℓ and δa ∈
[−1, 1], fault isolation is guaranteed.

Considering the definition of f ℓmin, we define a novel mixed 
S−/L∞ performance. 

Definition 13 (S−/L∞ Performance).  The system in (9) has a 
mixed S−/L∞ sensitivity/attenuation performance if its trajecto-
ries are bounded and, for a given f ℓmin ≤ f ℓmax, there exist a positive 
sensitivity gain β and positive attenuation gains γ ℓ, εℓx, η, ϑ such 
that S− as in Definition  4 and L∞ as in Definition  5 are obtained, 
and weak or strong isolation are achieved.

4. Main results

The FDI strategy proposed in this work provides LMI-based 
conditions to achieve weak isolation of all sensors fault by first 
designing the residual error generators considering an optimiza-
tion problem which solution gives sensitivity and attenuation 
guarantees and then we obtain threshold functions relying on the 
gains and parameters obtained as a solution of a sensitivity/atten-
uation optimization problem.
5

In Theorems  1 and 2, we provide LMI-based conditions in an 
optimization problem to obtain observer gains Lℓi  and Rℓi  for each 
sensor fault ℓ ∈ F with S− and L∞ guarantees, respectively, 
whereas Theorem  3 proposes an optimization problem that satis-
fies the constraints in Theorem  1 and Theorem  2 simultaneously, 
considering uncertain functions as in (4) with δ = 1. Whenever it 
is possible to find a feasible solution to the problem in Theorem 
3, the gains and parameters obtained are used in Lemma  3 and 
Theorem  4 to obtain a threshold function for each ℓ ∈ F to 
guarantee weak isolation and a mixed S−/L∞ performance con-
sidering the prespecified smallest fault magnitude to be detected, 
denoted f ℓmin, and a range of uncertainties defined in (4) where 
δ ∈ [0, 1]. Moreover, Corollary  1 proposes an LMI-based opti-
mization problem to obtain the smallest fault magnitude to be 
detected f ℓ0min such that strong isolation is guaranteed. Addition-
ally, Theorem  5 proposes conditions to obtain piecewise constant 
threshold functions to relax the constraints in Theorem  4. To 
this end, Algorithm 1 can be applied to find the threshold func-
tions in a structured manner. Finally, Algorithm 2 enables finding 
local optima observer gains and threshold functions by varying 
a parameter associated with the decay rate of Lyapunov-like 
functions.

In this section, we omit index ℓ, and the argument t in time-
dependent functions when not essential to simplify the notation. 
However, the results obtained can be applied to all FDI devices 
without loss of generality.

4.1. Residual error generators design

The following theorems yield sufficient conditions in terms of 
LMIs to guarantee that (10) has an S− performance and (11) has 
an L∞ performance. 

Theorem 1.  Consider system (10). For given positive scalar η > 1, if 
there exist matrices P ∈ Rn×n, P ≻ 0, Hi ∈ Rp×p,Hi ⪰ 0, Wi ∈ Rp×n

and scalars β > 0, ηf > 0 as a solution to the following optimization 
problem for σ = i,∀i ∈ IM  a

max
P,Wi,Hi,β,ηf

β, s.t. (20)

Λi ≺ 0 (21)

Ψi ≺ 0, (22)

where ψ i
11 = He(AiP + C ′iWi)+ ηP − C ′iHiCi and

Λi =

[
(−η + 1)P + C ′iHiCi C ′iHiDi

⋆ D′iHiDi − βI − ηf f −2maxI

]
(23)

Ψi =

[
ψ i

11 ⋆

D′iWi − D′iHiCi βI − D′iHiDi

]
, (24)

then under ef (0) = 0, the trajectories of (10) are bounded with 
respect to

Ωf =

{
ef ∈ Rn

: ∥ef ∥L∞ <
√
ηf (λmin(P))−1

}
,

and (10) has a guaranteed S− performance with a maximum sen-
sitivity gain. In addition, the observer gain matrices Li, Ri for each 
i ∈ IM  are obtained by Li = −(WiP−1)′ and Ri = H1/2

i .

Proof.  Let a C1 function be V := ef ′Pef , an augmented vector 
be χ :=

[
ef ′, f ′

]′ and define Wi := −L′iP , Hi := R′iRi. The time 
derivative of V  is given by V̇ = χ ′Ψσχ − ηV + ∥rf ∥2 − β∥f ∥2, 
where ∥rf ∥2 = ef ′C ′σHσCσ ef + 2f ′(D′σHσCσ )ef + f ′(D′σHσDσ )f , and 
Ψσ  is given in (22) for all σ = i, i ∈ IM . When (22) holds, the 
following inequality is satisfied: 
V̇ < −ηV + ∥r ∥2 − β∥f ∥2. (25)
f
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From (25), is not yet possible to guarantee the stability of (10), 
since ∥rf ∥2 ≥ 0 and the negativity of V̇  is not ensured. Thus, to 
guarantee that the trajectories of ef  are attracted to Ωf , it is added 
in inequality (25) the null term −V+V−ηf f −2max∥f ∥

2
+ηf f −2max∥f ∥

2, 
yielding:

V̇ <− ηV + ∥rf ∥2 − β∥f ∥2 = χ ′Λiχ − V +
ηf

f 2max
∥f ∥2,

where Λi is defined in (23). By satisfying (21), it follows that
V̇ < −ηV + ∥rf ∥2 − β∥f ∥2 <− V + ηf f −2max∥f ∥

2

<− V + ηf . (26)

Therefore, from (26), V̇ < 0 whenever ef /∈ Ωf . Also, by 
integrating (26) from 0 to t , we obtain 

V (t) < e−tV (0)+ ηf

∫ t

0
e−(t−τ )dτ . (27)

Hence, under null initial conditions, the trajectories of (10) are 
bounded with respect to Ωf . Moreover, by integrating (25) from 
0 to t , we obtain: 
V (t) < e−ηtV (0)+ G(∥rf ∥2, t)− βG(∥f ∥2, t), (28)

with G(·, t) as in Definition  1. Since V ≥ 0,∀t ≥ 0, inequality (28) 
is satisfied whenever 
βG(∥f ∥2, t) < G(∥rf ∥2, t). (29)

Multiplying both sides of (29) to η and applying the supremum 
on both sides of (29) yields: 
βη sup
[0,t]

G(∥f ∥2, t) < η sup
[0,t]

G(∥rf ∥2, t). (30)

Applying Lemma  1 in (30), we guarantee that the residual signal 
rf  in (10) has an S− sensitivity performance as in Definition  4 
with β =

√
β , where β is the maximum sensitivity gain obtained 

by the maximization of β .

Theorem 2.  Consider the system in (11) and Assumption  3. For 
given positive scalars η, ω satisfying (16), and ed(0) ∈ Ω0, if there 
exist matrices P ∈ Rn×n, P ≻ 0, Hi ∈ Rp×p,Hi ⪰ 0, Wi ∈

Rp×n, and positive scalars εxi, γ  as solution to the following convex 
optimization problem for all σ = i, i ∈ IM :

min
P,Wi,Hi,εxi,εxi

γ (31)

s.t. η − γ d2max − εxiω
2
≥ 0,  and (32)⎡⎣Θ i

11 W ′i Ei PMi
⋆ −γ I + E ′iHiEi 0
⋆ ⋆ −εxiI

⎤⎦ ≺ 0, (33)

where Θ i
11 = He(A′iP + C ′iWi) + ηP + C ′iH

′

iCi, then, the trajectories 
of (11) are bounded with respect to
Ωd =

{
ed ∈ Rn

: ∥ed∥L∞ < ((ϑ + 1)/λmin(P))1/2
}

where ϑ := λmax(P)ω2
0 , with ω0 obtained considering Proposition  1. 

Furthermore, the L∞ performance of (11) is guaranteed. In addition, 
the observer gain matrices Li, Ri for each i ∈ IM  are obtained by 
Li = −(WiP−1)′ and Ri = H1/2

i .

Proof.  Let a C1 function be defined as V = e′dPed, an augmented 
vector be χ :=

[
e′d, df

′
]
′ and define Wi := −L′iP , Hi := R′iRi. The 

time derivative of V  satisfies
V̇ = e′d(He(A

′

σ P + C ′σWσ ))ed + 2e′dW
′

σ Eσdf
+ 2e′dP∆Aσ x

≤ χ ′Φσχ − ηV − ∥rd∥2 + εxσ∥Nσ x∥2 + γ ∥df ∥2, (34)
6

where the inequality in (34) is obtained by applying Lemma  2 in 
2e′d(P∆Aσ )x, ∥rd∥2 = e′dC

′
σH
′
σCσ ed+2e′d(C

′
σHσ Eσ )df +df ′E ′σHσ Eσdf

and Φσ  is defined as 

Φσ =

[
Φσ

11 W ′σ Eσ + E ′σHσ Eσ
⋆ −γ I + E ′σHσ Eσ

]
, (35)

with Φσ
11 := He(A′σ P + C ′σWσ ) + ε−1xσ PMσM ′σ P + ηV + C ′σHσCσ . 

By applying Schur’s complement in (35), we obtain (33), and by 
solving (31)–(33) the derivative V  in (34), satisfies
V̇ <− ηV − ∥rd∥2 + γ ∥df ∥2 + εxσ∥Nσ x∥2 (36)

V̇ <−ηV − ∥rd∥2 + γ ∥df ∥2 + εxω2 (37)

≤− ηV − ∥rd∥2 + γ d2max + εxω
2, (38)

where εx := (max
i∈IM

(εxi)). Inequality (36) is obtained when LMI 
(33) is solved, whereas inequality (37) is obtained considering 
(16). Moreover, (38) is obtained from (6), where ∥df ∥2 ≤ d2max. 
Furthermore, applying the solution of (32) in (38), we obtain: 
V̇ < −ηV − ∥rd∥2 + η < −ηV + η. (39)

By (39), we ensure that V̇ < 0 whenever ∥ed∥ ≥ λmin(P)−1/2. 
Moreover, by integrating (39) from 0 to t , the following inequal-
ities are satisfied:
V (t) < e−ηt (V (0)− 1)+ 1 < e−ηtV (0)+ 1
≤ e−ηtϑ + 1,

considering ϑ = λmax(P)ω2
0 . Hence, for any df ∈ Df , δa ∈ [−1, 1]

and ed(0) ∈ Ω0, the trajectories of (11) are bounded with respect 
to Ωd. Moreover, by integrating (37), we have:
V (t) < e−ηtV (0)− G(∥rd∥2, t)
+G(γ ∥df ∥2 + εxω2, t). (40)

In addition, V ≥ 0,∀t ≥ 0. Therefore, from inequality (40) the 
following inequality is obtained 
G(∥rd∥2, t) < G

(
γ ∥df ∥2 + εxω2, t

)
+ e−ηtϑ. (41)

Applying the supremum and multiplying by η both sides of (41), 
yields:

ηsup
[0,t]

G(∥rd∥2, t) <

ηsup
[0,t]

(G
(
γ ∥df ∥2 + εxω2, t

)
+ e−ηtϑ)

≤ γ ∥df ∥2L∞ + εxω
2
+ ηϑ. (42)

Finally, applying Lemma  1 in (42), the L∞ in Definition  5 is 
obtained.

When the L∞ performance is guaranteed, the effect of the 
remaining faults in the residual error signal is attenuated. How-
ever, the sensitivity to a certain fault must be guaranteed. In the 
following theorem, we propose a combined solution of S− and 
L∞ performances to enhance the detection capabilities of the 
residual error generator in the presence of a single sensor fault, 
whereas the effect of the remaining faults and uncertainties is 
attenuated. 

Theorem 3.  Consider systems (9), (10) and (11) and Assumption 
3. For given positive scalar η > 1, ω satisfying (16), and ed(0) ∈ Ω0, 
if there exist matrices P ∈ Rn×n, P ≻ 0, Hi ∈ Rp×p,Hi ≻ 0, 
Wi ∈ Rp×n and positive scalars β, ηf , εxi, γ  as a solution to the 
following optimization problem for all σ = i, i ∈ IM :

min
P,Wi,Hi,β,ηf ,γ ,εxi

γ − β, (43)

 s.t. (21), (22), (32),  and (33) (44)
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then under ef (0) = 0 and ez(0) = ed(0), the trajectories of system 
(9) are bounded with respect to

Ωfd :=

{
ez ∈ Rn

: ∥ez∥L∞ <
(√ηf +

√
(ϑ + 1))

√
λmin(P)

}
.

where ϑ := λmax(P)ω2
0 , with ω0 obtained considering Proposition  1. 

Furthermore, the system in (10) has a guaranteed S− performance 
according to Definition  4, whereas (11) has a guaranteed L∞ per-
formance, according to Definition  5. In addition, the observer gain 
matrices Li, Ri for each i ∈ IM  are obtained by Li = −(WiP−1)′ and 
Ri = H1/2

i .

Proof.  The proof is straightforward using the same steps as in 
Theorems  1 and 2, considering a C1 function V (ez) = V (ef )+V (ed).

Remark 1.  The value of ω satisfying (16) corresponds to the 
application of a switching signal σ  in (3) with an initial condition 
x(0) in the set Ω0 and satisfying Assumption  3. If any other σ
is considered, the results obtained in Theorems  2 and 3 are still 
valid whenever inequalities (12) and (16) hold. Nonetheless, if 
another ω or ω0 are considered, the solutions of the optimization 
problem in Theorems  2 and 3 are valid if the new values of ω
or ω0 are less or equal to the ω or ω0 considered previously, 
respectively. If the new values of ω or ω0 are greater than the 
ones considered before, then the optimization problem in The-
orem  2 must be solved again, and a new solution is not always 
guaranteed.

Remark 2.  Although the choice of greater values of ω and 
ω0 implies in more relaxed conditions to obtain σ  that satisfies 
Assumption  3, the L∞ attenuation performance as in Definition 
5 is reduced as ω or ω0 increases, since the upper bound of ω
is increased when ω is chosen to satisfy ω2

= λmax(N ′iNi)ω2 in 
(16)3 and ϑ = λmax(P)ω2

0 as defined in Theorem  2. Therefore, if 
the solutions to the optimization problem in Theorems  2 and 3 
remain valid for sufficiently large values of ω and ω0, then the 
influence of residual faults and uncertainties in the error signal 
will be amplified, making fault isolation increasingly difficult to 
achieve, as the threshold functions are designed to satisfy Jℓth(t) ≥
∥rℓd (t)∥L∞ , and the magnitude of ∥rℓd (t)∥L∞  grows when a wider 
range of uncertainties and initial conditions is taken into account.

Although the S− and L∞ performances individually are ap-
propriate to obtain the observer gains Li and Ri, a mixed S−/L∞
performance as in Definition  13 is achieved only by proper choice 
of the residual evaluation function J(·) and threshold function 
Jth(·) for a given fmin, especially under simultaneous faults.

In the next section, we propose a method to obtain Jth(·) such 
that weak isolation is guaranteed for a range of uncertainties 
satisfying δa ∈ [−δ, δ] and for all df ∈ Df  and a mixed S−/L∞
performance as in Definition  13 is guaranteed.

4.2. Residual-evaluation-based functions design

Let a residual evaluation function be defined as 

J(r, t) =

{
sup
[t−T ,t]
∥r∥, ∀t ≥ T ,

∥r∥, ∀t < T
(45)

where T > 0 is a finite time and (45) represents a residual 
evaluation function obtained as the maximum value of a residual 
error signal ∥r∥ during each time interval [t − T , t].

3 Using the Rayleigh–Ritz property, max
i∈IM
∥Nix∥2 = max

i∈IM
(x′(N ′iNi)x) ≤

max
i∈IM

(λmax(N ′iNi))∥x∥2 ≤ λmax(N ′iNi)ω2 , where the last inequality is obtained 
considering (13).
7

The next lemma provides sufficient conditions for a fault f  to 
be detected using a constant threshold function Jth(t), denoted J th, 
such that Jth(t) = J th,∀t ≥ 0 and a residual evaluation function 
satisfying (45). 

Lemma 3.  Consider systems (9), (10), and (11), functional F(·, ·, ·)
defined in (2), ed(0) ∈ Ω0 and consider positive constants dmax and 
fmax satisfying (6) and (7), respectively. For an interval t ∈ [T0, T1), 
if there exists positive constants β, γ , εx, η, ω, ϑ , fmin, α ∈ [0, 1], 
and a fault f  such that the following inequalities are satisfied
F(∥rf ∥2, T0, t) ≥ βF(∥f ∥2, T0, t) (46)

F(∥rd∥2, T0, t) ≤ γ F(∥df ∥2, T0, t)

+ αF(εxω2, T0, t)+ e−ηT0ϑ (47)

fmin≤ fmax (48)

inf
[TD,t]
∥f ∥2 = f 2min (49)

α ≤
βf 2min − (1+

√
2)2
(
γ d2max + ηe

−ηT0ϑ
)

(1+
√
2)2εxω2

, (50)

then by considering the threshold 

J th =
√
γ d2max + αεxω

2 + ηe−T0ϑ, (51)

and residual evaluation function (45), fault f  is detected during the 
interval t ∈ [T0, T1) where, T0 ≤ TD < T1 and TD is the first time in 
which ∥f ∥ ≥ fmin.

Proof.  For the time interval T0 ≤ TD < t < T1, considering (46) 
and (49) we obtain

F(∥rf ∥2, T0, t) > β inf
[TD,t]
∥f ∥2

∫ t

T0

eη(t−τ )dτ

≥ βf 2minF(1, T0, t), (52)

then the following inequality is satisfied 
sup
[T0,t]
∥rf ∥2 > βf 2min,∀t ∈ [T0, T1), (53)

whenever f ∈ Fmin. Also, by applying the supremum in both sides 
of (47) we have 

sup
[T0,t]
∥rd∥2 ≤ J

2
th,∀t ∈ [T0, T1). (54)

Since r = rf + rd, under no remaining faults and uncertainties 
during a time interval t ∈ [T0, T1), we have ∥r∥ = ∥rf ∥ in (53), 
and a fault is detected for any fmin that satisfies βf 2min ≥ J

2
th. 

Also, if for the time interval t ∈ [T0, T1) only remaining faults 
and uncertainties are present, then ∥r∥ = ∥rd∥ in (54), and no 
fault will be detected for any α in threshold (51) that satisfies 
(47). However, under uncertainties and multiple faults, strong or 
weak detectability and isolation of fault f  are guaranteed only 
if J(r, t) = sup

[t−T ,t]
∥r∥ ≥ J th holds whenever f ∈ Fmin, where 

∥rf ∥ ̸= 0 and ∥rd∥ ̸= 0. From norm properties the equality 
∥r∥2 = ∥rf ∥2 + 2rf ′rd +∥rd∥2 holds. Therefore, a fault is detected 
when 
J
2
th ≤ ∥rf ∥

2
+ 2rf ′rd + ∥rd∥2 ≤ sup

[T0,t]
∥r∥2, (55)

implying that the following inequality must hold: 

∥rf ∥2 ≥ J
2
th − 2rf ′rd − ∥rd∥2,∀t ∈ [T0, T ], (56)

which is satisfied whenever ∥rf ∥2 ≥ J
2
th + 2|rf ′rd|. Also, 2|rf ′rd| ≤

2∥r ∥∥r ∥ from the Cauchy-Schwartz inequality, and 2∥r ∥∥r ∥ ≤
f d f d
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2∥rf ∥J th from (54). Hence (56) holds for any rf , rd and J th satisfying 

∥rf ∥2 − J
2
th − 2∥rf ∥J th ≥ 0. (57)

The equality in (57) is obtained as ∥rf ∥ = (1±
√
2)J th. Since ∥rf ∥

is always positive, then (57) holds whenever 

∥rf ∥2 ≥ (1+
√
2)2J

2
th. (58)

Multiplying both sides of (55) and (58) by e−η(t−τ ) and integrating 
with respect to τ  from T0 to t we obtain

F
(
J
2
th, T0, t

)
≤ F

(
sup
[T0,t]
∥r∥2, T0, t

)
(59)

F
(
∥rf ∥2, T0, t

)
≥ F

(
((1+

√
2)J th)

2, T0, t
)
. (60)

From (46) and (49), inequality (60) holds whenever βf 2minF(1, T0, t)
≥ F(((1+

√
2)J th)2, T0, t) is satisfied for any time t ∈ [T0, T1) and 

βf 2min ≥

(
(1+
√
2)2(γ d2max+αεxω

2
+ηe−ηtϑ)

)
, which is obtained 

whenever (50) holds, since ηe−ηT0ϑ ≥ ηe−ηtϑ,∀t ≥ T0. Moreover 
when (50) is satisfied, (55) and consequently (59) holds. Finally, 
under any T0 = t − T  for every t ∈ [T0, T1), with T1 ≥ t + T , 
T0 ≥ tf + T  and 0 ≤ T < ∞ the inequality J(r, t) = sup

[t−T ,t]
∥r∥ =

sup
[T0,t]
∥r∥ ≥ J th is obtained, which means that the fault will be 

detected in a finite time.

As the faults are considered to be abrupt and permanent, 
J(r, t) will be permanently affected and ∥f (t)∥ ≥ fmin almost 
instantaneously, which means that J(r, t) ≥ J th in a short time 
if J th satisfying Jth(t) = J th,∀t ≥ 0 is obtained guaranteeing the 
conditions for Lemma  3, and the fault will be detected.

In what follows, we assume that Theorem  3 was solved and 
matrices P , Hi, Wi and positive scalars β, ηf , εx, γ , ϑ are known. 
The next theorem provides the necessary conditions to achieve 
strong and weak detectability and isolation of a fault f  with 
respect to a given fmin for a range of uncertainties as in (4), 
by considering the sensitivity and attenuation gains obtained in 
Theorem  3.

Theorem 4 (Weak isolation).  For a given fmin satisfying (48), if there 
exists scalars α ∈ [0, 1], δ ∈ [0, 1] as a solution to the following 
optimization problem for all t ≥ 0

max
α,δ

δ (61)

subject to (50) and (62)[
−αε−1xi PMiM ′iP δPQi

⋆ −αεxiN ′iNi

]
⪯ 0, (63)

then, for any fault satisfying f ∈ Fmin,∀t ≥ tf , by considering 
the residual evaluation function (45), the threshold function (51) 
guarantees the weak isolation of fault f  if −δ ≤ δa ≤ δ,∀t ≥
0, where δ represents the maximum range of δa. Moreover, if the 
solution of the optimization problem results in δ = 1, then strong 
isolation of fault f  is guaranteed. Furthermore, a mixed S−/L∞
performance as in Definition  13 is achieved.

Proof.  Let V (ez) be the C1 function considered in Theorem  3. 
Thus, the derivatives of V (ez) satisfy:

V̇ (ez) = χΨσχ − ηV + ∥rf ∥2 − β∥f ∥2 + 2e′d(P∆Aσ )x

+e′d(He(A
′

σ P + C ′σWσ ))ed + 2e′d(W
′

σ Eσ )df , (64)

for all t ≥ 0. Now, suppose that at some time interval T ≤ t < T , 
0 1
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the following inequality holds:
2ed(t)′(P∆Aσ )x(t) ≤ α(εxσ x(t)′N ′σNσ x(t)

+ ε−1xi ed(t)′PM ′σMσ Ped(t)), (65)

where α ∈ [0, 1]. Considering the uncertain function as in (4), let 
(65) be rewritten as 

ζ ′
[
−αε−1xσ PMσM ′σ P δaPQσ

⋆ −αεxσN ′σNσ

]
ζ ⪯ 0, (66)

where ζ := [ed, x]′. By denoting δ = min
i∈IM
|δa|, inequality (66) is 

satisfied whenever (63) holds since the eigenvalues that satisfy 
(63) does not change if δa is positive or negative for any σ =
i,∀i ∈ IM , which means that (65) is satisfied for any time interval 
in which δa(t) ∈ [−δ, δ],∀i ∈ IM . Moreover, the derivatives of 
V (ez) for any t ∈ [T0, T1) satisfies:
V̇ (ez) ≤ χ ′Ψσχ − ηV (ez)+∥rf ∥2 − β∥f ∥2+

+ χ ′Φ̃σχ − ∥rd∥2 + αεxσ∥Nσ x∥2 + γ ∥df ∥2,

where Φ̃σ  is similar to Φσ  defined in (35), but with Φσ
11 :=

He(A′σ P + C ′σWσ ) + α(ε−1xσ PMσM ′σ P) + ηV + C ′σHσCσ . Since (33) 
in Theorem  2 is satisfied, then Φi ≺ 0 for any α ∈ [0, 1] and 
i ∈ IM . Hence, by considering the solution of the optimization 
problem (43)–(44) in Theorem  3, the following inequalities hold:
V̇ (ez) ≤− ηV (ez)+ ∥rf ∥2 − β∥f ∥2 − ∥rd∥2

+ γ ∥df ∥2 + αεxσω2,∀t ∈ [T0, T1). (67)

By integrating (67) from T0 to t with t ∈ [T0, T1) we obtain:
V (ez(t)) ≤ e−η(t−T0)V (ez(T0))+ F(∥rf ∥2, T0, t)

− βF(∥f ∥2, T0, t)− F(∥rd∥2, T0, t)
+ γ F(∥df ∥2, T0, t)+ αεxσω2F(1, T0, t).

Under ez(T0 = 0) = ed(0), inequalities (46) and (47) in Lemma 
3 hold. Also, by Lemma, 3 when (50) is satisfied, then the fault 
f  is detected. Since α is obtained to satisfy (50) and (63), then 
for all df ∈ Df , if δa ∈ [−δ, δ] then (65) holds for all t ≥ 0, and 
weak isolation of fault f  with respect to fmin as in Definition  11 is 
achieved considering residual evaluation and threshold functions 
(45) and (51), respectively. Moreover, by (61), we obtain the 
maximum range δai ∈ [−δ, δ]. Furthermore, if δ = α = 1 is a 
solution of (61)–(63), then by Lemma  2, inequality (65) holds for 
all δai ∈ [−1, 1], i ∈ IM ,∀t ≥ 0. Therefore, strong isolation of 
f  as in Definition  12 is guaranteed. Additionally, the parameters 
β, γ , εx, ω, η and ϑ guarantee S−, L∞ performances and weak or 
strong isolation, thus a mixed S−/L∞ is obtained.

Remark 3.  Based on the results obtained in Theorem  4, for 
δ < 1, and for all df ∈ Df , if −δ ≤ δa ≤ δ holds for all 
t ∈ [tf , TD], but δa /∈ [−δ, δ] for some t < tf , weak or strong 
isolation is not achieved. Moreover, if the optimization problem 
in Theorem  4 is not feasible, then there is no guarantee that 
a fault will be detected. However, fault f  is guaranteed to be 
detected if ∥f (TD)∥ = fmin, whereas weak detectability is achieved 
if ∥f (t)∥ ≥ fmin, and −δ < δa < δ for all t ∈ [tf , TD] and for some 
t > TD. On the other hand, if −δ ≤ δa ≤ δ holds for all t ≥ tf , 
then (65) holds for all t ≥ TD ≥ tf  which is sufficient to guarantee 
strong detectability for any sensor fault satisfying the inequality 
∥f (t)∥ ≥ fmin,∀t ≥ TD.

The optimization proposed in Theorem  4 aims to find the 
maximum range of δa for a given fmin such that weak or strong 
isolation is guaranteed for any σ = i,∀i ∈ IM . However, it 
is challenging to guarantee strong isolation of faults with small 
magnitude, since the right-hand side of constraint (50) decreases 
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as fmin also decreases. On the other hand, if the designer aims 
to guarantee strong isolation without specifying fmin, the smaller 
fault magnitude to be detected can be obtained by considering 
δ = 1 and fmin

2
≤ f 2max in Theorem  4, as presented in the following 

corollary. 

Corollary 1 (Strong Isolation).  Considering δ = 1 in (4), and 
f min := f 20min, where f0min is the smallest fault magnitude to be 
detected, if there exists α ∈ [0, 1], f min as a solution of the following 
optimization problem
min
α,fmin

f min (68)

subject to (50), (63) and (69)

f min ≤ f 2max, (70)

then, by considering the residual evaluation function (45), the thresh-
old (51) guarantees the strong isolation of fault f  for any fault 
satisfying f ∈ Fmin,∀t ≥ tf , with f0min =

√
f min.

Proof.  The proof is directly obtained by the proof of Theorem  4, 
considering δ = 1. Inequality (70) is necessary to guarantee that 
f0min ∈ Fmin.

Theorem  4 provides weak or strong isolation guarantees for all 
t ≥ 0, whereas Corollary  1 provides strong isolation guarantees 
at the cost of increasing the value of fmin to the value f0min. 
However, the threshold in (51) can be conservative, since it is 
obtained considering the influence of the initial estimation error 
in the residual evaluation function, which can reduce the L∞
performance as stated in Remark  2 and also results in low values 
of δ or high values of fmin when applying Theorem  4 and Corollary 
1 respectively. Thus, to reduce the conservativeness of Jth and 
enhance FDI, we can consider a piecewise constant threshold, 
such that 

Jth(t) =

{√
γ d2max + α0εxω2 + ηϑ,∀t ∈ [0, Ts),√
γ d2max + α1εxω2 + ηe−ηTsϑ,∀t ≥ Ts,

(71)

where parameters α0 ∈ [0, 1], α1 ∈ [0, 1] and Ts are to be 
designed. The following theorem provides the parameter α1 and 
instant Ts that guarantees weak isolation for a given fmin and α0.

Theorem 5.  For given µ ∈ (0, 1], and α0 ∈ [0, 1], such that 

J(r, t) <
√
γ d2max + α0εxω2 + ηe−ηT0ϑ,∀t < Ts, (72)

if there exists scalars α1 ∈ [0, 1], δ ∈ [0, 1] as a solution to the 
following optimization problem
max
α1,δ

δ (73)

subject to LMI (63) with α = α1 and (74)

α1 ≤
βf 2min − (1+

√
2)2(1+ µ)2γ d2max

(1+
√
2)2(1+ µ)2εxω2

, (75)

then, for any fault satisfying f ∈ Fmin,∀t ≥ tf , with tf ≥ Ts
by considering the residual evaluation function (45), the threshold 
function (71) guarantees the weak isolation of fault f  whenever 
−δ ≤ δa ≤ δ,∀t ≥ Ts, where Ts is obtained as 

Ts = η−1 ln
ηϑ

((1+ µ)2 − 1)J2th∞
, (76)

with Jth∞ :=
√
γ d2max + α1εxω2.

Proof.  The proof is directly obtained by the proof of Theorem 
4 considering T = T  in (62), with T  given in (76). Moreover, 
0 s s
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when (72) holds, then uncertainties in the range δa ∈ [−δ, δ] and 
df ∈ Df  will not trigger the FDI device.

Theorem  5 considers a given α0 in which false positive alarms 
cannot occur when the piecewise constant threshold (71) is used, 
and weak isolation is guaranteed, where the value of Jth∞ rep-
resents the threshold (51) when Ts → ∞, and the scalar µ
represents (Jth(t) − Jth∞)/Jth∞. However, a fault might not be 
detected at some instants during the interval t < Ts if α0 is not 
properly chosen, which will lead to a detection delay. Moreover, 
although smaller values of µ can reduce conservativeness, time 
Ts can increase, which means that a fault can remain undetected 
for a longer period, with the maximum detection delay given by:

td := Ts − Tmin, Ts ≥ Tmin ≥ tf ,

where Tmin is the time in which ∥f ∥ = fmin for the first time4. 
Algorithm 1 provides a method to obtain the parameters for (71) 
such that strong isolation may be guaranteed during the time 
interval t ∈ [0, Ts) whenever ∥f ∥ ≥ f0min, where f0min must be 
obtained, and weak isolation can be guaranteed for the given fmin, 
such that a fault with magnitude fmin is guaranteed to be detected 
after time Ts.

Algorithm 1 Obtaining the threshold function
Input: η > 1, ω2 satisfying (16), µ ∈ (0, 1], fmin satisfying (48) and e(0) ∈ Ω0
Input: Matrices P , Hi , Li , and scalars β, εxi, γ , ϑ obtained as a solution to the 

optimization problem (43)–(44) in Theorem  3 ∀i ∈ IM  considering η and ω. 
if optimization (61)–(63) in Theorem  4 has solution ∀i ∈ IM  and δ = 1 then 

Jth(t) is defined as in (51) for all t ≥ 0, with T0 = 0
else 

if optimization (68)–(70) in Corollary  1 has solution ∀i ∈ IM  then 
α0 ← α

else 
α0 ← 1

end
if optimization (73)–(75) in Theorem  5 has solution ∀i ∈ IM  then 

Ts ← Ts , δ← δ, Jth(t) is defined as in (71), for all t ≥ 0.
else 

Jth(t) is defined as in (51), for all t ≥ 0, with α = 1 and Ts = 0, δ←−0.15.
end

end

If δ = 1 is obtained applying Algorithm 1, then a piecewise 
constant threshold does not need to be considered, since strong 
isolation is guaranteed with Jth(t) in (51). On the other hand, 
strong isolation may be guaranteed only for some f0min > fmin, or 
even the optimization problem in Corollary  1 has no solution. In 
the former scenario, there is no guarantee that a fault is detected 
if fmin ≤ ∥f ∥ < f0min for some t ∈ [tf , Ts). Still, if ∥f ∥ ≥
f0min,∀t ∈ [tf , Ts) strong isolation is still ensured during this 
interval, whereas if the optimization in Theorem  5 has a solution, 
then weak isolation is guaranteed if ∥f ∥ ≥ fmin,∀t ≥ Ts for 
δa ∈ [−δ, δ] and df ∈ Df . However, if it is not possible to 
find a threshold (51) or the piecewise constant threshold (71) 
that guarantees weak isolation for the given fmin considering 
parameters β , ηf , γ , εxi and ω as well as the matrices P,Mi,Ni
for all i ∈ IM , then a different fmin must be considered. In this 
scenario, Algorithm 1 will have a default value of δ /∈ [0, 1] as 
the output, defined in this work as −0.15.

4 The instant Tmin has a different meaning from TD , since the latter considers 
the detection time and Tmin is the first time in which ∥f ∥ ≥ fmin , which may 
not be equal due to detection delay td , although ∥f (Tmin)∥ = ∥f (TD)∥ = fmin . On 
the other hand, when T = 0, we have T = T .
s min D
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Remark 4.  In a simultaneous faults scenario, the times of occur-
rence of faults are the same, i.e., tℓf = tmf ,∀{ℓ,m ∈ F : m ̸= ℓ}, but 
the detection of each fault f ℓ ∈ F  does not necessarily occur at 
the same time, even when fault isolation is guaranteed. In fact, 
when fault isolation of all faults f ℓ ∈ F  is achieved, but the 
detection times are different, i.e., T ℓD ̸= Tm

D ,∀ℓ,m ∈ F then aℓ(t) =
1 for all t ≥ T ℓD , and am(t) = 1, for all t ≥ Tm

D , whereas aℓ(t) = 0
for all t < T ℓD , and am(t) = 0, for all t < Tm

D . Also, if T ℓD > Tm
D , 

then αℓ(t) = 0 for all t ∈ [0, Tm
D ]
⋃
[Tm

D , T
ℓ
D), whereas αm(t) = 0

only for t ≤ Tm
D . Still, weak and strong isolation guarantees 

the detection and isolation of fault f ℓ in finite time even if all 
remaining sensor are faulty (multiple faults), i.e., ∥f m∥ > 0,∀m ∈
F,∀m ̸= ℓ,∀t ≥ T ℓD , and for all δa ∈ [−1, 1] (strong isolation) or 
δa ∈ [−δ, δ] (weak isolation). Moreover, the results presented in 
this remark can be extended for any sequence of sensor faults 
since the time of the occurrence of the remaining fault does not 
affect the time of the detection of fault f ℓ.

By solving the optimization problem in Theorem  3, the gains 
Lℓi , R

ℓ
i  for all i ∈ IM  and ℓ ∈ F are obtained to guarantee 

S− and L∞ performances, and by Theorem  4 we provide the 
maximum range of the uncertainty and a threshold function in 
which weak isolation and a mixed S−/L∞ performance are guar-
anteed. Moreover, by applying Algorithm 1 it is possible to obtain 
a piecewise constant threshold to reduce the conservativeness in 
the FDI problem. However, the parameter η affects the solutions 
of Theorem  3 and, by consequence, the threshold function and 
δ obtained in Algorithm 1 may vary as different values of η in 
Theorem  3 are adopted.

In the following section, we propose a parameter tuning al-
gorithm to find a local optimum value for η to obtain the local 
maximum range of δa in which weak isolation is still guaranteed 
when the residual evaluation and threshold functions (45), and 
(51) are considered. From now on, the index ℓ to represent each 
observer will be considered again. The results obtained so far for 
one residual error generator and threshold functions still hold for 
all ℓ ∈ F without loss of generality.

4.3. Parameter tuning algorithm

Let ηmax be a chosen maximum value of ηℓ to satisfy (22), (21) 
and (33) in Theorem  3, such that
1 < ηmax < −2λmax(Ai + δaQi),∀i ∈ IM , ℓ ∈ F,

where Aσ + δaQσ  are Hurwitz for any σ = i,∀i ∈ IM  and any δa
satisfying (4). Also, let ηsteps be the interval between all values in 
a vector n ∈ Rk̃max , such that n(1) = 1 + ηsteps, n(kmax) = ηmax

and ηsteps = n(k̃ + 1) − n(k̃), with k̃ ∈ K̃η an integer index, 
where K̃η := {1, . . . , k̃max}, and let f ℓmin ≤ f ℓmax,∀ℓ ∈ F be given 
and vectors Vℓ(k̃) be composed by the solutions proposed in the 
algorithm for all k̃ ∈ K̃η for each ηℓ ∈ n and ℓ ∈ F, respectively. 
In what follows, Algorithm 2 provides the maximum range of 
uncertainties δa ∈ [−δ∗, δ∗] in which weak or strong isolation of 
fault f ℓ is achieved, where 0 ≤ δ∗ ≤ 1 is the optimization variable 
to be found. Parameters δℓ and δℓ

∗
 for each ℓ ∈ F represent a range 

and maximum range of uncertainties, respectively, in which weak 
(or strong) isolation of the ℓth fault is still guaranteed for the given 
f ℓmin. 

Algorithm 2 aims to find the values of η in which the solu-
tion of the optimization problem in Theorem  3 and Algorithm 1 
maximizes the range of δa in which weak isolation of a fault f ℓ
is guaranteed with respect to fmin, obtained as δa ∈ [−δ∗, δ∗]. If 
δℓ
∗
= −0.10, there is no η that satisfies the optimization problem 

in Theorem  3, which is possible if the values of ω2, f ℓmax and dℓmax
are very high or if the matrices A , b  or C  are ill-conditioned. In 
i i i
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this scenario, the designer should consider a switching strategy 
to reduce ω2, or smaller fault bounds f ℓmax and dℓmax, or even a 
time-scaling in system (5) as the one applied in Carneiro et al. 
(2024). On the other hand, δℓ

∗
= −0.15 means that there is no 

threshold obtained by Algorithm 1 that guarantees weak isolation 
for a given f ℓmin. 

Algorithm 2 Tuning of parameters ηℓ
Input: ω satisfying (16), µ ∈ (0, 1], fmin satisfying (48) and e(0) ∈ Ω0

for ℓ = 1, · · · , p do 
for k̃ = 1, · · · , k̃max do 
ηℓ ← n(k̃)
if optimization (43)–(44) in Theorem  3 has solution ∀i ∈ IM  then 

Run Algorithm 1
Vℓ(k̃)← δℓ

else 
Vℓ(k̃)←−0.10

end
end for
k̃ℓ∗ ← min

k̃∈K̃η

(
argmax
k̃∈K̃η

(Vℓ(k̃))
)
, ηℓ∗ ← n(k̃ℓ∗)

end for
δ∗ ← min

ℓ∈F
Vℓ(k̃ℓ∗)

Furthermore, in the best-case scenario of the solution of Al-
gorithm 2, the parameter δ∗ obtained is equal to one, and strong 
isolation is guaranteed. On the other hand, if it is still possible 
to find a solution for the optimization problems in Theorem  3 
and Algorithm 1, the worst-case scenario obtained by Algorithm 
2 is δ∗ = αℓ(k̃ℓ∗) = 0,∀ℓ ∈ F, which implies that weak isolation 
is achieved only if system (3) is a switched affine system with-
out uncertainties. Furthermore, observer gains Lℓi , Rℓi , parameters 
γ ℓ, εℓx , βℓ, αℓ and the threshold functions as in (51) or in (71) for 
all i ∈ IM  and ℓ ∈ F are obtained by selecting η = ηℓ

∗
 in Theorem 

3 and by applying Algorithm 1.

5. Numerical example

Consider a bidirectional DC–DC Cuk converter with parasitic 
resistances as in Bashir, Jamil, Yamin, and Ullah (2021), where 
the switching position is defined as system modes, such that 
σ = i = 1 and σ = i = 0 corresponds to the on and off state 
of the active switching device, respectively. Also, we considering 
a value of the load resistance, varying 10% around the nominal 
value Ro such that the uncertain load resistance is given by Ro±Ro, 
where Ro is the maximum variation given by Ro := 0.1Ro. The 
dynamics of the converter are thus written as an uncertain SAS 
(3), with x(t) = [iL1, vC1, iL2, vC2]′, b1 = b2 = [Vin/Lin1, 0, 0, 0]′, 
F1 = F2 = I3 and with the following matrices

A1 =

⎡⎢⎢⎢⎢⎣
−

RL1+Rs
Lin1

0 0 0

0 0 −1
Co1

0

−
Rs
Lin2

1
Lin2

a331 a341
0 0 Ro

Co2(Ro+RC2)
a441

⎤⎥⎥⎥⎥⎦ ,

A2 =

⎡⎢⎢⎢⎢⎢⎣
−

RC1+RL1+RD
Lin1

−
1

Lin1
−

RD
Lin1

0
1

Co1
0 0 0

−
RD
Lin2

0 a332 a341
0 0 Ro

Co2(Ro+RC2)
a441

⎤⎥⎥⎥⎥⎥⎦ ,

a331 = −
Rs + RC1 + RL2

−
RoRC2

,

Lin2 Lin2(Ro + RC2)
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Table 1
Parameters of the Cuk converter.
 Parameter Value Description  
 Lin1 1mH Inductance of inductor 1  
 Lin2 2mH Inductance of inductor 2  
 Co1 100µF Capacitance of capacitor 1  
 Co2 2mF Capacitance of capacitor 2  
 RL1 0.1� Parasitic resistance of inductor 1  
 RL2 0.2� Parasitic resistance of inductor 2  
 RC1 10m� Parasitic resistance of capacitor 1  
 RC2 10m� Parasitic resistance of capacitor 2  
 RS 0.10m� Switch resistance  
 RD 0.01m� Diode resistance  
 Ro 3� Nominal Load resistance  
 Ro 0.3� Maximum variation of Load resistance 
 Vin 25 V Input source voltage (constant)  

a341 = −
Ro

Lin2(Ro + RC2)
, a441 = −

1
Co2(Ro + RC2)

,

a332 = −
RL2 + RD

Lin2
−

RoRC2

Lin2(Ro + RC2)
,

C1 = C2 =

⎡⎢⎣0 0 RC2Ro
RC2+Ro

Ro
RC2+Ro

1 0 0 0
0 0 1 0

⎤⎥⎦ ,
and Q1 = M1N1, Q2 = M2N2 with

M1 = M2 =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
q331 q341 0 0
q431 q441 0 0

⎤⎥⎥⎥⎦ , N1 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
q331 =

RoRC2

Lin2(Ro + RC2)
−

(Ro + Ro)RC2

Lin2((Ro + Ro)+ RC2)

q341 =
Ro

Lin2(Ro + RC2)
−

Ro + Ro

Lin2((Ro + Ro)+ RC2)

q431 = −
Ro

Co2(Ro + RC2)
+

Ro + Ro

Co2((Ro + Ro)+ RC2)

q441 =
1

(Ro + RC2)Co2
−

1

((Ro + Ro)+ RC2)Co2

where ∆Ro is a function of δa(t) that satisfies

∆Ro(δa(t)) = −Ro +
Ro(Ro+ Ro)

Ro+ (1− δa(t))Ro + RC2

+
RC2(Ro + δa(t)Ro)

Ro+ (1− δa(t))Ro + RC2
.

and iL1, iL2 are inductor currents, vC1, vC2 are capacitor voltages. 
The value and description of all variables in matrices Ai and bi for 
all i ∈ IM  are in Table  1.

Without sensor faults, the output of the uncertain system is 
y = C1x, hence y = [vo, iL1, iL2]′, where vo = (RC2Ro)/(RC2 +

Ro)iL2+Ro/(RC2+Ro)vc2 is the output voltage, and each sensor rep-
resents each state variable, such that the ℓth sensor corresponds 
to the sensor in the position ℓ of y. For instance, ℓ ∈ F = 3
corresponds to the measurements of the sensor for the second 
inductor current iL2. An schematic of FDI scheme applied to the 
Cuk converter is represented in Fig.  1.

Moreover, ω2
= max

t∈[0,Tf ]
∥N1x(t)∥2 = max

t∈[0,Tf ]
∥N2x(t)∥2 is obtained 

considering the following Pulse-Width Modulation (PWM)-type 
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switching signal: 
σ (t) = 2− 0.5sign(sin 2π20 kt), (77)

corresponding to a duty cycle of 50% and switching frequency of 
20 kHz applied in the DC–DC converter, with an initial condition 
of x(0) = [1.424, 9.416, 1.424, 4.274]′ in the set Ω0 defined 
in Assumption  3, with ∥x(0)∥2 = 110.259 < ω2

0 , ω2
0 = 625, 

corresponding to a previous operation point before applying the 
FDI Devices and Tf = 0.6 s is the final time of the simulation.

Moreover, we considered a known square-wave uncertainty 
function defined as follows: 
δa(t) = −δ sign(sin 2π fδt),∀t ∈ [0, Tf ]. (78)

where fδ = 20 Hz, which corresponds to a variation with slow 
development comparing to the PWM frequency, in order to avoid 
parametric resonance.

Although it is not possible to estimate ω precisely, we con-
sidered ω2

= max
t∈[0,Tf ]

∥N1x(t)∥2, which was obtained for the given 
initial condition, switching signal, and uncertainty function (78), 
considering 100 simulations applying different variant values of δ
varying from −1 to 1 with an increment of 0.0202. The maximum 
value of ω were then obtained for δ = 1, which corresponds to 
a load increase of 0.30� resulting in ω2

= 823.977. The values 
of ∥N1x(t)∥2 during the time interval t ∈ [0, Tf ] for δ = 1 are 
shown in Fig.  2 along with the switching signal and uncertainty 
function and ω. The trajectories of the switched system and 
output voltages are shown in Fig.  3.

To verify the application of the proposed pseudo-dedicated ob-
server scheme, suppose that classical DOS or GOS using residual 
error generators composed by Luenberger observers are consid-
ered to detect and isolate faults in all sensors in the proposed 
Cuk DC–DC converter. To detect and isolate faults in all 3 sensors, 
the classical GOS requires a number of 3 observers with order 
3−1 = 2 (i.e., at least one sensor is not considered in the observer 
design for robust isolation), whereas the classical DOS requires 3
observers with order 1 (for full isolation). To exemplify the use 
of a classical GOS in the proposed Cuk DC–DC converter, consider 
a set S := {S1, S2, S3

} such that each subset Sℓ of S represents 
a set of all 3 sensor indices except the ℓth index, considered for 
each observer design. To design one of the observers to detect 
faults in sensor 2, i.e, using set S2, use a matrix C− corresponding 
to the matrix C1 removing the second row and y− the output 
vector excluding the second element. In the scenario in which 
the measurement of the second sensor is not considered, both 
GOS and DOS will not be able to provide FDI of faults in sensor 
2, making the observer design infeasible since the pair (A2, C−) is 
not observable. Additionally, since observability is not guaranteed 
using sensors 1 and 3 simultaneously, thus it is not possible to 
guarantee observability using only sensor 1 or sensor 3 to design 
observers following the DOS structure. On the other hand, the 
proposed pseudo-dedicated observer scheme considers that the 
measurements of all sensors can be used in the FDI strategy. 
Thus, considering a set of 3 observers using the information of 
all 3 sensors, it is possible to verify that all pairs (Ai, Ci) for all 
σ = i,∀i ∈ IM , are observable, which satisfies Assumption 
2. Therefore, the pseudo-dedicated observer scheme proposed is 
adequate for the detection and isolation of faults in all sensor.

Considering ω obtained previously, the next section presents 
the design of the FDI devices for all f ℓ ∈ F  sensor faults and 
simulation results.

5.1. Design of the FDI devices

Considering the representation in (5), vector fs can be written 
as f =

[
f 1, f 2, f 3

]′. Also, it is straightforward to verify that 
s
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Fig. 1. FDI scheme of the Cuk converter with parasitic resistances. The thresholds Jℓth corresponds to threshold functions (51) or (71) and aℓ is the alarm function as 
defined in (17), for each ℓ ∈ F.
Fig. 2. The bound ω2 as in (16) applying PWM-type switching signal (77) in (5) 
without faults. The uncertainty function is represented in blue, with δ = 1 and 
uncertainty function (78).

Fig. 3. Trajectories of the switched system and output voltage during the 
transient phase, where ∥x∥ reaches its maximum.
12
Table 2
Bounds of sensor faults.
 ℓ f ℓmax dℓmax f ℓmin  
 1 106.232 50.078 16.997 
 2 35.411 111.979 5.667  
 3 35.411 111.979 5.667  

d1f =
[
f 2, f 3

]′
, d2f =

[
f 1, f 3

]′ and d3f = [
f 1, f 2

]′. Then, the 
maximum magnitude of all sensor faults and remaining faults 
can be determined individually for each i ∈ IM . Moreover, the 
smallest fault magnitude to be detected for each sensor was given 
as f ℓmin = 0.16f ℓmax,∀ℓ ∈ F. The values considered for f ℓmax, dℓmax
and f ℓmin are present in Table  2, where values of dℓmax,∀i ∈ IM  are 
obtained by adding the contribution of the magnitude of all faults 
except the faults in the ℓth sensor and the maximum magnitude 
f max for fs is obtained as f max =

√∑
ℓ∈F f ℓmax

2
= 117.44.

The design of the bank of residual error generators and thresh-
old functions for all FDI devices are obtained simultaneously 
by applying Algorithm 2. The initial conditions of all observers 
were defined as zℓ(0) = [1.416, 0, 1.416, 4.249], considering 
Proposition  1, such that ∥ez(0)∥2 = 88.19 < ω2

0 . The value of 
δ∗ was obtained considering µ = 0.05, ηmax = 60, ηsteps = 1, 
ω2
= 823.977, ω2

0 = 625, kmax = 59, and considering the 
parameters f ℓmax, d

ℓ
max and f ℓmin obtained in Table  2, resulting in 

δ∗ = 0.188. Also, Fig.  4 shows the variation of δℓ as η changed 
for each FDI Device. The remaining parameters obtained after 
applying Algorithm 2 are given in Table  3, and Table  4. Observe 
that was possible to find smallest fault magnitudes to be detected 
that satisfies strong isolation conditions for any t ≥ 0 for FDI 
Devices 1. On the other hand, it is not possible to achieve strong 
isolation condition using FDI Device 2 and 3, i.e., there no exists 
f 2min ≤ f 2max and f 3min ≤ f 3max such that strong isolation is guaranteed 
for any t ≥ 0.

Considering ηℓ = ηℓ
∗
 in Theorem  3 for all i ∈ IM , ℓ ∈ F, 

we obtain the residual error generator gain matrices Lℓi , Rℓi  for all 
i ∈ IM , ℓ ∈ F. However, the resulting matrices Pℓ,Hℓi ,W ℓ

i , Lℓi , Rℓi , 
are not presented in this manuscript due to space limitations. 
Still, all data are available in a Mendeley repository at Carneiro, 
Faria, Oliveira, Cucuzzella, and Ferrara (2025).
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Fig. 4. The first plot (from top to bottom) represents the evolution of δ1
according to η using Algorithm 2. The second and third plots are related to 
the evolution of δ2 and δ3 , respectively.

Table 3
Optimization parameters obtained after applying Algorithm 2.
 ℓ k̃ℓ

∗
ηℓ ηℓf × 105 βℓ δℓ

∗
f ℓ0min  

 1 16 17 8.639 0.416 1 31.704 
 2 51 52 8.030 1.955 0.188 ∄  
 3 56 57 10.312 4.547 0.399 ∄  

Table 4
Parameters obtained for all threshold functions.
 ℓ γ ℓ × 10−8 εℓx ϑℓ αℓ0 αℓ1 T ℓs  
 1 2.0891 0.0206 18.753 1 1 0.3064 
 2 2.508 0.0631 50.512 1 0.188 0.1514 
 3 4.822 0.0692 54.412 1 0.399 0.1262 

The values of δℓ
∗
 are small since the method to obtain these 

values is conservative, and the f ℓmin values considered are not 
sufficiently high to guarantee strong isolation for all faults. How-
ever, with f 1min = 16.997 it is possible to ensure strong isolation 
of faults in the sensor 1 (output voltage sensor). In the next 
section, we are going to show through simulation results that 
weak isolation for all sensor faults is obtained considering the 
uncertainty function (78) with δ = δ∗ = 0.1888.

5.2. Simulation of sensor faults

To illustrate the effectiveness of the proposed approach, we 
considered permanent abrupt sensor faults as in Definition  2. 
These faults were modeled as offset faults, characterized by a 
constant magnitude φℓ after the time of the fault occurrence tℓf , 
in which the magnitude and the time of occurrence of each fault 
depend on each simulation scenario, according to Table  5. The 
simulations for each scenario are presented in Figs.  5(a), 5(b), 5(c), 
5(d), 5(e) and 5(f), respectively, considering a residual evaluation 
function as in (45) with T = 10−3 s and piecewise constant 
threshold functions with parameters given in Table  2 and 4. The 
scenarios 1 to 3 represent simultaneous faults occurring before 
switching time T ℓs  for each ℓ ∈ F, whereas scenarios 4 to 6 consist 
in consecutive faults in which a fault in sensor ℓ occurs before T ℓs .

The simulation results show that for an uncertainty function 
with δ = δ∗ = 0.188, the FDI devices guarantee weak isolation 
of simultaneous and consecutive faults whenever the smallest 
fault magnitude to be detected in each ℓ ∈ F sensor is greater 
than or equal f ℓmin. Observe that in all scenarios, aℓ = 1 only 
after the occurrence of the corresponding ℓth sensor fault, which 
13
Table 5
Parameters obtained for all FDI devices.
 Scenario δ φ1

2 φ2
2 φ3

2 t2f t2f t3f  
 1 0.188 f 2min f 2max f 3max 2T 1

s 2T 1
s 2T 1

s  
 2 0.188 f 2max f 2min f 3max 2T 2

s 2T 2
s 2T 2

s  
 3 0.188 f 2max f 2max f 3min 2T 3

s 2T 3
s 2T 3

s  
 4 0.188 f 2min f 2max f 3max 0.75T 1

s 0.25T 1
s 0.25T 1

s  
 5 0.188 f 2max f 2min f 3max 0.25T 2

s 0.75T 2
s 0.25T 2

s  
 6 0.188 f 2max f 2max f 3min 0.25T 3

s 0.25T 3
s 0.75T 3

s  

shows that weak isolation is achieved for FDI Devices 2 and 3, 
whereas strong isolation is achieved in sensor 1 with given f 1min. 
However, weak and strong isolation are achieved after a time 
t ≥ T ℓs ≥ tℓf , for each fault f ℓ,∀ℓ ∈ F, which means that, although 
uncertainties and remaining faults cannot trigger the FDI Devices, 
a detection delay is present whenever tℓf < T ℓs ,∀ℓ ∈ F.

6. Conclusions

We provided a robust solution to detect and isolate simul-
taneous and consecutive permanent abrupt sensor faults in a 
class of uncertain SAS that combines S− and L∞ fault sensitivity 
and attenuation performances, respectively, along with optimal 
threshold functions for a range of uncertainties and the small-
est fault to be detected. The optimization problem proposed in 
Theorem  3 provides the residual error generators gains to en-
hance sensitivity to specific faults while attenuating the effect of 
uncertainties and remaining faults in the residual.

Moreover, Theorem  4 provides a threshold value that guar-
antees weak isolation for faults with magnitudes exceeding a 
given value for the maximum range of uncertainties functions, 
whereas Corollary  1 provides sufficient conditions and a value 
for the smallest fault magnitude to be detected to guarantee 
strong isolation. Furthermore, Theorem  5 provides an LMI-based 
optimization problem to obtain less conservative conditions to 
achieve weak isolation when the initial estimation error is non-
zero. Finally, Algorithms 1 and 2 provide the gains and threshold 
functions so that the weak isolation is guaranteed for a maximum 
range of uncertainties according to the value associated with the 
decay rate.

The numerical example has shown that the method of thresh-
old calculation by choosing parameters αℓ0 and αℓ1 for each ℓ ∈ F
provides a degree of freedom in the threshold design based on 
the attenuation gains obtained via LMIs, which can be useful for 
practical applications.
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Fig. 5. For all simulated scenarios, the black solid lines in the first axis correspond to the residual evaluation function, whereas the dashed green lines corresponds 
to the threshold functions; the red solid lines and dashed blue lines correspond to the absolute value of the fault in sensor ℓ (|f ℓ|) and magnitude of remaining faults 
∥dℓf ∥, respectively; the gray dotted line in the third plot represents the alarm function. For Scenarios 1 to 3, a fault in all sensors occur at t = 2T ℓs  (simultaneous 
fault). On the other hand, in Scenarios 4 to 6, the fault in all sensors except sensor ℓ occurs at t = 0.25T ℓs , and the fault in sensor ℓ occurs at t = 0.75T ℓs  (consecutive 
faults). Note that in Scenarios 4 to 6 there is a detection delay tℓd = T ℓs − tℓf  since the fault occurs before T ℓs . However, the fault is detected for any t ≥ Ts .
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