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In this work, we gain further insight in the physical aspects of the spin noncommutativity, which mix
spacetime and spin degrees of freedom in a noncommutative scenario, in a Lorentz invariant way.
Due to the combination of noncommutativity and Lorentz invariance, time also becomes nonlocal so
the modified Dirac equation in general contains an infinite tower of time derivatives. Nevertheless,
we prove the existence of a conserved probability current in any order in the noncommutativity
parameter and for any background field A,. Finally, we study the Landau problem in the presence
of spin noncommutativity. In this case, we are able to derive a simple Hermitean noncommutative
correction to the Hamiltonian operator. We show that the degeneracy of the excited states is lifted by
the noncommutativity at the second order of perturbation theory. This is to be contrasted to the case
of canonical noncommutativity, where these corrections are of the first order, imposing much stronger

restrictions to the noncommutativity.

© 2012 Elsevier B.V.Open access under CCRY license.

1. Introduction

The idea that spacetime may be noncommutative at very small
scales has its roots in semiclassical arguments stating that the
principles of quantum mechanics and general relativity together
imply in an absolute limit in the localization of events near the
Planck scale. One usually expects physical effects related to quan-
tum gravity to appear only in very high-energy processes, where
quantum field theory is the most adequate theoretical tool. How-
ever, the study of relativistic or even non-relativistic quantum me-
chanics with noncommutative coordinates has the advantage of
exploring the noncommutativity of coordinates in a simpler set-
ting, better clarifying its physical consequences.

In this context, various possibilities may arise, the simpler one
defined by the commutation relations

[Xi, Xj]1 =164, (1

usually called “canonical noncommutativity”. Specific quantum
mechanical potentials with canonical noncommutativity have been
studied using standard perturbation theory [1-4] or 1/N expan-
sion [5], for example. One shortcoming of this approach is that
Lorentz - or rotational, in the non-relativistic case - symmetry
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is generally lost since the constant 6;; may define a preferred di-
rection in space (for other aspects of noncommutative quantum
mechanics, see for example [6-12]).

One may find in the literature several alternative approaches
which does not suffer from this symmetry loss - such as, for
example, Snyder’s work of 1947 [13], where the commutator of
two coordinates is proportional to the Lorentz generator. Syn-
der’s algebra preserves Lorentz invariance as it involves only co-
variant objects (see [14-19] for some recents developments). For
other ways to conciliate Lorentz Symmetry with noncommutativ-
ity of spacetime see for example [20-26]. Another point of view
is to understand Eq. (1) as a first approximation to a more gen-
eral setting where the commutator of coordinates may itself be
a non-constant operator, a function of the coordinates themselves
[27,7,9,28,29].

Recently, another idea was put forward in [30], involving a kind
of noncommutativity with mixed spatial and spin degrees of free-
dom and a non-relativistic dynamics - to be hereafter referred as
“spin noncommutativity”. Such a mixture could be theoretically
understood as a non-relativistic analog of the Snyder’s proposal,
where instead of the angular momentum, the commutator of co-
ordinates is proportional to the spin. In [31], the spin noncommu-
tativity was obtained by means of a consistent deformation of the
Berezin-Marinov pseudoclassical model for the spinning particle
[32]. Besides that, it was extended to the relativistic situation, and
in this context the spin noncommutativity exhibits at least one ad-
vantage over the canonical one, which is the preservation of the
Lorentz symmetry.
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The aim of the present work is to pursue further the study of
the physical implications of this type of noncommutativity. This
work is organized as follows: in Section 2, the action for our model
presented and discussed, starting from the noncommutative Dirac
equation. We discuss the existence of a conserved current in Sec-
tion 3. Section 4 contains an investigation of the effects of the
noncommutativity in a simple quantum mechanical problem, the
Landau problem. Finally, Section 5 contains our conclusions and
perspectives.

2. The noncommutative Dirac equation

The spin noncommutativity for a relativistic system may be
implemented through the following deformation of the standard
position and momentum operators,

xXH = R =xF14+0WH, p#* — p* = p*, (2)

where W# is the Pauli-Lubanski vector

1 1
WH = Eguwwpvspa = Eyso'lwav» (3)
and S, is the spin operator.! A direct consequence of Eq. (2) is
the noncommutativity among spacetime coordinates,

o s : .62
[X*, 8] = =i S i + 1?8“”/)‘7 W,po. (4)

Only covariant objects appear in this last equation, so that Lorentz
symmetry is preserved.

In standard quantum mechanics, X is an observable and there-
fore it should necessarily be a Hermitean operator. In our model
the position operator has a non-trivial matrix structure in spinor
space, and it satisfies

(%) = 08090, (5)

The fact that X* is not Hermitean poses a difficulty in its inter-
pretation as an observable. Concerning this point, various interest-
ing proposals may be found in the literature (see for instance [33]),
but here we will adopt a more pragmatical standpoint by consid-
ering Eq. (5) as a natural requirement to construct a consistent
theory. It will help us to obtain the conjugate Dirac equation and
a real Lagrangian density for our model, for example.

The noncommutative Dirac equation for spin noncommutativity
was introduced in [31] as

Dy (x) = {iy"[9, +ieA (®)] —m}y (x) =0, (6)

where the operator Ay, (%) is constructed from X via the Weyl (sym-
metric) ordering,

f® = / Th_F e (7)
) @n) ‘

It should be noted that the operator A, (x*I+ 0y cHVd,) has a

non-trivial matrix structure which does not commute with y#,

so we face an ordering ambiguity in the noncommutative gener-

alization for the matrix product y*A,. We fix this ambiguity by

! Our conventions are the following: the flat spacetime metric satisfies 7% =
—nit =1, the Dirac gamma matrices are

o_ (1 0Y. i_(0 of
"o 1) VT o)
i

in terms of the Pauli matrices o'; also, o/ = (yHy

iyOyly?y3.

v

—yy#) and y® =

requiring the noncommutative version of the Dirac operator satis-
fies

Dt =yDy", (8)

similarly to the commutative case. With this requirement, we find
the proper form of the noncommutative Dirac equation to be or-
dered symmetrically, i.e.,

[iV’Lau —m- g()/“Au(fc)JrAu(&)V”)]W(X)=0- (9)

The symmetric ordering will ensure the reality of the Lagrangean
density corresponding to Eq. (9); it also simplifies considerably the
derivation of the noncommutative Hamiltonian we will discuss in
Section 4.

An important feature of this model is that, in spite of the pres-
ence of noncommutativity and nonlocality, it is Lorentz invariant,
in the sense that the deformed Dirac equation in Eq. (9) is Lorentz
covariant, and the noncommutative parameter ¢ is a Lorentz scalar.
Of course, the defining map in Eq. (2) was devised for this to hap-
pen, since it only contains covariant objects.

The action of Weyl ordered operator f(x“I+ 0y>c*"3,) on a
spinor ¥ (x) can be represented by means of a “star operation” x
as follows,

FMA+0y50H70,)y = f =t = fexp(89, 70 3,)y.  (10)

We note that the star operation defined above involves a regular
(scalar) function f and a Dirac spinor (column vector): it is not a
“star product” in the usual sense since it does not map two similar
objects in the same class of objects, so it cannot be associative. We
will shortly define what we mean by a “star operation” involving
other objects such as conjugate spinors, and then discuss some of
its properties.

The relevant fact at this point is that the noncommutative Dirac
equation (9) can be cast in terms of the star operation as

|:—iy“8u +m+ %(Aﬂ(x)y" *+Au(X) % y”):|1/f(x) =0, (11)

or, more explictly,
[—iy“aﬂ +m+eytAux)

el
+ ?30” AIL(VMVSU(X]'B] + ysdalﬁl)/“)?)ﬂ]

e?
+ Taa] 3a2AM(yMO-0l1ﬁ10a2ﬂ2 + og¥1P1 5%2b2 yﬂ)aﬂ1 aﬂz

+"-i|1/f(X):0. (12)

The noncommutative Dirac equation has in general an infinite
tower of time derivatives, so the usual Hamiltonian interpretation
of quantum mechanics - based on a Hermitean Hamiltonian, which
ensures unitarity of time evolution and conservation of probability
- is not possible. Inspite of that, we shall demonstrate in Section 3
that a conserved charge current can be defined in general, and for
a particular choice of A,, we shall be able to derive a consistent
Hamiltonian formulation in Section 4.

The star operation and its properties are useful in deriving
the noncommutative Dirac equation (9) from an action principle.
We start by obtaining the conjugate Dirac equation, and for that
end we define a star operation between the usual Dirac conjugate
spinor ¥ = ¢y and a function f by the rule ¥ x f = (f x ¥)Ty?,
or, equivalently,

U f=Pexp(08,y°0H ;) f. (13)
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Finally, we introduce a star operation between two spinors by the
formula

Gx =gexp(09,y° "V, ) v (14)

We may now quote some useful properties that can be proved
regarding the star operation defined in Eqs. (10), (13) and (14).
First, integration by parts and the antisymmetry of o#V leads to

/d“xg?uw =/d4x¢1ﬁ + surface terms, (15)

a property that is well known from the studies involving canonical
noncommutativity and its associated star (Moyal) product.

We will also need to work with expressions of the general form
fd"‘x @(f =), involving two arbitrary spinors ¢ and v and a func-
tion f. Starting with

[ G (f * )
= / d*x (@fw+9¢3uf)/50“”3m/f

6% _
_’_?(pam 3M2f)/5(7’“u1)/50'“2u23v1 av2¢+...>’ (16)

one integrates by parts all derivatives acting on 1, taking care of
the antisymmetry of 0®#, thus obtaining

/d4X¢(f*1ﬂ)=fd4><[(¢*f)¢f+3u5“], (17)

where

_ 6% _
Et = 9<ﬁ3vfy50v“1/f + ?wam aszVSGulvl J/SO'MZMBUN/’

02
- 78‘,2958,“amfyscr“”‘ysam"zw+O(03). (18)

It should be stressed that, while we have only explicitly written
E* up to the second order in 0, the fact that Eq. (17) holds (i.e.,
the difference between the two integrals is a surface term) actually
is true for any order of 6.

These definitions are examples of the general procedure of im-
plementing noncommutativity of spacetime via a star product of
“classical functions”; for some general comments see [31]. Due to
the spin indices, however, the associativity of this “product” actu-
ally holds up to a surface term, as we have shown.

In particular, expressions like the one in Eq. (17) will appear
in which f is the electromagnetic potential A,, which always ap-
pears contracted with a y#. In this case, one should be careful
with the order of the star operation and the y# since they do not
commute. In any case, it can be shown that,

/d“x@(AM*y“w) :/d4x[(¢*AMy“)w+8ﬂF“], (19a)

/d‘lx@(AMy“*tp) :/d4x[(¢y“*AM)w+8MG“], (19b)

where
GH =00da Avy My "y + 0(6%), (20a)
HM =09daAvy "y o™y +0(62). (20Db)

Finally, we can write an action describing the interaction of a
Dirac fermion with an electromagnetic potential A, in a spacetime
with spin noncommutativity,

S[W,A]=/d4X¢(X){—iV’LE)uW(X)vLmW(X)

+S[Au(x)y”*—l—AM(x)*y“]tp(x)]. (21)

Clearly, Eq. (11) is obtained from §5/8v (x) = 0. We split, as usual,
this action in free and interaction part, S = Sg + S;. The usual free
Dirac action can be written in a symmetrical form involving the
star operation due to Eq. (15),

i- i - -
So= /d4x (—Ew * YHop + EBuwy“ * P +my W)- (22)
On the other hand, for the interaction part we write

S,=%/d4x&(y“AM*w+Aﬂ*y“¢), (23)

which can also be cast as

e

© [l (A ) + (B e A
+ U (Ap* YY) + (fxy AL * v ], (24)

after using Eq. (15). One can verify that the action presented here
is real: this property is a consequence of the symmetric ordering
adopted in Eq. (9).

One might also introduce a Yukawa interaction in this model
by adding a term proportional to fd“x& * ¢ = in the action,
where ¢ is an external scalar field. An interesting question, which
however is not the subject of this Letter, would be how to de-
scribe the interaction of the fields A, and ¢ in the model of spin
noncommutativity. To answer this question one should define a
more general star operation, using the deformed coordinate opera-
tors (2), to be able to correctly map the desired noncommutativity
in the interactions involving the scalar field.

Si

3. Conservation of the electrical current

In this section, we want to find an expression for the conserved
electric current j* in our theory, since the existence of such a cur-
rent is crucial for the physical meaning of the model. The action
(21) has global phase invariance, so Noether’s theorem provides a
general formula for the associated conserved current. Due to the
appearance of arbitrary high-order derivatives in i, one would
need to generalize the well-known formula for the Noether cur-
rent (see for example [34]). Expanding Eq. (23) in the first order
of 6, however, one finds

_ L&) _
3 :efd4xAuwy“w— %/d‘lm/fys[a‘w,y“]a#Aaavw

+0(6?), (25)

which, with the help of the identities

YRoPT =Py T —nlyP) — ighvpo 45y,

oPIyt = —(np“y“ _ n““yp) _ iguvaVSJ,v,

(26a)
(26b)
can be cast as
S,:/d“xeA,ﬂﬁy“w

- ie@/d4X1/}y5(3uAvyM3UIﬂ — APy )

+0(6?). (27)
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Since, in this approximation, there are no higher-order derivatives
acting on v, on may use the standard formula for the Noether

current associated to the phase symmetry v = —iay,
oL
jH=—i—e—y+0 (28)
3(3 v) ")

= Uy +e0dy® (A yH -0, ARy )Y +0(6%).  (29)

To see the existence of a conserved current j* at arbitrary or-
der in 6, we shall employ the following trick: using Eq. (9) and its
conjugate, one writes the identity,

N

- - - e -
(iﬁmﬁ)/“ +my+ Sy xyHA,+ EWVH *A/L)W

_ lﬁ(_i)/"aﬂlﬁ Sy Sy A+ S A *y"w) —o0.
(30)

In the usual case (without the star operation), all that would re-
main would be i3, ¥ y*y + iy = d,(iyyHy) =0, giving
the conservation of the usual electric current. In our case, Eq. (30)
can be written as

hu(FY"9) + [Ty Ay =T (A v 0)]
FI [y * Ay = (A )] =0, (31)

or, by virtue of Egs. (19), (20),

- e _
O [w“w i P Au(y oy +yy o)y + 0(92)]
=0. (32)
Finally, from Egs. (26),

[y v +eoyy® (B,A Y — 3,A YY)y + 0(6%)] =0.

(33)

As commented in the paragraph containing Eq. (17), this last equa-
tion holds for any order of #, which ensures the existence of the
conserved current j* on general grounds.

It is noteworthy that the conserved current depends, already at
first order in 0, on the electromagnetic potential, which we have
treated as a fixed background field. The same feature appears in
canonical noncommutativity [6], and it makes interesting the prob-
lem of incorporating a dynamical potential A, in a consistent way.

4. Landau problem in the presence of spin noncommutativity

Having further explored the formal aspects of the spin noncom-
mutativity, in this section we want to gain some insight into its
possible observable consequences in a particular physical problem.
We consider the bound state problem for a charged particle sub-
ject to a constant magnetic field, known as the Landau problem.

When the noncommutativity is not present, the Landau prob-
lem is described in many textbooks such as [35]. The gauge po-
tential corresponding to a constant magnetic field perpendicular to
the xy plane can be chosen as A* = Bxléét and the Dirac’s Hamil-
tonian

Ho=—iy%y'9; + my° + eBx1y°y?, (34)

has the energy levels E,, = \/p§ +m?24+eB@2n+1—«w), with

o ==+1 for spin up and down, respectively. All energy levels ex-
hibit an infinite-degeneracy relative to p; and p,. Besides that,

except for the (unique) ground-state |0) = |0, +1), the excited en-
ergy levels are two-fold degenerate, since |n,+1) and |n — 1, —1)
have the same energy.

The energy eigenfunctions of Hg can be cast in terms of the
two-components eigenvectors X, of the Pauli matrix o> as follows,

| ) Xa ) (35)

En a+m |n)X0t

n, ) =cna <

Here, |n) are essentially eigenstates of the harmonic oscillator,

. o
@n(x) = (x|n) = e/ P22 ¥iP3x2) =82 (&), (36)
where & = VeB(x, — 22

) and cp ¢ is @ normalization factor,

o eB)4 |Eng+m 1 a7
LT o Eno /ﬁZ”'Hn!’

chosen such that (n’,a’|n, @) = 8y n8y’.«- The canonical momen-

tum 7 is
ﬁ) (38)
VeB
The fact that the noncommutative Dirac equation (11) has in
general higher orders in time derivatives precludes the defini-
tion of a Dirac Hamiltonian in the standard way. It is actually a
consequence of Lorentz invariance that the nonlocality in space
introduced by noncommutativity should also extend to the time
variable. This difficulty is circumvented in the particular problem
studied in this section because the linearity of the electromagnetic
potential makes the noncommutativity modification of the Dirac
equation local both in time and space. We end up with the simple
Hamiltonian H = Hg + H; where

eB ol 0
—97172( 0 0]>' (39)
It should be stressed that Eq. (39) contains the exact modifica-
tion of the Hamiltonian for the present problem. This observation
is necessary since we will use the O(#) correction in Eq. (39) to
calculate the corrections to the energy levels up to ©(62) in the
sequel. Another remark is that the symmetric ordering adopted in
Eq. (9) is also essential in keeping the noncommutative modifica-
tion to the Hamiltonian exactly of first order in 0: if we had chosen
another ordering, the calculation of the noncommutative Hamilto-
nian would involve a multiplicative factor [y° — fadeBy3]~! in-
volving a nonvanishing constant a, which would introduce higher-
orders corrections. Finally, we note that Eq. (39) is Hermitean, so
it maintains the reality of the energy spectrum.

One may readily see that the first order corrections in the en-
ergy levels vanish exactly: the spin noncommutativity does not
change the spectrum of the Landau problem in the first order in 6.
We found non-trivial corrections to the energy levels in the sec-
ond order of perturbation theory. For the ground-state energy, one
has to calculate

2
@ [Wh.il
SE = ,
0 Z Eo — Ep

n,i

7T = (—id, p2 —eBx1, p3) = VeB (—iag, -

i
= 59631923/23/3 =

>landi=1,2, (40)

where W, ; are matrix elements of H; between the ground-state
and the excited state |n, i). The only nonvanishing of these matrix
elements are

_i0(Be)*?pyps o4 (412)
2(Eg+m)(Er +m) c1 41
eBp; [c1,—1¢1,+1(2B + p3) + co,—1C0,+1€B]
2= as 3 P2 (41b)

2 c1,-1¢1,4+1(Eo +m)(E1 +m)
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y = 30(eB)’py €412, -1
' (Eo +m)(E3 +m) c1,—1C1,41

(41¢)

from which the final (nonvanishing) expression for SE(()Z) can be
calculated,

62(eB)?p? [ eBp3 <co,+l )2
4(Eg +m)? | (E1 — Eo)(E1 +m)2 \ €1, 41

2
+ ! (eB(CO’“CO”] - 2) + p3>
(E1 — Eo)(E1 4 m)? C1,-1C1,41
n (eB)?p2 <C0,+1C2,—1 )2} (42)
(E3 — Eo)(E3 +m)?2 \c1 41c1,-1/ |
More interesting is the calculation of the second order en-
ergy corrections to the degenerate levels, since we can investigate
whether the degeneracy is broken by the noncommutativity. Phys-
ically, when the perturbation breaks the degeneracy, that means
some symmetry is lost; in our problem, it is the constant magnetic
field which breaks part of the rotational symmetry. In the com-
mutative case, one still has the two-fold degeneracy of the excited
levels |n,i). Since the noncommutative correction to the Hamil-
tonian H; depends on the magnetic field, it might be that this
degeneracy is broken, even if the noncommutativity itself does not
break further symmetries.
Second order corrections to the energy of degenerate levels are
found by solving the secular equation [36]

(2)
SEP =

Woism.eWin,e:n,j
det(Wij Y e 55,22>51j> =0, 43)
n— tm

where the sum is for m>1and m#n, and £ =1,2, and Wy i.m¢
is the matrix element of H; between two degenerate states. This
calculation is straightforward but quite involved, so it was done
using a Computer Algebra System (CAS) [37]. The resulting expres-
sions are complicated and not particularly informative to be quoted
here, but the relevant fact is that Eq. (43) usually has two different
solutions 6E,(12) , what means degeneracy is indeed broken at the
second order.

5. Conclusions and perspectives

In this work, we gained further insight into the spin noncom-
mutativity proposed in [31]. We have shown that the noncommu-
tative Dirac equation can be derived from an action principle, in-
volving a Lagrangean which is real and has global phase invariance.
This implies, by Noether’s theorem, the existence of a conserved
current. The existence of this current is encouraging because it is
important for the physical interpretation of the model.

We also investigated a very simple quantum mechanical sys-
tem - the Landau problem - and verified the physical effects of
the introduction of the spin noncommutativity. In this simple set-
ting, it was possible to derive a Hermitean Hamiltonian from the
noncommutative Dirac equation, which consisted on the standard
Dirac Hamiltonian plus a noncommutative correction of order 6.
By using standard perturbation theory, we shown that the correc-
tions to the energy spectrum appear at the second order in 6, and
they break the degeneracy of the excited states, despite the fact
that the noncommutativity does not introduce further preferred
directions in the problem. These results are potentially interest-
ing from the phenomenological point of view. In most treatments
of similar problems in noncommutative quantum mechanics, both
in relativistic and non-relativistic regimes, corrections to the spec-
tra are found already at the first order in 6 [4,3,1,38], which can

pose very stringent constraints on the noncommutativity param-
eters. In our relativistic model, the noncommutativity parameters
could be less constrained by existing experimental bounds.

Many questions are still open, however, regarding further de-
velopments in this line of research. Instead of a fixed background
field, the dynamics of the electromagnetic field should be consis-
tently incorporated in this scenario. More complicated potentials
could be investigated, such as the Coulomb potential, and a par-
ticular interesting question is whether the physical effects of the
noncommutativity appear only at order 62, as in the Landau prob-
lem. Finally, since noncommutativity is expected to be a very high-
energy effect, one might investigate whether a quantum field the-
ory could be defined based on this type of noncommutativity. The
definition of a novel type of noncommutative quantum field the-
ories, which preserves Lorentz invariance by construction, would
certainly be a very interesting problem.
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