

Joint meeting VII Latin American Crystallographic Association and

XXVII Brazilian Crystallographic Association

BOOK OF ABSTRACTS

October 14 to 17, 2025 Fortaleza, Brazil

VII Latin American Crystallographic Association Meeting

XXVII Brazilian Crystallography Association Meeting

Bruno Rosa¹, Aylen Grenni¹, Javier Ellena², Gianella Facchin¹, Natalia Alvarez¹

¹Química Inorgánica (DEC), Facultad de Química, Universidad de la República, Montevideo, Uruguay, ²LaMuCrEs, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos (SP), Brasil.

agrenni@fq.edu.uy

During the COVID pandemic many researchers found themselves looking to contribute to the search of active compounds against this coronavirus. One of the several strategies used was drug repositioning. In this context, antagonist H2 receptors, like famotidine, were targeted as potential active drugs. In our group, we worked on obtaining new coordination compounds of such antagonist H2 receptors. In this search, a solution of copper(II) chloride with a stoichiometric quantity of famotidine at a pH = 3 was left with constant stirring at 60 °C for 45 minutes. The resulting solution was left to slowly evaporate at room temperature until prismatic dark green crystals appeared. The obtained crystals were characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis and single crystal X-ray diffraction. The obtained structure showed that the famotidine had undergone a nucleophilic attack by a water molecule losing the terminal aminosulfonate group.

The compound crystallized at the monoclinic P2₁/c space group with a = 6.94982(15), b = 12.3041(2), c = 17.4871(3) and β = 97.7421(18). The square pyramidal environment of the copper(II) center presents a equatorial N₂SCI coordination with two N and a S atom coming from the famotidine and a CI completing the fourth position. Another CI atom is coordinated in the apical position leading to a neutral compound.

Intermolecular interactions were analyzed using Hirshfeld Surfaces. Notably the structure is maintained by an extended H-bonding landscape including classical and non-classical H-bonds involving the water hydration molecule, the coordinated CI, aminic N atoms and a carboxylic O from the terminal carboxylate group. The complexes form sheets through this H-bonding network along the *bc* plane.

Keywords: drug repositioning, famotidine, copper(II)

Authors will like to thank Comisión Sectorial de Investigación Científica – UdelaR (PAIE Grant to BR), Programa de Desarrollo de las Ciencias Básicas (Grant to NA) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant to JE).