Automatica 182 (2025) 112526

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Observer-based detection and isolation of permanent sensor faults in a
class of uncertain switched affine systems™

l.)

Check for
updates

Diego dos Santos Carneiro**, Flavio Andrade Faria®, Vilma Alves de Oliveira?,

Michele Cucuzzellad, Antonella Ferrara©

@ Department of Electrical and Computer Engineering, Universidade de Sdo Paulo (USP), Sao Carlos, Brazil

b Department of Mathematics, School of Engineering, Sao Paulo State University (UNESP), Ilha Solteira, Brazil
¢ Department of Electrical, Computer and Biomedical Engineering, The University of Pavia (UNIPV), Pavia, Italy
d Engineering and Technology Institute Groningen, The University of Groningen, Groningen, Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 13 May 2024

Received in revised form 16 May 2025
Accepted 24 June 2025

Available online 23 August 2025

This paper develops a robust fault detection and isolation (FDI) strategy for a class of uncertain
continuous-time switched affine systems when the system state is not fully available for measurement,
and all system sensors are prone to permanent abrupt bounded faults. The FDI strategy is obtained
by designing a number of FDI devices equal to the number of sensors. First, we give linear matrix
inequalities conditions to design a bank of full-state Luenberger observers in a pseudo-dedicated
scheme with guaranteed S_ and £, performances to work as residual error generators (REGs). In the
sequence, considering an extension of the concepts of weak and strong detectability and novel concepts
of weak and strong isolation, residual evaluation functions are defined, and threshold functions are
designed considering the gains and parameters obtained in the REG design, taking into consideration
the smallest fault magnitude to be detected to achieve a mixed S_ /L performance. An Algorithm to
determine a piecewise constant threshold function is proposed to obtain less conservative constraints
in the optimization problem. Furthermore, parameter-tuning algorithms are proposed to obtain local
optima thresholds and REGs to satisfy weak isolation conditions over a range of uncertainties. Finally,
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a Cuk DC-DC converter is considered to demonstrate the effectiveness of the proposed approach.
© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and

similar technologies.

1. Introduction

Observer-based strategies working as residual error gener-
ators for mitigating disturbances and detecting faults in dy-
namic systems have gained prominence in the literature. Recent
advancements in isolating, reconstructing, and mitigating the
effects of disturbances, as well as addressing a class of com-
munication attacks have appeared (Rinaldi, Menon, Edwards,
Ferrara, & Shtessel, 2021). In the context of switched systems
switched, Marouani, Nguyen, Dinh, and Raissi (2024) and Hao
and Huang (2024) propose observers to detect faults in discrete-
time switched systems and Ali et al. (2024) designs observers
with a guaranteed H.,/#_ attenuation /sensitivity performance
for a class of continuous-time switched systems under sensor
faults and disturbances. In Rinaldi, Cucuzzella, Menon, Ferrara,
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and Edwards (2022), the authors propose an observer-based
approach to detect load-altering attacks in switched systems
that may cause critical faults, while Ribeiro, Carneiro, Costa, and
Oliveira (2022) considers switched Markovian jump systems in
the design of the residual error generators to detect covert attacks
in cyber-physical systems. Fault detection and isolation (FDI)
strategies for a class of continuous-time switched affine systems
strategies for switched affine systems are proposed in Li, Ma,
and Zhao (2021) and Carneiro, Silva, Faria, Magossi, and Oliveira
(2021). Although, fault-tolerance switching laws for uncertain
continuous-time switched affine systems (SAS) subject to additive
sensor faults have been considered in the literature (Carneiro,
Faria, Silva, Zilli, & Oliveira, 2024), the problem of FDI of multi-
ple permanent faults in uncertain SAS using an observer-based
approach with sensitivity and attenuation performances under
permanent faults and uncertainties is not extensively discussed
in the literature.

Usually, to guarantee the detection and isolation of
multiple sensor or actuator faults in a system, a bank of observer-
based residual error generators can be designed in a gener-
alized observer scheme (GOS) or dedicated observer scheme
(DOS) (Blanke, Kinnaert, Lunze, & Staroswiecki, 2016; Commault,
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Dion, Sename, & Motyeian, 2002), such that it is possible to
determine which component is faulty without the need to esti-
mate the fault magnitude. The recent work Sacchi, Incremona,
and Ferrara (2023), proposes an active FDI structure to detect
and isolate multiple faults by using a mixed model-based and
data-driven strategy using a bank of observers, but the authors
consider an estimation of the fault magnitude, which can be
challenging to obtain for uncertain SAS. On the other hand, to
determine only the location of the fault,i.e., which component is
faulty, the classical DOS guarantees better fault isolation at the
cost of observability reduction and less robustness, whereas GOS
improves the observability and robustness properties (Capisani,
Ferrara, De Loza, & Fridman, 2012), but multiple faults cannot
be detected. Thus, a mixed structure using the philosophy of
dedicated fault detection with a dedicated observer scheme by
preserving observability, as in the GOS, is an alternative when
all sensors are prone to faults, and multiple faults should be
detected.

However, to achieve fault isolation, the observers must be
sensitive to a specific set of sensor faults and robust against
uncertainties and faults that do not belong to the set of faults
to be detected (Blanke et al., 2016). An alternative to guarantee
attenuation and sensitivity performance is by designing the gains
of the observers considering a mixed #_/H, performance, as
in Ali et al. (2024), Du, Yang, Zhao, and Tan (2020), Hao and Huang
(2024), Su, Fan, and Li (2019). However, H..-based strategies are
not suitable to the design fault detection observers with a given
attenuation performance for certain classes of bounded faults,
particularly permanent faults, which are faults that can last for
long periods since their magnitude does not trigger any protective
device (Greber, Fodor, & Magyar, 2020). Specifically, when the
magnitude of the fault remains greater than zero for all time after
the fault occurrence, performances such as the #,-based cannot
be applied, and £..-based performances as in Li et al. (2021), Xie,
Zong, Yang, Chen, and Shi (2022) need to be considered. More-
over, to the best of our knowledge, a comprehensive sensitivity
performance for permanent sensor faults in uncertain SAS has not
been reported in the literature, although Reppa, Timotheou, Poly-
carpou, and Panayiotou (2017) proposes an optimization method
to obtain the gains of the observers to enhance sensitivity to
permanent faults.

Also, concepts such as weak or strong detectability can be
considered as a property of the residual generator with respect
to permanent faults, as in Blanke et al. (2016), Reppa, Polycarpou,
and Panayiotou (2016), Reppa et al. (2017), and the observer
design can take these concepts into consideration. In addition,
weak and strong isolation concepts are introduced in Gertler
and McAvoy (1997), but this topic is not widely explored in the
FDI literature. Furthermore, with the assumption that all sensors
are prone to faults and the system is subject to uncertainties,
it is challenging to provide full fault isolation since the residual
error generator can be affected by uncertainties and by faults
that are not supposed to be detected, referred to as remaining
faults, which highlights the importance of the establishment of
residual evaluation functions as in Reppa, Timotheou, Polycarpou,
and Panayiotou (2018), such that a fault is detected whenever
the magnitude of this function is greater than a given threshold.
Moreover, the selection of thresholds must account for the effects
of uncertainties and residual faults to prevent false alarms (Alwi,
Edwards, & Tan, 2011), and a method to obtain the threshold
values for uncertain SAS has not yet been addressed.

This paper addresses the critical issue of fault detection and
isolation for a class of continuous-time uncertain SAS when all
sensors are subject to additive permanent faults, and the system
state is not fully available for measurements. The strategy pro-
posed in this paper is applied for situations where the classical
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dedicated observer and generalized schemes cannot be applied
to detect and isolate faults in multiple sensors, where multiple
faults, which may be simultaneous, are detected by using a strat-
egy to infer that if two or more residuals are affected, then faults
occur in different sensors. The main contributions of this paper
are summarized as follows:

(1) Differing from the classical and generalized dedicated ob-
server schemes, we consider a pseudo-dedicated observer
scheme for the FDI strategy with a bank of full-order ob-
servers working as residual error generators, where the
observer of index ¢ is designed to detect faults in the
sensor of the same index, whereas the effect of system
uncertainties and faults in other sensors are attenuated in
the residual error generator.

(2) We guarantee S_ and L, performances in the observer's
design, improving robustness and observability properties
in relation to the classical dedicated observer scheme, and
the stability of each residual error generator is analyzed in
terms of linear matrix inequalities (LMIs).

(3) We extend the definition of strong and weak detection
given in Reppa et al. (2018) by including a desired fault
magnitude to be detected and a range of uncertainties
in which weak or strong isolation are guaranteed. This is
achieved by considering threshold functions obtained using
the solution of LMI-based optimization problems, ensuring
a mixed S_/L., sensitivity/attenuation performance.

(4) We provide a tuning algorithm to improve the sensitiv-
ity/attenuation performance of all residual error genera-
tors.

The remaining of the paper is organized as follows. Section 2
presents the mathematical background for the main results, and
Section 3 presents the problem formulation. Section 4 presents
the main results on the design of FDI devices. Section 5 shows
numerical results obtained by applying the proposed strategy
for the detection and isolation of sensor faults in a DC-DC Cuk
Converter. Finally, Section 6 presents the conclusion and future
directions of the current work.

Notations

The symbol x denotes the transposed element in symmetric
matrices, (') indicates transpose and 1 denotes the right pseudo-
inverse. For symmetric matrices, M < 0 (M > 0) indicates that
M is negative (positive) definite and M < 0 (M > 0) indicates
that M is negative (positive) semi-definite. The operator He(M)
denotes the following sum of matrices: He(M) := (M + M’).
The maximum and minimum eigenvalue of a square real matrix
M is denoted as Amax(M) and Amin(M), respectively. For A and
B positive definite matrices, A > B implies that A — B > 0.
The set composed by the first .# positive integers is denoted
by I, = {1,...,.#}, where .# is a finite positive integer
corresponding to the number of system modes. For a matrix in the
set M ={My,...,M;,...,M_ 4}, Anax(M;) = lrglax(xmax(Mi)) and

A
Amin(M;) == minAnin(M;). The set of real non-negative numbers
i€l_y
is denoted by R,. The co-norm of a function f : R — R in
the Lebesque measurable space £, is denoted by ||f|z,, where

Ifllze. == sup (If(z)]) with |f| the absolute value of f, and the
T€[Tp,t

1-norm of f [13 t]he Lebesgue measurable space £; is denoted by
If Il z,- The Euclidean norm of a vector x € R" is denoted by ||x||. A
¢! is function is a continuous function which is differentiable and
has a continuous fist time derivative. The notation sign(f) is the
signum function, where sign(f) = 1, if f > 0, sign(f) = —1,if f <
0 and sign(f) =0, if f = 0.
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2. Preliminaries

The following definitions and results are required to obtain the
main contributions developed in this work.

Definition 1. Letf : R — R and let n > 0 be a scalar. Functionals
G:RxR;y — RandF: R x Ry — R are defined as

t
G(f,t) :=/ e =D (r)dr (1)
0
t
B To. 1) = f e If (). 2)
To
Lemma 1. Letf := |v|? with v : RY x Ry — R, bounded and

measurable on [Ty, t]. The equality ||v||2£oo = n supF(f, Ty, t) holds,
[To.t]
where F(-, -, t) is defined in (2).

Proof. The proof is a direct application of Theorem 8.8 on
page 128 of Wheeden and Zygmund (1977), where g(t — 7) =
ne Mt=7) p = oo, p := 1, 1 + L = 1, and the supremum is

P
taken over function g(t — 1), in wﬁich gt =)z, <1

Lemma 2 (Khargonekar, Petersen, & Zhou, 1990). For any real
matrices of appropriate dimensions M, N, constant ¢ > 0 and a
time-varying matrix F(t) satisfying F(tYF(t) < I forany t > 0
we have M’ F(t)N 4+ N'F'(t)M < e '"M’M + sN'N.

Definition 2 (Permanent Abrupt Fault (Reppa et al, 2016)). Let
6(t) be the time profile, which includes the time duration and
the evolution mode of occurrence or disappearance, and ¢(t) be
a function that represents the signature of a fault f, respectively.
A permanent abrupt fault is defined as f(t) = 6(t)¢(t —tr), where
$1 <Pl < ¢2,Vt > 0,91 € Ry, ¢ € Ry, 0(8) =0, if t < t or
6(t) = 1if t > tr, where ¢ is the instant of the first occurrence
of the fault, formally defined as t; := min{t € Ry : ||[f(£)] > ¢1}.

Definition 3 (FDI Device). An FDI device is a system com-
posed of an observer-based residual error generator and residual-
evaluation-based functions such as residual evaluation, threshold,
and alarm, whose objective is to detect and isolate specific faults.

3. Problem formulation

We consider a class of continuous-time uncertain SAS subject
to additive permanent abrupt sensor faults as’

X = (A, + AA, )X + b, x(0) = xq
IER T (3)
Y =GCx+Fsfs,

where o(-) : R, — 1, is a piecewise constant switching
signal that selects a known mode i in the set I_,, x € R" is
the state, y € RP is the output, with p < n, f; € RP is the
sensor faults vector, corresponding to an exogenous signal that
affects the output measurements, with 0 < ||f|| < fax Yt > 0,
where f_., > 0 is a finite constant given by the designer and
fs(0) = 0. The matrices A, € R™" b; €™™ G € RP*" and
F; € RP*P represent state, input, output and fault distribution
matrices, respectively and C; is full row rank for all i € I_,. For
everyi € I_,, matrices AA; € R™" have the following form (Elias,
Faria, Araujo, Magossi, & Oliveira, 2022):

AA; = 84()Q;, |8a(t)] <6,Viel 4, Vt >0, (4)

1 For some switched power electronic systems representation, the vector b,
in (3) can be expressed as b, = B,u(t), where u € R™ is an external input
assumed to be constant for all t > 0 and B, is an input matrix. Since u is a
constant vector, then b, is an affine term.
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where Q; := M;N; are given for alli € 1 4, and §, : R —
[—=6, 8] are unknown functions and § € [0, 1] is a constant to
be given. The matrices M; € R™ ™ N; € R™*" with my =
mﬂax(rank(Qj)) are matrices that represent structured uncertain-
1€l gy

ties and are obtained by using full rank factorization (Piziak &
Odell, 1999).

To obtain the detection and isolation for each system sensor
among a number of p sensors, the following assumptions are
considered.

Assumption 1. The system in (3) is not fully available for
measurements, the pairs (A;, C;) are observable for alli € T_, and
each sensor fault f¢ for all £ € F is considered to be a permanent
abrupt fault based on Definition 2, with f = f¢, tr = tf.

Assumption 2. All sensors are prone to bounded faults, all
sensor faults may occur simultaneously, and for all i € 1 4, F;
are assumed to be diagonal with rank(F;) = p.

Assumption 2 represents a critical condition where all sensors
could be permanently damaged. Although all the sensor faults
may occur simultaneously, they are independent, i.e., a fault in a
sensor does not depend on the occurrence of faults in any other
Sensor.

Let F := {1,...,p} be the set of all fault indices, and let
ZF = {f* € R : £ e F} be the set of all sensor faults, where
function f¢ € Lo, V£ € F represents the £ fault function in the
2™ position of vector f;. Since F, is assumed to be diagonal for
any o = i,i € 14, we split the matrices F; in (3) into p x i
different matrices Df € RP, where each Df matrix represents
the ¢™ column of F;, such that Fif, = Y~)_, Df*. Let now df :=
[l fL L fP], df € Lo, df €RPY, pri=p—1, L€
F define a vector of the remaining faults, i.e., a vector containing
all faults except the ¢ fault, and let Ef € RP*P1 be matrices
composed by the columns of F; except the ¢! column. The system
in (3) is then rewritten as follows:

, {)’(:(Ao + AA, X + by

X 5
" |y = Cox 4 DI +ELd. 2

The objective of this paper is to design a number of p FDI devices
as in Definition 3, where each ¢™ FDI device is designed to detect
and isolate each permanent abrupt sensor fault f¢ even under
the presence of multiple sensor faults, i.e., each fault f¢ must
be detected. Uncertainties and remaining faults djf must remain
undetected in the ¢! FDI device, for some uncertainty functions
satisfying (4) and for any di € D, with D' obtained as

D' ={df eR: 0 < ||df|l < db,,}. (6)
fax < fmax represents the bound of the magnitude
of faults vector f; when all sensor faults occur simultaneously,
except for the ¢ fault, and constants f*., < fi.x are known and
represents the maximum bound of the magnitude of each sensor
fault, satisfying

0 < Il < fla (7)

We also propose an FDI strategy for the class of systems G, under
a measurable switching signal o, assuming that the solutions of
the system in (3) are bounded.

where d¢

3.1. Structure of the observer-based residual error generators

To obtain the bank of residual error generators in a pseudo-
dedicated scheme, let z € R" and r® € R? be the state estimate,
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and a residual error signal, respectively. For each £ € F, the
residual error generator is designed as follows:

ot . 2 =A,z2" + b, + LS (y — C,2Y), )
T =R -G,

where Lf € R™P are the observer gain matrices and Rf € RP*P
are gain matrices for the residual error signal, with Rf > 0,Vi e
Tyg, L el.

Let ef = x—z* denote the estimation error. Then, the dynamics
of the error eﬁ are given by
& = (A, —L,C,)e; — Lo (DLf* + ELdf) 4+ AAsx

z
r' =R (Coe} + DLf* + ELdp).

Considering linear dynamics, the estimation error in (9) can be

decomposed in terms of fault and remaining faults as eﬁ = ef+ef,,
¢

(9)

rt :=rf 4 r; and system (9) can be represented by
& = (A, — Ly Cy)ef — L DL f*
¢ _ plir of 1 Nt (10)
rf = RS (Coef + Df),
&) = (A, — Ly Cy)el — LLELdf + AAx (1)
ry =R.(Coef + ELdf),

where pairs (ef, f), (ej, r4) represent the pairs of estimation and

residual error signals regarding f¢ and df in the presence of

uncertainties, respectively, and ef(O) =0.
Now, define the set

20 = {x(0) € R" : [X(0)[I* < w}, wp € [0, 00), (12)
with wy a known constant. The initial condition of systems in

(8) (9) and (11) is obtained considering x(0) € £2, satisfying
Assumption 3.

Assumption 3. For any initial condition x(0) € £2, there exists
a switching signal o that ensures that the trajectories of system
(3) are bounded.

From (12) and Assumption 3, the following set can be defined

Q2= {x(t) e R : |x(t)]|*> < @?, Vt > 0}, (13)

where wy < w and 29 C £2,, under switching signal o. Then, the
following proposition can be proved.

Proposition 1. Consider x(0) € §2¢ as in (12) and o(0) = o¢ €

I, in system (3), where og is known. By assuming that z40) =

C;(O)y(O), initial estimation errors e,(0) and e4(0) will also belong to
0-

Proof. Since f;(0) is assumed to be zero, an estimative for the
initial condition x(0) in (3), denoted by x*(0), can be found by
solving the following least squares minimization problem:

min |Gy (0)X(0) — y(0)], (14)
x(0)eR"

where x*(0) = C;(O)y(O) is the optimal solution. Therefore, by
making z¢(0) := x*(0) = C;(O)y(O), V¢l € F we obtain:
lle(0)]| := [1x(0) — z°(0)[| = [|x(0) — C} o, ¥(O)

=< 1x(0)ll < wo. (15)

where inequality (15) is obtained as z¢(0) = x*(0) = 0, it is the
worst-case solution of the optimization problem (14). Therefore,
e,(0) € £2. Moreover, from f;(0) = 0, it follows that e;(0) = 0,
whereas e,(0) = e4(0). Thus, we can conclude that e4(0) € £2o.
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The gains Lf and Rf of the residual error generators in (8)
are designed to make the system in (10) achieves an S_ sen-
sitivity performance and system (11) achieves £, attenuation
performance defined in the sequence.

Definition 4 (S_ Sensitivity Performance). System in (10) has a
S_ sensitivity performance if its trajectories are bounded and

there exists a sensitivity gain § > 0 such that ||rf‘||£oc >

BUfNzoes VI lles # 0.

Definition 5 (L., Performance). System in (11) has a guaranteed
robust £, attenuation performance if its trajectories are bounded
and there exist positive attenuation gains y¢, §f, n, ¥ such that
Irfllcn < /Y IdI%,, +E? + 19,0 € F, where > 0 is a
given constant satisfying

2 = {x(t) e R" : max|[Nix(t)|* < w?, Vt > 0}. (16)

i€l yn

3.2. Residual-evaluation-based functions

The residual evaluation process is performed using residual
evaluation functions denoted by J* : RP x R, — R, which
are function of each residual error signal r¢. Threshold functions
denoted by J5 : R, — R, are designed to satisfy J4(t) >
Iré(t)llc, V€ € F,¥t > 0, which means that a threshold
function must be obtained so that jfh(t) is greater than the max-
imum value of [[r(t)| when [If‘| = 0, ||df|| = df,,, and the
uncertainties are obtained for 8,(t) € [—§,§] that maximizes
INx(t)||?, i € I,. Moreover, the output of each £th FDI device
is a binary scalar corresponding to alarm functions as follows:

17
0, otherwise. a7)

When a‘(t) = 1, the fault in sensor ¢ is detected, whereas a‘(t) =
0, means that sensor ¢ is assumed to be fault-free. Denoting a €
RP as the output vector of the FDI device containing all alarms
in each ¢ € F row, multiple faults are detected if Zeew at > 1,
and the non-zero rows of a represents a fault in the £ € Fth
sensor. Furthermore, for a SAS under uncertainties and multiple
faults, we propose a detection strategy that considers the smallest
magnitude for a fault to be detected, according to the following
definition, based on Reppa et al. (2017).

Definition 6. Let tf be the first time of the fault occurrence, as
in Definition 2, a®(t) € {0, 1} be the output of the FDI device as in
(17), and Tj > ¢/ be the time when the FDI device is triggered?
by the permanent fault f*, satisfying

Tj = min{t € [tf, 00) : a'(t) = 1}. (18)

The smallest fault magnitude to be detected, of f*, denoted as f,
is defined as follows:

o = IFTON < flhaxe (19)

Instead of the classical definitions as given in Blanke et al.
(2016), and Reppa et al. (2018), instead of considering the detec-
tion of faults when ||f¢|| > 0, the strong and weak detectability
definitions in this paper are obtained when f* € F.. , where 7.
is given by 7t = {f¢ € R : fi, < If°ll < f5.), which means
that the magnitude of f¢ is greater than a desired frﬁm, with an
upper bounded given by f!,, whenever f¢ € 7., . Moreover, we
consider that a small time delay in strong detection is allowed.

2 An FDI device is triggered if its alarm function value is different from zero.
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The conditions in which a fault is detected, along with the novel
definitions of strong and weak detectability with respect to a
given f,, considering alarm functions a‘ as in (17), ¢f, fy;, and
T[‘; as in Definition 2, are given next.

Definition 7 (Fault Detectability). For a given f'. € (0,f%,],
fault f¢ is detectable with respect to f’. if there exists a residual
evaluation function J(r%), a threshold function ]fh(t) and a finite
time T > tjf, such that a“(T5) = 1 when [If«(T5)|| = f%,.-
Definition 8 (Strong Detectability). A fault f¢ is strongly de-
tectable with respect to a given f°. if f£. is detectable, a‘(t) =
1,Vt > T} and f* € 7L, Vt > T},

Definition 9 (Weak Detectability). A fault f ¢ is weakly detectable
with respect to a given f, if f* is detectable and a‘(t) = 1 only
for some t > T even if f* € 7., forall t > TE.

min

Complete fault isolation of f¢, as defined in Blanke et al.
(2016), is achieved when a‘(t) = 1 if, and only if, |f¢] > 0, for
any t > tf, which means that remaining faults and uncertainties
must not trigger the FDI device. In this paper, we propose less re-
strictive conditions for fault isolation considering a given smallest
fault magnitude to be detected for fault f*, as defined as follows.
Definition 10 (Fault Isolation). For a given frflin € (0, frﬁax], the
fault isolation of a fault f is achieved if f* is strongly detectable
and a‘(t) = 0, Vt < tf.

When fault isolation as in Definition 10 is achieved, remaining
faults and uncertainties will not trigger the FDI device, and a fault
ft e F,, is guaranteed to be detected. However, fault isolation
may not be guaranteed for some range of uncertainties. In the
sequence, we give the definitions of weak and strong isolation
with respect to the effect of the uncertainties in the FDI devices
for uncertain SAS as in (5), and uncertainties functions satisfying
(4) for a § € [0, 1] to be found. Furthermore, in the next section,
we provide the main results in the design of the FDI devices for
each f¢ € Z.

Definition 11 (Weak Isolation). For a given frflm, the weak fault
isolation of a fault f¢ is achieved if, for any df e Dt 8, € [-8, 8],
and some § € [0, 1] fault isolation is guaranteed.

Definition 12 (Strong Isolation). For a given frflin, the strong
isolation of fault f* is achieved if, for any di € D and 8, €
[—1, 1], fault isolation is guaranteed.

Considering the definition of frfl we define a novel mixed

S_ /L performance.

in’

Definition 13 (S_/L,, Performance). The system in (9) has a
mixed S_ /L sensitivity/attenuation performance if its trajecto-
ries are bounded and, for a given £, < f.., there exist a positive
sensitivity gain B and positive attenuation gains ¢, g¢, n, ¥ such
that S_ as in Definition 4 and £, as in Definition 5 are obtained,
and weak or strong isolation are achieved.

4. Main results

The FDI strategy proposed in this work provides LMI-based
conditions to achieve weak isolation of all sensors fault by first
designing the residual error generators considering an optimiza-
tion problem which solution gives sensitivity and attenuation
guarantees and then we obtain threshold functions relying on the
gains and parameters obtained as a solution of a sensitivity/atten-
uation optimization problem.
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In Theorems 1 and 2, we provide LMI-based conditions in an
optimization problem to obtain observer gains Lf and Rf for each
sensor fault £ € F with S_ and £, guarantees, respectively,
whereas Theorem 3 proposes an optimization problem that satis-
fies the constraints in Theorem 1 and Theorem 2 simultaneously,
considering uncertain functions as in (4) with § = 1. Whenever it
is possible to find a feasible solution to the problem in Theorem
3, the gains and parameters obtained are used in Lemma 3 and
Theorem 4 to obtain a threshold function for each £ € F to
guarantee weak isolation and a mixed S_ /L., performance con-
sidering the prespecified smallest fault magnitude to be detected,
denoted frf]m, and a range of uncertainties defined in (4) where
8 € [0, 1]. Moreover, Corollary 1 proposes an LMI-based opti-
mization problem to obtain the smallest fault magnitude to be
detected f{, .. such that strong isolation is guaranteed. Addition-
ally, Theorem 5 proposes conditions to obtain piecewise constant
threshold functions to relax the constraints in Theorem 4. To
this end, Algorithm 1 can be applied to find the threshold func-
tions in a structured manner. Finally, Algorithm 2 enables finding
local optima observer gains and threshold functions by varying
a parameter associated with the decay rate of Lyapunov-like
functions.

In this section, we omit index ¢, and the argument t in time-
dependent functions when not essential to simplify the notation.
However, the results obtained can be applied to all FDI devices
without loss of generality.

4.1. Residual error generators design

The following theorems yield sufficient conditions in terms of
LMIs to guarantee that (10) has an S_ performance and (11) has
an L., performance.

Theorem 1. Consider system (10). For given positive scalar n > 1, if
there exist matrices P € R™" P > 0, H; € RP*P H; > 0, W; € RP*"
and scalars 8 > 0, n; > 0 as a solution to the following optimization
problem foro =i,Viel 4 a

max f, st (20)

P,Wi.Hj,B.nf

Al‘ <0 (2])

W <0, (22)

where {, = He(AiP + C{W;) + nP — C{H;C; and

(=1 + 1)P + CHiG; GHD;

A= i i _ 23
L |: * D{H;D; — BI — nffmale (23)
_ Vi *

Y= [ DiW; —DHiG; Bl —DHD; |’ .

then under e;(0) = O, the trajectories of (10) are bounded with
respect to

2 = {ef eR": lefllzy, < Vlf()\min(P))1} ,

and (10) has a guaranteed S_ performance with a maximum sen-
sitivity gain. In addition, the observer gain matrices L;, R; for each
i € I, are obtained by L; = —(W;P~1Y and R; = Hl-l/z.

Proof. Let a ¢! function be V := e;/Pes, an augmented vector
be x = [ef/,f’]’ and define W; := —LP, H; := RR;. The time
derivative of V is given by V. = x'W, x — nV + ||r7|1> — BIfII>,
where ||r7]|2 = ef/C. HyC,ef + 2f'(D,,HyC, Jey + f'(D, H, Dy )f, and
v, is given in (22) for all 0 = i,i € I_4. When (22) holds, the
following inequality is satisfied:

V< =V +lIrell® = BIFII. (25)
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From (25), is not yet possible to guarantee the stability of (10),
since ||r7[|I> > 0 and the negativity of V is not ensured. Thus, to
guarantee that the trajectories of ey are attracted to §2, it is added
in inequality (25) the null term —V +V —nf 2 If 112+ nef o2 1112,
yielding:

. n
V<=V + Il = BIFI% = X' Aix =V + 5 IIf I

max

where A; is defined in (23). By satisfying (21), it follows that

V<=0V +IIrl? = BIFIP < =V + nefrallf I
<=V +uy. (26)

Therefore, from (26), V. < 0 whenever ¢; ¢ 2. Also, by
integrating (26) from O to t, we obtain
t

V(t) < e 'V(0) + ny f e e, (27)
0

Hence, under null initial conditions, the trajectories of (10) are
bounded with respect to £2;. Moreover, by integrating (25) from
0 to t, we obtain:

V(t) < e™V(0)+ G(lIrs 112, £) — BG(If 1%, ©), (28)

with G(-, t) as in Definition 1. Since V > 0, Vt > 0, inequality (28)
is satisfied whenever

BGUIFI1%, £) < G(lIrs I, ©). (29)

Multiplying both sides of (29) to n and applying the supremum
on both sides of (29) yields:

Bn supG(IIf1I*, t) < n supG(iry 1%, t). (30)
[0,¢] [0,¢]

Applying Lemma 1 in (30), we guarantee that the residual signal
17 in (10) has an S_ sensitivity performance as in Definition 4
with 8 = /B, where f is the maximum sensitivity gain obtained
by the maximization of 8.

Theorem 2. Consider the system in (11) and Assumption 3. For
given positive scalars n, o satisfying (16), and e4(0) € 2y, if there
exist matrices P € R P = 0, Hi € RP*P.H; > 0, W; €
RP*" and positive scalars e;, y as solution to the following convex
optimization problem forall 0 =i,i €1 4:

i 31
PyWil,'lr'llilyrSlxi-exiy 31
st.n—yd?  — eqw® >0, and (32)

o W/E; PM;
x —yl+EHE 0 | <0, (33)
* * —&xil

where ©}, = He(AP + C/W;) 4+ nP + C/H/C;, then, the trajectories
of (11) are bounded with respect to

24 ={eq € R" : [legll o, < (& + 1)/Amin(P))}

where ¥ := kmax(P)w(Z), with wg obtained considering Proposition 1.
Furthermore, the L, performance of (11) is guaranteed. In addition,
the observer gain matrices L;, R; for each i € 1_, are obtained by
Li = —(W;P~'Y and R; = H,"?

Proof. Let a ¢' function be defined as V = ¢/,Pey, an augmented
vector be x := [e}, df']” and define W; := —LP, H; := RiR;. The
time derivative of V satisfies
V = e, (He(A P + C,W,))eq + 2e,W_E, dy
+ 2e,PAAx
< X'®ox — 1V — lIrall® + xs INoxI1* + yllds |17, (34)
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where the inequality in (34) is obtained by applying Lemma 2 in
2e(PAA, X, |Irqll* = €,C,H. C,eq+2€,(C.HyE, )ds +df'E, H,E, df
and @, is defined as

[cb;q W/E, + E[,HJEG}
¢O’ = B

x  —yl+E.H,E, (35)

with @7, = He(A,P + C,W,) + ,'PM;M,P + nV + C,H,C,.
By applying Schur’s complement in (35), we obtain (33), and by
solving (31)-(33) the derivative V in (34), satisfies

V<—aV—lrall® + vl de I” + exo INoX])? (36)
V <=V — [Iral® + v lldf |* + Ex® (37)

< =V = [Irall? + y i + Ex, (38)
where g, = (irglax(sxi)). Inequality (36) is obtained when LMI

A
(33) is solved, whereas inequality (37) is obtained considering
(16). Moreover, (38) is obtained from (6), where ||d;|?> < d2_,.
Furthermore, applying the solution of (32) in (38), we obtain:

V<=0V —radl> +n < -V +n. (39)

By (39), we ensure that V < 0 whenever |leg| > Amin(P)~ V2.

Moreover, by integrating (39) from O to t, the following inequal-
ities are satisfied:

V(t) < e (V(0) — 1)+ 1 < e "V(0) + 1
<e My 41,

considering v = AmaX(P)wg. Hence, for any df € Dy, 6, € [-1, 1]
and e;4(0) € £2o, the trajectories of (11) are bounded with respect
to £24. Moreover, by integrating (37), we have:

V(t) < e "V(0) — G(lIr4l1%, t)
+G(y lds I + &e?, 1). (40)

In addition, V > 0,Vt > 0. Therefore, from inequality (40) the
following inequality is obtained

G(lIrall?, £) < G(y lldr I? + Exe?, t) + €70, (41)

Applying the supremum and multiplying by n both sides of (41),
yields:

nsupG([Iral®, t) <
[0,¢]

nsup(G(y [l |* + Ew?, t) + e7"9)
[0,¢]

<vldrl%, + &+ no. (42)

Finally, applying Lemma 1 in (42), the £, in Definition 5 is
obtained.

When the £, performance is guaranteed, the effect of the
remaining faults in the residual error signal is attenuated. How-
ever, the sensitivity to a certain fault must be guaranteed. In the
following theorem, we propose a combined solution of S_ and
Lo performances to enhance the detection capabilities of the
residual error generator in the presence of a single sensor fault,
whereas the effect of the remaining faults and uncertainties is
attenuated.

Theorem 3. Consider systems (9), (10) and (11) and Assumption
3. For given positive scalar n > 1, w satisfying (16), and e4(0) € $2,
if there exist matrices P € R™",P >~ 0, H; € RP*P,H; > 0,
W; e RP*" and positive scalars B, 1y, &xi, Y as a solution to the
following optimization problem foralloc =1i,i € 1_y4:

i - B, 43
PvWi-H?]ﬁ}sI'}f»Vssxiy p (43)

st (21), (22), (32), and (33) (44)
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then under e;(0) = 0 and e,(0) = eq(0), the trajectories of system
(9) are bounded with respect to

(Vr +/0+ 1)
V)\min(P) )

where ¥ := xmax(mwg, with wq obtained considering Proposition 1.
Furthermore, the system in (10) has a guaranteed S_ performance
according to Definition 4, whereas (11) has a guaranteed L., per-
formance, according to Definition 5. In addition, the observer gain
matricels/zL,-, R; for each i € I, are obtained by L; = —(W;P~!Y and
Ri=H,".

Q=16 €R": lesllzy, <

Proof. The proof is straightforward using the same steps as in
Theorems 1 and 2, considering a ¢! function V(e,) = V(er)+V(eq).

Remark 1. The value of w satisfying (16) corresponds to the
application of a switching signal o in (3) with an initial condition
x(0) in the set £2¢ and satisfying Assumption 3. If any other o
is considered, the results obtained in Theorems 2 and 3 are still
valid whenever inequalities (12) and (16) hold. Nonetheless, if
another w or w are considered, the solutions of the optimization
problem in Theorems 2 and 3 are valid if the new values of w
or wg are less or equal to the w or wy considered previously,
respectively. If the new values of w or wy are greater than the
ones considered before, then the optimization problem in The-
orem 2 must be solved again, and a new solution is not always
guaranteed.

Remark 2. Although the choice of greater values of w and
wo implies in more relaxed conditions to obtain o that satisfies
Assumption 3, the L., attenuation performance as in Definition
5 is reduced as w or wg increases, since the upper bound of w
is increased when o is chosen to satisfy w? = Amax(N/N;)@” in
(16)% and © = AmaX(P)wg as defined in Theorem 2. Therefore, if
the solutions to the optimization problem in Theorems 2 and 3
remain valid for sufficiently large values of w and wy, then the
influence of residual faults and uncertainties in the error signal
will be amplified, making fault isolation increasingly difficult to
achieve, as the threshold functions are designed to satisfy ]fh(t) >
Ir4(t)ll 2, and the magnitude of [|r{(t)l|z., grows when a wider
range of uncertainties and initial conditions is taken into account.

Although the S_ and £, performances individually are ap-
propriate to obtain the observer gains L; and R;, a mixed S_ /L,
performance as in Definition 13 is achieved only by proper choice
of the residual evaluation function J(-) and threshold function
Jw(+) for a given fin, especially under simultaneous faults.

In the next section, we propose a method to obtain Jy;,(-) such
that weak isolation is guaranteed for a range of uncertainties
satisfying 8, € [—6, 8] and for all d; € Dy and a mixed S_/L
performance as in Definition 13 is guaranteed.

4.2. Residual-evaluation-based functions design

Let a residual evaluation function be defined as

sup |Ir]l, Vt=T,

[e=T.t] (45)
IIrll, Vt <T

Jir.t) =

where T > 0 is a finite time and (45) represents a residual
evaluation function obtained as the maximum value of a residual
error signal ||r|| during each time interval [t — T, t].

3 Using the Rayleigh-Ritz property, max|[Nix|> = max(x'(N/N)x) <
i€l gz i€l gz

max (Amax(N/Ni)IxI? < Xmax(N/Ni)@?, where the last inequality is obtained
i€l gz

conéidering (13).
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The next lemma provides sufficient conditions for a fault f to
be detected using a constant threshold function Ji(t), denoted Jens
such that Ji(t) = Jy,, Yt > 0 and a residual evaluation function
satisfying (45).

Lemma 3. Consider systems (9), (10), and (11), functional F(-, -, -)
defined in (2), e4(0) € §2¢ and consider positive constants dp.x and
fmax satisfying (6) and (7), respectively. For an interval t € [Ty, T1),
if there exists positive constants B, v, €x, 1, ®, ¥, fmin, @ € [0, 1],
and a fault f such that the following inequalities are satisfied

F(lIr¢1I%, To, t) = BE(IfII%, To, t) (46)
F(Irall?. To. t) < yF(lldf 1%, To. t)

+ aF(Ew?, Ty, t) + e "0 (47)
fimin=< fiax (48)

inf I1F112 = £2. 4
[;[r){[]llf I” = fain (49)
o < Bl = (15 V2P (i 1" ™00) (50)
(1 + V2)25,0?

then by considering the threshold
Jin =\ Yty + 0B + ne-Tov, 5D

and residual evaluation function (45), fault f is detected during the
interval t € [Ty, T;) where, To < Tp < Ty and Tp is the first time in
which ”f” mein-

Proof. For the time interval To < Tp < t < Ty, considering (46)
and (49) we obtain

t

g, To. 0 > B InC IFIF | e Mdr

> BfainF(1, To, t), (52)
then the following inequality is satisfied
sup lrll* > Bf i, Vt € [To, T1), (53)

[To.t]

whenever f € Znn. Also, by applying the supremum in both sides
of (47) we have

sup|rall® <J. Vt € [T, Th). (54)
[To.t]

Since r = 17 + rq, under no remaining faults and uncertainties
during a time interval t € [Ty, T;), we have |Ir|| = |Irf]| in (53),
and a fault is detected for any fnin that satisfies ﬂfrﬁm > ffh
Also, if for the time interval t € [Ty, T;) only remaining faults
and uncertainties are present, then ||r|| = ||rg] in (54), and no
fault will be detected for any « in threshold (51) that satisfies
(47). However, under uncertainties and multiple faults, strong or
weak detectability and isolation of fault f are guaranteed only
if J(r,t) = sup |r|| > J; holds whenever f € Znin, where

[t—T.t]
sl # O and |lrg]l # 0. From norm properties the equality
(7112 = |Irp || + 2r¢'ra + ||r4l|? holds. Therefore, a fault is detected
when

-2
Jon < Mlrpll® 4 217 '1q 4 lIrall? < [STUD]IITIIZ, (55)
0.t

implying that the following inequality must hold:
,2 ’
e 11 = Jop — 21714 — Irall®, Ve € [To, T1, (56)

which is satisfied whenever ||rf||? ijh + 2|rf'rql. Also, 2|r'rq| <
2||r¢lllrqll from the Cauchy-Schwartz inequality, and 2||r¢||[|rqll <
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2||r¢|lJ 5, from (54). Hence (56) holds for any rf, rq and ], satisfying

,2 —_
el = Jon = 2lI7¢ W > 0. (57)

The equality in (57) is obtained as [|rf]| = (1 £ \/i)fth. Since ||rs|]
is always positive, then (57) holds whenever

1112 = (14 V272 (58)

Multiplying both sides of (55) and (58) by e="~®) and integrating
with respect to t from Ty to t we obtain

F(JnTo.t) <F <sup||r||2, To. t) (59)
[To.t]
F (Il To. €) = F (14 V2U) To. ). (60)

From (46) and £49), inequality (60) holds whenever ,BfrflmF( 1, Ty, t)
> F(((14 v/2) ), To, t) is satisfied for any time t € [Ty, T;) and
Bf2 > ((1 V2P (y oy - aEne? - ne‘”‘z?)), which is obtained

whenever (50) holds, since ne™"0¢% > ne "9, Vt > Ty. Moreover
when (50) is satisfied, (55) and consequently (59) holds. Finally,
under any Tp = t — T for every t € [Tg, Tq), with Ty > t + T,

To>t; +Tand 0 < T < oo the inequality J(r, t) = sup |Ir| =
_ [t—T,t]

sup||r]l > J is obtained, which means that the fault will be

[To,t]

detected in a finite time.

As the faults are considered to be abrupt and permanent,
J(r, t) will be permanently affected and ||f(t)ll > fiin almost
instantaneously, which means that J(r,t) > ]y in a short time
if ], satisfying Ju(t) = J,, YVt > 0 is obtained guaranteeing the
conditions for Lemma 3, and the fault will be detected.

In what follows, we assume that Theorem 3 was solved and
matrices P, H;, W; and positive scalars 8, 1y, €, y, ¢ are known.
The next theorem provides the necessary conditions to achieve
strong and weak detectability and isolation of a fault f with
respect to a given fui, for a range of uncertainties as in (4),
by considering the sensitivity and attenuation gains obtained in
Theorem 3.

Theorem 4 (Weak isolation). For a given fu;, satisfying (48), if there
exists scalars o € [0, 1], 8 € [0, 1] as a solution to the following
optimization problem for all t > 0

max F) (61)
subject to (50) and (62)
-1 /
—ae,; PM;M/P SPQ;
|: xi . i —OtsxiNi/Nii| <0, (63)

then, for any fault satisfying f € Fmin, Vt > t;, by considering
the residual evaluation function (45), the threshold function (51)
guarantees the weak isolation of fault f if —6 < §, < 48,Vt >
0, where § represents the maximum range of 8,. Moreover, if the
solution of the optimization problem results in 6 = 1, then strong
isolation of fault f is guaranteed. Furthermore, a mixed S_/Ls
performance as in Definition 13 is achieved.

Proof. Let V(e,) be the ¢! function considered in Theorem 3.

Thus, the derivatives of V(e,) satisfy:

V(e) = xWox — nV + lIrsll* — BIFII® + 2¢4(PAA, x
+e)(He(ALP + C. W, ))eq + 2e,(W_E, )dy, (64)

forall t > 0. Now, suppose that at some time interval Tp <t < Ty,
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the following inequality holds:
2e4(t) (PAALX(t) < alexoX(t) N, Nox(t)
+ &5 'ea(t) PM, M, Peq(t)), (65)

where « € [0, 1]. Considering the uncertain function as in (4), let
(65) be rewritten as

-1 /
[—aePM,M.P 8,PQ,
é‘ [ x * _asxo'N(;No'} é‘ i Oa (66)
where ¢ = [eq, x]'. By denoting § = mﬂin|8a|, inequality (66) is
i€l _y

satisfied whenever (63) holds since the eigenvalues that satisfy
(63) does not change if §, is positive or negative for any o =
i, Vi € I_,4, which means that (65) is satisfied for any time interval
in which §,(t) € [-8, 8], Vi € 1_y,. Moreover, the derivatives of
V(e,) for any t € [Ty, T;) satisfies:

V(ez) < x'Wox — nV(e)+lrll> = BIFIP+
+ 1 ®o x — lIrall® + cexo INoXI> + y 1 df 11,

where @, is similar to @, defined in (35), but with o7 =
He(A, P + C,W,) + a(egPMyM.P) + nV + C,H,C,. Since (33)
in Theorem 2 is satisfied, then &; < 0 for any @ € [0, 1] and
i € T_4. Hence, by considering the solution of the optimization
problem (43)-(44) in Theorem 3, the following inequalities hold:

Vie:) < — nV(e) + Il I = BIFI* = lirall?
+ 7ldflI? + aexo @, Vt € [To, Th). (67)
By integrating (67) from Ty to t with t € [Ty, T;) we obtain:
V(e(t)) < e 7TV (e,(To)) + F([I77 1%, To, t)
— BE(IfI1%, To, ) — F(Iral®, To, )
+ yE(lds|1?, To, ) + aex, ”F(1, To. ).

Under e,(Typ = 0) = e4(0), inequalities (46) and (47) in Lemma
3 hold. Also, by Lemma, 3 when (50) is satisfied, then the fault
f is detected. Since « is obtained to satisfy (50) and (63), then
for all df € Dy, if 8, € [—4, &] then (65) holds for all ¢ > 0, and
weak isolation of fault f with respect to f, as in Definition 11 is
achieved considering residual evaluation and threshold functions
(45) and (51), respectively. Moreover, by (61), we obtain the
maximum range 8, € [—§, §]. Furthermore, if § = o« = 1is a
solution of (61)-(63), then by Lemma 2, inequality (65) holds for
all 55 € [—1,1],i € T_4,Vt > 0. Therefore, strong isolation of
f as in Definition 12 is guaranteed. Additionally, the parameters
B, v, &, w, nand ¥ guarantee S_, L., performances and weak or
strong isolation, thus a mixed S_/L., is obtained.

Remark 3. Based on the results obtained in Theorem 4, for
8 < 1,and for all df € Dy, if =6 < 8, < & holds for all
t € [t;, Tp], but 6, ¢ [—6, 8] for some t < tr, weak or strong
isolation is not achieved. Moreover, if the optimization problem
in Theorem 4 is not feasible, then there is no guarantee that
a fault will be detected. However, fault f is guaranteed to be
detected if ||f(Tp)|| = fmin, Whereas weak detectability is achieved
if |If(E)l = fmin, and —8 < 8, < 6 for all t € [t;, Tp] and for some
t > Tp. On the other hand, if —§ < 8, < § holds for all t > t,
then (65) holds for all t > Tp > t which is sufficient to guarantee
strong detectability for any sensor fault satisfying the inequality
IF(OI = frmin, YE = Tp.

The optimization proposed in Theorem 4 aims to find the
maximum range of §, for a given fu, such that weak or strong
isolation is guaranteed for any ¢ = i,Vi € I_,. However, it
is challenging to guarantee strong isolation of faults with small
maghnitude, since the right-hand side of constraint (50) decreases
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as fmin also decreases. On the other hand, if the designer aims
to guarantee strong isolation without specifying fu,, the smaller
fault magnitude to be detected can be obtained by considering
8§ = 1and fnin® < in Theorem 4, as presented in the following
corollary.

lTlaX

Corollary 1 (Strong Isolation). Considering § = 1 in (4), and
fmin = fozmm' where fomin i the smallest fault magnitude to be
detected, if there exists « € [0, 1], fmin as a solution of the following
optimization problem

n}}infmin (68)
subject to (50), (63) and (69)
fmin =< friaxs (70)

then, by considering the residual evaluation function (45), the thresh-
old (51) guarantees the strong isolation of fault f for any fault

satisfying f € Zumin, Yt > tr, With fomin = /f min-

Proof. The proof is directly obtained by the proof of Theorem 4,
considering § = 1. Inequality (70) is necessary to guarantee that
fO min € -—@min-

Theorem 4 provides weak or strong isolation guarantees for all
t > 0, whereas Corollary 1 provides strong isolation guarantees
at the cost of increasing the value of fi, to the value fymin.
However, the threshold in (51) can be conservative, since it is
obtained considering the influence of the initial estimation error
in the residual evaluation function, which can reduce the L.
performance as stated in Remark 2 and also results in low values
of & or high values of fi,;, when applying Theorem 4 and Corollary
1 respectively. Thus, to reduce the conservativeness of Ji; and
enhance FDI, we can consider a piecewise constant threshold,
such that

Jl6) VYo + ngw? + 09, ¥t € [0, T5),
h =
f VY 8o + 18x? + ne 50, Ve > T,

(71)

where parameters o9 € [0,1], ®; € [0,1] and T; are to be
designed. The following theorem provides the parameter «; and
instant T that guarantees weak isolation for a given fu,i, and «p.

Theorem 5. For given u € (0, 1], and o € [0, 1], such that

J(r,t) < \/ydﬁlax + aggxw? + ne~"o¥, Vt < T, (72)

if there exists scalars oy € [0,1], § € [0, 1] as a solution to the
following optimization problem

max § (73)

1,0

subject to LMI (63) with o = a1 and (74)

oy < P = (L4 V2P0 + nPy di, (75)
- (14 v22(1 + p)le?

then, for any fault satisfying f € Fmin, V& > 7, with tf > T
by considering the residual evaluation function (45), the threshold
function (71) guarantees the weak isolation of fault f whenever
—8 < 8,4 < 8,Vt > T, where T; is obtained as
_ nv
Li=n'ln—F— (76)
’ (14 12 = Wiee

With Jiheo = /Y a2 + 21802

Proof. The proof is directly obtained by the proof of Theorem
4 considering Ty = Ts in (62), with T; given in (76). Moreover,
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when (72) holds, then uncertainties in the range §, € [—§, 6] and
ds € Dy will not trigger the FDI device.

Theorem 5 considers a given ¢ in which false positive alarms
cannot occur when the piecewise constant threshold (71) is used,
and weak isolation is guaranteed, where the value of Ji rep-
resents the threshold (51) when Ty — oo, and the scalar u
represents (J(t) — Jinoo)/Jthoo- However, a fault might not be
detected at some instants during the interval t < T; if « is not
properly chosen, which will lead to a detection delay. Moreover,
although smaller values of 1 can reduce conservativeness, time
Ts can increase, which means that a fault can remain undetected
for a longer period, with the maximum detection delay given by:

tg =T — Tiyin, Ts = Tipjin > tf,

where Ty is the time in which |f|| = fmin for the first time?.
Algorithm 1 provides a method to obtain the parameters for (71)
such that strong isolation may be guaranteed during the time
interval t € [0, T;) whenever |f|| > fomin, Where fomin must be
obtained, and weak isolation can be guaranteed for the given fup,
such that a fault with magnitude f,;, is guaranteed to be detected
after time Ts.

Algorithm 1 Obtaining the threshold function

Input: 5 > 1, ? satisfying (16), u € (0, 1], fmin satisfying (48) and e(0) € £2o
Input: Matrices P, Hj, L;j, and scalars B, &y, ¥, 9 obtained as a solution to the
optimization problem (43)-(44) in Theorem 3 Vi € 1_4 considering n and w.

if optimization (61)-(63) in Theorem 4 has solution Vi€ I_, and § = 1 then
Jen(t) is defined as in (51) for all t > 0, with Tp =0
else
if optimization (68)-(70) in Corollary 1 has solution Vi € I_4, then
ap < a
else
ag < 1
end
if optimization (73)-(75) in Theorem 5 has solution Vi € I_, then
Ts < Ts, § < &, Jw(t) is defined as in (71), for all t > 0.
else
Jen(t) is defined as in (51), for all t > 0, with @ = 1and Ts =0, § < —0.15.
end
end

If 5§ = 1 is obtained applying Algorithm 1, then a piecewise
constant threshold does not need to be considered, since strong
isolation is guaranteed with Ju;(t) in (51). On the other hand,
strong isolation may be guaranteed only for some fymin > fmin, OF
even the optimization problem in Corollary 1 has no solution. In
the former scenario, there is no guarantee that a fault is detected
if foin < Ifll < fomin for some ¢ € [t,Ts). Stll, if [If]] >
fomin, YVt € [tr, T5) strong isolation is still ensured during this
interval, whereas if the optimization in Theorem 5 has a solution,
then weak isolation is guaranteed if ||f|| > fuin, Vt > Ts for
8, € [-4,6] and d; € Dy. However, if it is not possible to
find a threshold (51) or the piecewise constant threshold (71)
that guarantees weak isolation for the given fu;, considering
parameters B, 1y, ¥, &x and w as well as the matrices P, M;, N;
for all i € I_4, then a different f;, must be considered. In this
scenario, Algorithm 1 will have a default value of § ¢ [0, 1] as
the output, defined in this work as —0.15.

4 The instant Tmin has a different meaning from Tp, since the latter considers
the detection time and Ty, is the first time in which ||f|| > fnin, Which may
not be equal due to detection delay t4, although ||f(Tmin)|l = If(Tp)|l = fmin. On
the other hand, when T; = 0, we have Ty, = Tp.



D. dos Santos Carneiro, F.A. Faria, V.A. de Oliveira et al.

Remark 4. In a simultaneous faults scenario, the times of occur-
rence of faults are the same, i.e., tf‘ = t}“, V{f,m e F:m # £}, but
the detection of each fault f* € .# does not necessarily occur at
the same time, even when fault isolation is guaranteed. In fact,
when fault isolation of all faults f* € .Z is achieved, but the
detection times are different, i.e., Tg £ T" Ve, m e Fthena(t) =
1forall t > T, and a™(t) = 1, for all t > T[T, whereas a‘(t) = 0
forall t < TS, and a™(t) = 0, for all t < T/ Also, if TS > T2,
then o!(t) = 0 for all t € [0, T JIT, T), whereas a™(t) = 0
only for t < TJ'. Still, weak and strong isolation guarantees
the detection and isolation of fault f¢ in finite time even if all
remaining sensor are faulty (multiple faults), i.e., [|[f™| > 0,Vm €
F,Vm # £,Vt > T¢, and for all 8, € [—1, 1] (strong isolation) or
8q4 € [—4, 8] (weak isolation). Moreover, the results presented in
this remark can be extended for any sequence of sensor faults
since the time of the occurrence of the remaining fault does not
affect the time of the detection of fault f*.

By solving the optimization problem in Theorem 3, the gains
L{,Rf forall i € 1, and ¢ € F are obtained to guarantee
S_ and L., performances, and by Theorem 4 we provide the
maximum range of the uncertainty and a threshold function in
which weak isolation and a mixed S_ /£, performance are guar-
anteed. Moreover, by applying Algorithm 1 it is possible to obtain
a piecewise constant threshold to reduce the conservativeness in
the FDI problem. However, the parameter n affects the solutions
of Theorem 3 and, by consequence, the threshold function and
§ obtained in Algorithm 1 may vary as different values of # in
Theorem 3 are adopted.

In the following section, we propose a parameter tuning al-
gorithm to find a local optimum value for 7 to obtain the local
maximum range of §, in which weak isolation is still guaranteed
when the residual evaluation and threshold functions (45), and
(51) are considered. From now on, the index ¢ to represent each
observer will be considered again. The results obtained so far for
one residual error generator and threshold functions still hold for
all £ € F without loss of generality.

4.3. Parameter tuning algorithm

Let max be a chosen maximum value of ° to satisfy (22), (21)
and (33) in Theorem 3, such that
1 < Pmax < _ZXmax(Ai +84Qi),Viel 4, L €F,

where A, + 6,Q, are Hurwitz for any o =i, Vi € I, and any §,
satisfying (4). Also, let nseps be the interval between all values in

a vector n € R*mx, such that n(1) = 1+ Nsieps, NKmax) = Nmax

and Nsteps = n(l~< + 1) - n(l~<), with k € K, an integer index,
where K, = {1, ..., kmax}, and let frfiin < rﬁax, V¢ € T be given

and vectors VE(I~<)~be composed by the solutions proposed in the
algorithm for all k € K, for each n® € mand ¢ € F, respectively.
In what follows, Algorithm 2 provides the maximum range of
uncertainties §, € [—4,, 8,] in which weak or strong isolation of
fault ¢ is achieved, where 0 < §, < 1is the optimization variable
to be found. Parameters §¢ and 8¢ for each £ € I represent a range
and maximum range of uncertainties, respectively, in which weak
((zr strong) isolation of the £ fault is still guaranteed for the given

min*

Algorithm 2 aims to find the values of n in which the solu-
tion of the optimization problem in Theorem 3 and Algorithm 1
maximizes the range of §, in which weak isolation of a fault f*
is guaranteed with respect to fnin, obtained as §; € [—38y, &.]. If
8,{ = —0.10, there is no 7 that satisfies the optimization problem
in Theorem 3, which is possible if the values of «?, f%.. and d

max
are very high or if the matrices A;, b; or C; are ill-conditioned. In

10

Automatica 182 (2025) 112526

this scenario, the designer should consider a switching strategy
to reduce ?, or smaller fault bounds f¢ . and dt_., or even a
time-scaling in system (5) as the one applied in Carneiro et al.
(2024). On the other hand, §{ = —0.15 means that there is no
threshold obtained by Algorithm 1 that guarantees weak isolation

for a given f*

min*

Algorithm 2 Tuning of parameters n°

Input: w satisfying (16), u € (0, 1], fmin satisfying (48) and e(0) € 29
for £=1,---,pdo
for k=1,---, kmax do
nt < n(k)
if optimization (43)-(44) in Theorem 3 has solution Vi € I_, then
Run_Algorithm 1
VE(k) « st
else
Vi(k) < —0.10
end
end for . -
k¢ < min (argmax(V(k))), 1% < n(kf)
kekn ek,
end for ~
85 < minVt(kt)
LeF

Furthermore, in the best-case scenario of the solution of Al-
gorithm 2, the parameter §, obtained is equal to one, and strong
isolation is guaranteed. On the other hand, if it is still possible
to find a solution for the optimization problems in Theorem 3
and Algorithm 1, the worst-case scenario obtained by Algorithm
2 is 8, = of(k!) = 0, V¢ € F, which implies that weak isolation
is achieved only if system (3) is a switched affine system with-
out uncertainties. Furthermore, observer gains L{, R{, parameters
vt €, B, ' and the threshold functions as in (51) or in (71) for
alli €I, and ¢ € F are obtained by selecting n = % in Theorem
3 and by applying Algorithm 1.

5. Numerical example

Consider a bidirectional DC-DC Cuk converter with parasitic
resistances as in Bashir, Jamil, Yamin, and Ullah (2021), where
the switching position is defined as system modes, such that
o =i=1and ¢ =i = 0 corresponds to the on and off state
of the active switching device, respectively. Also, we considering
a value of the load resistance, varying 10% around the nominal
value R, such that the uncertain load resistance is given by R,£R,,
where R, is the maximum variation given by R, := 0.1R,. The
dynamics of the converter are thus written as an uncertain SAS
(3), with x(t) = [i1, ver, B2, vzl b1 = by = [Vin/Lim, 0, 0,07,
F; = F, = I3 and with the following matrices

Rtk g 0 0
Lim
0 0 o 0
J— 0
M= k1 a33 a4
Lina Ling 1 1
Ro 44
—- 0 0 Co2(Ro+Rc2) 4
[ Rci+Ru+Rp 1 _Rp 0
Liny Lin1 Liny
= 0 0 0
AZ — ol
_Rp 33 34 |
Linz 0 az (11
Ro 44
L 0 0 CaRoRy 1
o3 Rs + Rc1 + Rz RoRc2
P =— _

Lina Lin2(Ro + Rc2)’
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Table 1
Parameters of the Cuk converter.
Parameter Value Description
Lin1 1mH Inductance of inductor 1
Lin2 2mH Inductance of inductor 2
Cot 100 uF Capacitance of capacitor 1
Co2 2mF Capacitance of capacitor 2
Ri1 0.1Q Parasitic resistance of inductor 1
Ri> 0.2Q Parasitic resistance of inductor 2
Rcq 10mQ Parasitic resistance of capacitor 1
Rca 10mQ Parasitic resistance of capacitor 2
Rs 0.10 mQ2 Switch resistance
Rp 0.01 m Diode resistance
R, 3Q Nominal Load resistance
R, 0.3Q Maximum variation of Load resistance
Vi 25V Input source voltage (constant)
1 — (et B ’
Lina(Ro + Rc2) Co2(Ro + Rc2)
e R, +Rp RoRc2
2 — = - )
Lina Lina(Ro + Rc2)
RcaRo Ro
00 Rca+Ro  Rea+Ro
G=G=|1 0 0 0 ,
0 0 1 0
and Q] = M]N], Q) = M2N2 with
0 0 0 O 0 0 1 O
Y M 0 0 0 O N 0 0 0 1
1= WMz = ) 1=
@ ¢t oo 0 00O
@ ¢ 0 0 0 00O
= RoRc2 (Ro + Ro)Rc2
-l _— - p—
Lip(Ro +Rc2)  Lina((Ro + Ro) + Re2)
o R, R, + R,
1 — - p—
Lina(Ro + Rc2)  Lina((Ro + Ro) + Re2)
43 R, Ro +Ro
q = — + —
Co2(Ro +Re2)  Coa((Ro + Ro) + Re2)
1 1
44
q, =

(Ro + Rc2)Co2 B ((Ry + Rﬁg) + Rc2)Con

where AR, is a function of 84(t) that satisfies
Ro(Ro + Ry,)
Ro + (1 — 84(t))Rs + Re2
Rea(Ry + 84(t)R,)
Ro + (1 — 84(t))Ro + Rc2

and ijy, i are inductor currents, vcq, vcp are capacitor voltages.
The value and description of all variables in matrices A; and b; for
alli eI, are in Table 1.

Without sensor faults, the output of the uncertain system is
y = Gx, hence y = [v,,i11,i12]", where v, = (Re2Ro)/(Rez +
Ro)iro+Ro/(Rc2+Ro)ve7 is the output voltage, and each sensor rep-
resents each state variable, such that the £ sensor corresponds
to the sensor in the position ¢ of y. For instance, £ € F = 3
corresponds to the measurements of the sensor for the second
inductor current ij;. An schematic of FDI scheme applied to the
Cuk converter is represented in Fig. 1.

Moreover, w?> = max ||N.x(t)||?

t€[0,Tf]

ARo(84(t)) = =Ry +

max ||[Nox(t)||? is obtained
tel0,Tf]

considering the following Pulse-Width Modulation (PWM)-type
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switching signal:

o(t) =2 — 0.5sign(sin 2720 kt), (77)

corresponding to a duty cycle of 50% and switching frequency of
20 kHz applied in the DC-DC converter, with an initial condition
of x(0) = [1.424,9.416, 1.424,4.274] in the set £2, defined
in Assumption 3, with [x(0)]*> = 110.259 < o}, w? = 625,
corresponding to a previous operation point before applying the
FDI Devices and Ty = 0.6 s is the final time of the simulation.

Moreover, we considered a known square-wave uncertainty
function defined as follows:

8q(t) = —6 sign(sin 2mfst), Vt € [0, Tf]. (78)

where f; = 20 Hz, which corresponds to a variation with slow
development comparing to the PWM frequency, in order to avoid
parametric resonance.
Although it is not possible to estimate w precisely, we con-
sidered w? = tn[ioa%<]||N]x(t)||2, which was obtained for the given
€lo.Ty

initial condition, switching signal, and uncertainty function (78),
considering 100 simulations applying different variant values of &
varying from —1 to 1 with an increment of 0.0202. The maximum
value of w were then obtained for § = 1, which corresponds to
a load increase of 0.30 Q resulting in w? = 823.977. The values
of |[N1x(t)||?> during the time interval t e [0, Tr] for 6 = 1 are
shown in Fig. 2 along with the switching signal and uncertainty
function and w. The trajectories of the switched system and
output voltages are shown in Fig. 3.

To verify the application of the proposed pseudo-dedicated ob-
server scheme, suppose that classical DOS or GOS using residual
error generators composed by Luenberger observers are consid-
ered to detect and isolate faults in all sensors in the proposed
Cuk DC-DC converter. To detect and isolate faults in all 3 sensors,
the classical GOS requires a number of 3 observers with order
3—1 = 2(i.e, at least one sensor is not considered in the observer
design for robust isolation), whereas the classical DOS requires 3
observers with order 1 (for full isolation). To exemplify the use
of a classical GOS in the proposed Cuk DC-DC converter, consider
aset § = {S!, 82, 8%} such that each subset S of S represents
a set of all 3 sensor indices except the ¢ index, considered for
each observer design. To design one of the observers to detect
faults in sensor 2, i.e, using set S, use a matrix C~ corresponding
to the matrix C; removing the second row and y~ the output
vector excluding the second element. In the scenario in which
the measurement of the second sensor is not considered, both
GOS and DOS will not be able to provide FDI of faults in sensor
2, making the observer design infeasible since the pair (A;, C™) is
not observable. Additionally, since observability is not guaranteed
using sensors 1 and 3 simultaneously, thus it is not possible to
guarantee observability using only sensor 1 or sensor 3 to design
observers following the DOS structure. On the other hand, the
proposed pseudo-dedicated observer scheme considers that the
measurements of all sensors can be used in the FDI strategy.
Thus, considering a set of 3 observers using the information of
all 3 sensors, it is possible to verify that all pairs (4;, G) for all
o = i,Vi € I, are observable, which satisfies Assumption
2. Therefore, the pseudo-dedicated observer scheme proposed is
adequate for the detection and isolation of faults in all sensor.

Considering w obtained previously, the next section presents
the design of the FDI devices for all f* € .# sensor faults and
simulation results.

5.1. Design of the FDI devices

Considering the representation in (5), vector f; can be written
4 . . . .
as f; [f'.F2.f*]. Also, it is straightforward to verify that
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Fig. 1. FDI scheme of the Cuk converter with parasitic resistances. The thresholds ]fh corresponds to threshold functions (51) or (71) and a’ is the alarm function as

defined in (17), for each ¢ € F.
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Fig. 2. The bound ? as in (16) applying PWM-type switching signal (77) in (5)
without faults. The uncertainty function is represented in blue, with § = 1 and
uncertainty function (78).
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Fig. 3. Trajectories of the switched system and output voltage during the
transient phase, where ||x|| reaches its maximum.
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Table 2

Bounds of sensor faults.
¢ n€3x drl;lax fnlﬂn
1 106.232 50.078 16.997
2 35411 111.979 5.667
3 35.411 111.979 5.667

dt = [/ & = [f'.f*] and &} = [f'.f?]. Then, the
maximum magnitude of all sensor faults and remaining faults
can be determined individually for each i € I_,. Moreover, the
smallest fault magnitude to be detected for each sensor was given
as ft. = 0.16f%,,, V¢ € F. The values considered for f’.,, d’ .«
and f'. are present in Table 2, where values of df,, Vi € I are
obtained by adding the contribution of the magnitude of all faults

except the faults in the £th sensor and the maximum magnitude

Fmax for f; is obtained as fa = /Y per flax” = 117.44.

The design of the bank of residual error generators and thresh-
old functions for all FDI devices are obtained simultaneously
by applying Algorithm 2. The initial conditions of all observers
were defined as z%(0) [1.416, 0, 1.416, 4.249], considering
Proposition 1, such that |le,(0)||*> = 88.19 < ®}. The value of
8. was obtained considering u = 0.05, §max = 60, steps = 1,
w? = 823.977, v} 625, kmax = 59, and considering the
parameters f,. ., d%.. and f. obtained in Table 2, resulting in
8, = 0.188. Also, Fig. 4 shows the variation of §¢ as 5 changed
for each FDI Device. The remaining parameters obtained after
applying Algorithm 2 are given in Table 3, and Table 4. Observe
that was possible to find smallest fault magnitudes to be detected
that satisfies strong isolation conditions for any t > 0 for FDI
Devices 1. On the other hand, it is not possible to achieve strong
isolation condition using FDI Device 2 and 3, i.e., there no exists

2 <ficandf3 < f3 such that strong isolation is guaranteed
for any t > 0.

Considering n° n’ in Theorem 3 for all i € 1 ,4,£ € T,
we obtain the residual error generator gain matrices Lf, R¢ for all
i €14, ¢ € F. However, the resulting matrices P¢, Hf, W, L¢, R,
are not presented in this manuscript due to space limitations.
Still, all data are available in a Mendeley repository at Carneiro,
Faria, Oliveira, Cucuzzella, and Ferrara (2025).
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Fig. 4. The first plot (from top to bottom) represents the evolution of §'
according to n using Algorithm 2. The second and third plots are related to
the evolution of 82 and &3, respectively.

Table 3
Optimization parameters obtained after applying Algorithm 2.
¢ k, n' nf x 10° B 5 fomin
1 16 17 8.639 0.416 1 31.704
2 51 52 8.030 1.955 0.188
3 56 57 10.312 4.547 0.399 i
Table 4
Parameters obtained for all threshold functions.
14 y' x 1078 M iy af of T
1 2.0891 0.0206 18.753 1 1 0.3064
2 2.508 0.0631 50.512 1 0.188 0.1514
3 4.822 0.0692 54.412 1 0.399 0.1262

The values of 8¢ are small since the method to obtain these
values is conservative, and the f!. values considered are not
sufficiently high to guarantee strong isolation for all faults. How-
ever, with f1. = 16.997 it is possible to ensure strong isolation
of faults in the sensor 1 (output voltage sensor). In the next
section, we are going to show through simulation results that
weak isolation for all sensor faults is obtained considering the

uncertainty function (78) with § = §, = 0.1888.
5.2. Simulation of sensor faults

To illustrate the effectiveness of the proposed approach, we
considered permanent abrupt sensor faults as in Definition 2.
These faults were modeled as offset faults, characterized by a
constant magnitude ¢° after the time of the fault occurrence tfz,
in which the magnitude and the time of occurrence of each fault
depend on each simulation scenario, according to Table 5. The
simulations for each scenario are presented in Figs. 5(a), 5(b), 5(c),
5(d), 5(e) and 5(f), respectively, considering a residual evaluation
function as in (45) with T 103 s and piecewise constant
threshold functions with parameters given in Table 2 and 4. The
scenarios 1 to 3 represent simultaneous faults occurring before
switching time T/ for each ¢ € F, whereas scenarios 4 to 6 consist
in consecutive faults in which a fault in sensor ¢ occurs before T.

The simulation results show that for an uncertainty function
with § = §, = 0.188, the FDI devices guarantee weak isolation
of simultaneous and consecutive faults whenever the smallest
fault magnitude to be detected in each ¢ € F sensor is greater
than or equal f'. . Observe that in all scenarios, a‘ 1 only

after the occurrence of the corresponding ¢™ sensor fault, which
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Table 5
Parameters obtained for all FDI devices.
Scenario 8 ¢ @2 #3 t t 6
1 0188  f2.  fi.  fix 21} 2T} 21}
2 0188  fiy  fam  fam 217 21? 2T}
3 0.188  f2.. fi. fi. 212 213 213
4 0188  fi.  f2.  fix 0.75T] 0.25T] 0.25T
5 0.188  f2. fi, fix 02572  0.75T?  0.25T2
6 0188  f2.. fi. fi. 0.25T? 0.25T} 0.75T}

shows that weak isolation is achieved for FDI Devices 2 and 3,
whereas strong isolation is achieved in sensor 1 with given f. .
However, weak and strong isolation are achieved after a time
t>Tf > tf, for each fault f¢, V¢ € F, which means that, although
uncertainties and remaining faults cannot trigger the FDI Devices,

a detection delay is present whenever t{ < T/, V¢ € F.

6. Conclusions

We provided a robust solution to detect and isolate simul-
taneous and consecutive permanent abrupt sensor faults in a
class of uncertain SAS that combines S_ and L, fault sensitivity
and attenuation performances, respectively, along with optimal
threshold functions for a range of uncertainties and the small-
est fault to be detected. The optimization problem proposed in
Theorem 3 provides the residual error generators gains to en-
hance sensitivity to specific faults while attenuating the effect of
uncertainties and remaining faults in the residual.

Moreover, Theorem 4 provides a threshold value that guar-
antees weak isolation for faults with magnitudes exceeding a
given value for the maximum range of uncertainties functions,
whereas Corollary 1 provides sufficient conditions and a value
for the smallest fault magnitude to be detected to guarantee
strong isolation. Furthermore, Theorem 5 provides an LMI-based
optimization problem to obtain less conservative conditions to
achieve weak isolation when the initial estimation error is non-
zero. Finally, Algorithms 1 and 2 provide the gains and threshold
functions so that the weak isolation is guaranteed for a maximum
range of uncertainties according to the value associated with the
decay rate.

The numerical example has shown that the method of thresh-
old calculation by choosing parameters ozg and ozf foreach ¢ € F
provides a degree of freedom in the threshold design based on
the attenuation gains obtained via LMIs, which can be useful for
practical applications.
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Fig. 5. For all simulated scenarios, the black solid lines in the first axis correspond to the residual evaluation function, whereas the dashed green lines corresponds
to the threshold functions; the red solid lines and dashed blue lines correspond to the absolute value of the fault in sensor £ (|f¢|) and magnitude of remaining faults
||dfe|\' respectively; the gray dotted line in the third plot represents the alarm function. For Scenarios 1 to 3, a fault in all sensors occur at t = 2Tf (simultaneous
fault). On the other hand, in Scenarios 4 to 6, the fault in all sensors except sensor £ occurs at t = 0.25Tf, and the fault in sensor £ occurs at t = 0.75Tf (consecutive
faults). Note that in Scenarios 4 to 6 there is a detection delay t§ = T¢ — tf[ since the fault occurs before T/. However, the fault is detected for any t > T;.
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