

TERRAS RARAS COMO MODIFICADORES DE REDE EM VIDROS FLUOROFOSFATOS PARA APLICAÇÕES EM LUMINESCÊNCIA

Henrique Fabrega Fazan^{1*}

Ricardo S. Baltieri¹, Leandro O. E. da Silva¹, Marcos de O. Junior² Danilo Manzani¹

¹Instituto de Química de São Carlos – Universidade de São Paulo ²Instituto de Física de São Carlos – Universidade de São Paulo

*h.fazan@usp.br

Objetivos

Esta pesquisa tem o objetivo geral de compreender a influência de íons terras (TR³+) na estrutura de vidros fluorofosfatos e o impacto de suas modificações no desempenho de termômetros por luminescência. Os objetivos específicos deste recorte do trabalho são: (i) investigar como diferentes concentrações de íons itérbio (Yb³+) e érbio (Er³+) alteram a estrutura de vidros fluorofosfatos e (ii) avaliar a influência da estrutura do material em suas características fotoluminescentes e propriedades termométricas.

Métodos e Procedimentos

Os vidros foram sintetizados pelo método convencional de fusão seguida de choque térmico. As amostras NP-ABC seguiram a regra composição 40NaPO₃-25AlF₃-20BaF₂-15CaF₂ e possuem as concentrações de Yb³⁺/Er³⁺ descritas na Tabela 1. O procedimento consistiu em aferir a massa dos precursores em homogeneizá-los analítica, misturador planetário e levá-los à fusão em forno tipo mufla, a 1200 °C por 10 min, em cadinho de platina (Pt). Em seguida, os fundidos foram vertidos em molde de aço inoxidável, para choque térmico a 300 °C, e recozidos nele por 2 h, a fim de aliviar as tensões da rede, antes de resfriados gradualmente temperatura ambiente. Depois de formados, os vidros foram polidos com lixas de granulometrias 800, 1200, 2400 e 4000 mesh e caracterizados por análises de Calorimetria Exploratória Diferencial (DSC) e espectroscopias de espalhamento Raman, de Ressonância Magnética Nuclear de 19F (RMN 19F) e de fotoluminescência dependente da temperatura.

Tabela 1: Concentrações dos dopantes em porcentagem molar (mol %).

Nome da série	Yb ₂ O ₃	Er ₂ O ₃
1Yb-xEr	1,00	x = 0,10; 0,25; 0,50
2Yb-0,5Er	2,00	0,50
3Yb-0,75Er	3,00	0,75
4Yb-yEr	4,00	y = 1,00; 2,00
5Yb-zEr	5,00	z = 0,50; 1,25

Resultados

As curvas de DSC mostraram que a adição de Yb3+/Er3+ eleva os valores de temperatura de transição vítrea (Tg, 333-415 °C). Isso indica que os TR3+ aumentam a conectividade e a rigidez da rede, provavelmente por atuarem como agentes de reticulação, exigindo maior energia térmica para iniciar o movimento cooperativo das unidades estruturais (transição vítrea). Analogamente, o comportamento da temperatura de início da cristalização (Tx. 436-527 °C) sugere que os TR3+ inibem a cinética de cristalização, visto que íons grandes e rompem a homogeneidade multivalentes estrutural da rede, criando barreiras energéticas que impedem o rearranjo atômico necessário para a formação de uma rede cristalina ordenada. Entretanto, o parâmetro de estabilidade térmica ($\Delta T = T_x - T_g$) apresentou comportamento não linear, com baixos valores na série 1Yb (mínimo de 97 °C em 1Yb-0,25Er) e os maiores em 2Yb-0,5Er (128 °C) e 3Yb-0,75Er (127 °C), seguido de declínio (106-112 °C) nas mais concentradas (séries 4Yb e 5Yb). Esse comportamento indica que os TR3+, nesta

matriz, possuem uma concentração ótima em relação à estabilidade térmica. Enquanto inicialmente o aumento da concentração ajuda a estabilizar a rede formando ligações mais fortes, após uma certa concentração, os TR³+ servem como núcleos que facilitam a cristalização.

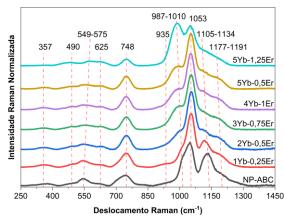


Figura 1: Espectros de espalhamento Raman dos vidros NP-ABC.

espectros de espalhamento apontaram que o aumento da concentração de TR³⁺ tende a diminuir a intensidade das bandas localizadas em 1117-1191 cm⁻¹ (metafosfato. Q2) em função do aumento de intensidade nas regiões $987-1010~cm^{-1}$ (ortofosfato, Q^0) e $1053~cm^{-1}$ (pirofosfato, Q^1). Esse comportamento indica forte despolimerização da rede de fosfatos em altas concentrações de Yb3+/Er3+. Além disso, também foi observado um deslocamento para o vermelho nas bandas referentes aos grupos Q0 e Q2, associado a enfraquecimento de ligações P-O e aumento da massa efetiva local. Apesar disso, o aumento de T_g e T_x sugere que os TR³⁺ reforçam a rede, possivelmente por ligações TR-O/TR-F, que a estabilizam mesmo com menor conectividade.

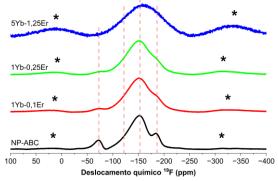


Figura 2: Espectros de RMN ¹⁹F dos vidros NP-ABC.

As análises de RMN 19F revelaram quatro ambientes distintos de flúor na amostra NP-ABC, caracterizados por ligações P-F (sítio 1, -75 ppm) e Al-F (sítios 2 a 4, de -120 a -200 ppm) em ambientes de bário e cálcio. A natureza paramagnética dos TR3+ gera variação na taxa de relaxação magnética do flúor, ocorrendo conforme nas bandas alargamento adicionam TR3+ à matriz. Apesar disso, as medidas de Raman indicam despolimerização da rede de fosfatos, enquanto as de DSC mostram aumento de T_q e T_x, o que sugere fortalecimento da rede via ligações TR-O/TR-F. Os eficientes mecanismos de upconversion e os níveis termicamente acoplados (²H_{11/2} e ⁴S_{3/2}) bem caracterizados do par Yb3+/Er3+ permitem a utilização desse sistema como modelo para investigar a influência da matriz hospedeira no desempenho termométrico. Os termômetros 1Yb-0,25Er 4Yb-1Er apresentaram е sensibilidades relativas (S_R) de 0,30% K⁻¹ e 0,33% K⁻¹ a 303 K e sensibilidades absolutas (S_A) de $12,1\times10^{-3}$ K⁻¹ e $12,4\times10^{-3}$ K⁻¹, respectivamente.

Conclusões

As medidas de DSC mostraram que o par Yb³⁺/Er³⁺ eleva valores de T_g (333–415 °C) e T_x (436-527 °C), sugerindo maior rigidez da rede por contribuição dos TR3+. Além disso, ΔT aponta uma faixa ótima de concentração (2Yb-0,5Er e 3Yb-0,75Er) para a obtenção de vidros com estabilidade térmica maior que 100 °C. Os espectros Raman indicaram forte despolimerização da rede de fosfatos em altas concentrações de Yb3+/Er3+. O RMN 19F revelou quatro ambientes de flúor e alargamento de bandas de F⁻ devido à natureza paramagnética dos TR3+. Tais efeitos estruturais geram mudanças na eficiência dos termômetros vítreos, obtendo-se valores distintos de S_R e S_A. O autor declara não haver conflito de interesses.

Agradecimentos

Financiamentos FAPESP 2023/02179-0, 2020/11038-2 e 2023/05994-6 e CAPES 88887.495341/2020-00.

Referências

- [1] D. Möncke, et al. *J. Chem. Technol. Metall.*, vol. 53, p. 1047-1060 (2018).
- [2] A. Pell, et al. *Prog. Nucl. Magn. Reson. Spectrosc.*, vol. 111, p. 1-127 (2019).