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1. Introdução. 

VERSÃO FINITA 
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Instituto de Matemática e Estatística 

t Úniversidade de São Paulo 

A formul~ tradicional do problema de projeto de redes de computadores considera 

que é dado o conjunto N de localizações dos nós comutadores de mensagens, a de­

manda média de transmissão de mensagens e suas características para cada par ( origem, 

destino). De posse destes dados, busca-se determinar tanto o roteamento das mensagens 

( qual o caminho que ~guem ou, equivalentemente, quais os fluxos de mensagens nos várioa 

canais), quanto a capacidade de transmissão (velocidade} de cada um doa canais a serem 

instalados. Nesta formulação, pode-se considerar que o conjunto de possíveis interconexões 

é variável de projeto (projeto topológico) ou que é dado (o que é a tônica desta apre­

sentação, ou seja, o problema de designação de fluxos e capacidades). · 

Para. avaliar o projeto temos que definir critérios, critérios estes que caracterizam os 

pontos focais da abordagem. Evitando maiores diacuaões que podem ser encontradas em 

Gerla [1) e Humes (2), consideremos o implícito problema bicritério onde as funções objetivo 

são custo e tempo médio de encaminhaDJtmto de mensagem entre origem e destino. Estes 

critérios serão modelados por funç3es 

D( e) = custo dos m canais ~talados com capacidades Ci, i = 1, 2, •.• , m, e 

T(f, e) = retardo com roteamento associado a um fluxo de mensagens / = (/1, ... , / m)' 

e cap&c:idades instaladas ( c1, c2, ••. , e.)'. 
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A notação atjma pressupõe que existam m canais possíveis de interconexão, cor-
~ . 

respoodendo a um projeto topológico dado. O projeto topológico corresponde a definirmos 

o aquana de imerconexão entre 08 nÓII comutadores de mensagena. Esta definição é 

Dat~te modelada &travéa de um grafo G = (N, Â), onde Â, conjunto dos arcos do 

gnlo G, representa a existência de canais de comunicação entre 08 nós (comutadores). 

Como Â é finito, não há perda de generalidade em utilizarmos Â = { 1, 2, ... 1 m l 

caracterizando oa extremos das arestas por 

â: Â M _ {{i,j} C 2N I Í > j} = Q 

Note-ae que a definição acima ( Q), implica em não considerarmos canais cuja origem 

e deaüoo coincidam (bip6teae esia bastante natural). Na mesma linha, suporemos â( ·) 

iD,jetora ( canais em paralelo aio tratadoe como canal de maior capacidade). 

Na medida em que considerarmos oe canaia "full-duplex" e formoe estudar fluxos, 

, é c::omememe considerar o digrafo 11880ciado à interconexão. Digra!o este cujas arestas 

crieatadu tão dadaa por. 

a: A .... {(i,j) e N x N} 

. c:araderiudu por 

a(i) = {(J:, 1)1 (1, J:)} * â(i) = { J:, I} 

O ~uuio de areatu do digrafo será indicado por A, onde 

A_= UieAa(i) = a(Â). 

Cooaiderando como dados: 

N = {1,2, .•. ,n} = conjunto de localizações de nÓII comutadores de mensagens, isto 

é, paDto. onde um ou maia dos canais de comunicação tem extremos, 

· f : N X N ...,. R+ = demanda média de transmissão entre os nós comut.adores de 

meuagem. Tipicameu&e esta demauia é medida em kilobits/seg, •1 

i : N X N M R+ = demanda média de envio de mensagens entre 08 n6e comutadores. 

Tiptcamede, ata demanda é medida em milhares de menaagena/eeg, •1 
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i ; N x N i-+ R++ = comprimento médio das mensagens entre os nós comutadores. •1 

Podemos então definir o problema de projeto de redes ele computadores como: 

"Dados N e q : N x N 1-+ R+, encontre, se existir, a. região de pontos eficientes 

· (ou um subconjunto desta região) em relação ao critério (T(/,c),D(c)}', obedecendo àa 

restrições 

(Rl) r· E Fr• = {7 E Rtm I E1:(i,l)eA7,.,-E,:(l,li)eA71i = (61ir-61.)qr.} para 
l 

(r,a) EN X N (com qn > 0),*2 

(R2) /;; = Ecr,•)ENxN f[l, para (i,j) E A; 

(R3) /i =IH+ J,., para â(i) = {k, l}; 

(R4) Vi E Â,(fi,ci) E Yj = {(0,0} U {(s,r,) E R x Oi I O~ s < r,}, onde Oi é dado; 

(R5) Â é um conjunto de arcos com extremoa em N, gozanclo, coniorme a formulação, de 

uma propriedade P." 

As restrições (Rl) e (R2) correspondem a modelar um fluxo multicomodidade ("multi­

commodity flow"} onde cada tipo de comodidade (unidade de lraosroissão) é caracterizada 

por sua origem e destino. 

A restrição (R3) corresponde a uma modelagem clássica para canais "full-duplex", 

onde o sentido em que a unidade de transmissão percorre o canal não é determinante de 

seu ef'eito no fluxo. 

Em alguns pontoa, será conveniente notar que eatarooa trabalhando com vetores j E 

R~m' tais q~e i E Ecr,•)ENxN F"· e com vetores / e R 111
' onde /i = i,., + j,,, para 

a(i) = {k,l}. Porém, noa reservamos o direito de, a menos de necessidade para a clareza 

do texto, usar a expressão "/ = (/1 h ... f,. )' é a soma de fluxoa multicomodidade". 

•-• Por simplicidade de notação usaremos: q;; = q((i,j)), q = EieN E;eN qi;, 

q;; = q((i,j)), q = EieN E;eN q;;, ii; = i((i,j)). Maia ainda, faremos as seguintes 

hipóteses simplificadoras: i;.; =! ·(homogeneidade no tamanho de menaagens); qi; = ¼qi; 

(independência de proceaaoa); q;; = O, q;; = O, para j EN. 
•2 Caso contrário, f[l = O, para todoa os an:oa (i,j) E A. 
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Note-se que nas condições acima não há perda de generalidade em assumir que: 

Mais ainda, deve ser claro que em qualquer solução eficiente 

V(.l-,1) e A, V(r,a) EN x N, !Ii · Jí{ = O 

A restrição (R4) indica que o canal inativo (fã = O) pode não existir fisicamente 

(ci = O) e que, exceto neste C8801 o grau de congestionamento (/;/e;) é bem definido e 

pertence ao intervalo [O, 1 ). 

A questão de canais inativ08 poderem não existir fisicamente é complexa ao consi­

derarmos que na restrição (R5) poderíamos impor condições tais como biconexidade sobre 

o grafo (N,Â). Uma possível 10lução para tal questão seria impor restrições do tipo 

/, 2:: ], ou e, 2:: e, para i E Â. O eegundo tipo de restrições pode fazer sentido no caso 

e,= {0,c1i,C2i,••·•C.,i}• 

Para evitar maiores problemas, consideremos Â como dado e seguindo a abordagem 

usual para problemas bicritério (ver, p.ex., Lin (31 e [41), consideremOB 08 problemas abaixo: 

PT(DMAX) 

"' 
minimizar L d;( e;) 

i•l 

"' L t;(/,,c,) S qTMAX 
i•l 

/EF 

"' 
minimizar L t;(/;,c;) 

i:zJ 

ffl 

L di(ci) :S D1,111x 
i•l 

/EF 
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onde F é o poliedro das somas de fluxos multicomodidades descritas pelas restrições (RI) 

a (R.3) acima e estamos considerando Â = {1,2, ... ,m} dado. Claramente, supomos 

F t 0. Estes problemas são denominados problemas de designação de fluxo e capacidade 

(CFA · Capacity and Flow Assignment). 

Neste trabalho, nos concentraremos no caso Ca = (O, +oo}, chamado de rel~ 

contínua ou caso contínuo. 

Por simplicidade, nós consideramos acima que o cuato da rede é somente o custo doe 

canais. Utilizando a notação D(·) para o custo total e d;(·) para o cuato dos c:anaia 

individuais, é claro que 

Os custos individuais dos canais são definidos n011 valores posaín de capacidades 

di: C; 1-+ R+, mas, não há perda de generalidade em aupor: 

Em term011 IIÍmplistas, a hipóteae acima conflita com, por exemplo, #C; = p E N. 

Neste caso, existiria uma infinidade de funções custo d; : R+ 1-+ R+ que retratariam a 

estrutura de cuatos restrita ás capacidades disponíveia. 

Mas, é natural supor que as funções d;(•) procurem representar fenômenoe econõmicoa 

e que desta forma sejam gerados seus valores. Assim aendo, auporemos ao longo deste 

trabalho: 

(Hl) d;(O) = O (capacidade nula.~ canal não instalado~ custo nulo); 

(H2) lim.-00 d;(z) = +oo (não há limite superior para os custOII a menos que aa capaci­

dades sejam limitadas); 

(H3) z > 11;::: O* d;(:i:) > d;(s,);::: O (custos monotonic:amente crescentes); 

(H4) d;(·) é C 00 em (O, +oo) (com continuidade simples na fronteira); 

Além destas hipóteses usaremos freqüentemente: 



(H5) d;(•) é côncava ou (H5A) d;(·) é estritamente côncava; 

(H6) d;(•) é côncava na origem ou (H6A) d;(·) é estritamente côncava na origem. 

A não obrigatoriedade das hipóteses de concavidade está associada ao nosso interesse 

em obter resultados teóricos sem estas hipóteses. A hipótese que corresponde a uma 

tecnicalidade é a hipótese (H4). Defendemos fortemente a validade desta hipótese, no caso 

geral, pois acreditamos que os modelos de geração de preços pelos eerviçoe de comunicação 

utilizem funções para as quais (H4) vale. 

No caso brasileiro, temos 

d,( e)" = l;cª, onde 

(i) a e (O, 1), i.e., a~ 0.56 

(ii) l, depende da distância em quilômetros entre os extremos do canal de comu­

nicação. 

É interessante notar que este resultado foi obtido inicialmente por análise de tabelas 

da EMBRATEL e confirmada posteriormente em contatos com profissionais desta orga­

nização. 

Em relação ao retardo, consideramos válida a hipótese de existência de uma forma 

produto para as probabilidades de mensagens nos "buff'ers" doe nós chaveadores de men-
1 • 

aagem, ou seja, (p.ex., ver Kleinrock [51): 

\. 1 "' 
T(f,,) =-: :Et;(/;,c;) = T 

'l i•l 

No caso particular de retardo médio em redes de filas M/M/1 teremoe 

111 
.\; 

111 1 .\; 1 1 '" /; 
T= E-:-T;= E-=-- =-:E-

i=l 'l i=J 'l IA e; - f; 'l i=J e; - /; 

Isto i, para retardo médio em redes de filas M/M/1, teremoe 

/,· 
t;(/;, e;)= ____!_/, 

e; - i 
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As funções t;( ·, •) não apresentam µm caráter qualquer por representarem parcelas 

do fenômeno físico de retardo. Assim sendo, ao longo do trabalho BUporemos que algumaa 

hipóteses são a elas aplicáveis. Estas hipóteses, para i = 1, 2, ••• , m, são: 

(H7) *3 t;: Y 1-+ R+, onde Y = {(0,0)} U Yo e Yo = {(/,e) 1 O~/< e}, . t;(O, ·)=O. 

(H8) ti : Y0 ...,. R+ é C00 
( com os devidos cuida.dos na fronteira); 

-{H9) VM > O, ti(/,c) = ti(M/,Mc); 

{H10) Vê> O, tJ,c): y n Ha,c) 1 li E R} ~ R+ ' 
(a) estritamente convexa, 

(h) mohotonicamente crescente (no sentido estrito), 
(e) lim1-Lt;(f,'ê) = +oo; 

(Hll) VJ > O, t,.(J, •): Y n {(f,a) 1 a E R} ..... R++ é 

(a) estritamente convexa, 

(b) monotonicamente decrescente (no sentido estrito), 

(e) lim-7+ t;(/,c) = +oo. 

A hipótese (H7) especifica que o grau de congestionamento deve ser menor do que a 

unidade e que canais não ativos (/; = O) niio contribuem para nossa medida de retardo 

(mais ainda, neste caso, a melhor o~ é a niio instalação do canal, isto é, e;= O). 

A hipótese (HS) é meramente técnica e n:Betida nos modelos de filas usuais. A hipótese 

(H9} de homogeneidade de grau zero está intrinsecamente ligada à idéia de que os ti(·,·) 

são adimensionais retratando a parcela do canal i na composição de qT e, portanto, 

não podem ser influenciados por "mudanças de escala" na aferição de e,; e /;. 

As hipóteses (HlO) e (Hll) representam o comportamento natural de sistemas com 

congestão. 

Uma observação relevante é que deve ser notado que a homogeneidade de grau zero 

implica em descontinuidade em (0,0). Existem impreciaõea ~ literatura devido à ausência 

deste cuidado. 

*3 As hipóteses Hl a H6 cmem respeito & estrutura de cuatoe. 



Il. Resultados preliminares. 

Para os problemas acima definidos, valem os seguintes resultados, para a relaxação 

contínua: 

Fato 11.1. PD(TMAX) é viável qualquer que seja TMAX > O e PT(DMAX) é viável 

qualquer que seja D> D° onde D°= inf{E:,1 di(/i) 1 / E F} > O. 

Demonstração: trivial a partir das hipcSteses (Hl) a (H4) e (H7), (HS), (HlO) e (Hll), 

notando que Dº = min{E!, di(/;) I / e F}. 

O mínimo acima indicado é bem definido, pois F é um poliedro na forma canônica 

F = {(V(F)) + Cr} e como d(·) é monotônica estritamente crescente, 

"' 
Dº = inf(E d;(/i) 1 J e F} = 

..., 
= inf(E d;(/;) 1 J e [V(F))} = 

iz:l 

"' = min{E d.(Ji) 1 / e [V(F))}. ■ 
ial 

Para o cuo contínuo podemos ainda afirmar: 

Fato II.2. Para todo TMAX > O e DMAX > Do, Ol!I problemas PT(DMAX) e 

P D(TM AX) têm eolução ótima. 

Demonstração: Apresentaremos a prova em duas partes distintas: 

(i) TMAX >O=> PD(TMAX) tem eolÚção ótima. 

,.., . Antes de maia nada, notemOl!I que a restrição O < /; < e; pode ser substituída por 
. , . 

/; ~ P;Ci onde Pi é definido por f;(p;, 1) = TM AX • Claramente, P; e [O, 1 ). 

'làl fato é possível pois para e,> O, por (H9) 



Mais a.inda, usa.ndo (H7), (HS) e (HlO), ti(•, 1) é estritamente crescente contínua e 

com limp,-1 ti(Pi, 1) = +oo. 

Portanto, a restrição (l., e;) e l'i pode ser substituída por 

Mais ainda, se (7, e) é um ponto viável de P D(TJIAX) podemoe, sem perda de 

generalidade, impor a hipótese adicional Ci 5 4 onde ct é definido por '1i(cl) = 

Lfa:1 d;(ê;). 

A existência de 4 é garantida por (Hl) a (H4). 

Assim sendo, PD(TMAX) pode ser reescrito como 

m 

minimizar L di(ci) 
i•l 

(/;,ci) e K; = {(a,6)} 1 O 5 a 5 bpi 5 ct} .. 
L t,(/i,Ci) S q T11AX 
isl 

/EF 

Claramente K; é compacto e portanto o conjunto de pontos Tiáveia está contido no 

compacto K = Ki x K2 x ... x K.,.. 

Mais ainda, por (HS) t;(·,·) é contínua em todos oa pontos de K;, exceto (0,0). Maa, 

neste ponto, qualquer que seja a seqüência {(Ji•, ct) heN, (Jf, cf) E K;, convergindo para 

(0,0), temos 

portanto, t;(·,·) é semicontínua inferior em K;. 

Podemos então, afirmar que E:, t;( •, •) é semicontínua inferior em K e, ~anto, 

{(/,e) E K I E:.1 t;(f,,c,) 5 q T11Ax} é fechado em K e, pm1anto é compacto. 

Como F é fechado e E:.1 di(•) é contínua (H4), segue que estamOC1 rnioirninodo 

uma função contínua em um compacto não~ (o ponto (7,c) myel, utilizado via 
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axioma da escolha pertence ao.compacto construído). Portanto, existe solução ótima do. 

problema. ■ 

· (ü) DMAX >Do~ PT(DMAx) tem solução ótima. 

A argumentação é similar à apresentada acima, sendo que a restrição de custo impõe o 
r 

limite superior nas capacidades, um ponto viável gera um retardo utilizado para definir os 

p,, i = 1, ... , m, e a compacidade dos pontos viáveis segue da continuidade das restrições 

de cuato e de fluxo (lineares). 

Como o retardo é limitado inferiormente (t;(•, ·)~O) e semicontínuo inferior, com a 

compacidade obtida segue a existência de mínimo. ■ 

. A importância deste resultado fica· clara ao enunciarmos o seguinte fáto, para o caso 
'-\ 

contínuo: 

Fato II.3, Para todo T > O, o ponto (T,D•(T)), onde 

D•(T) = valor ótimo de PD(T) 

é um projeto eficiente. 

Antes de demonstrar este fato, provemos o seguinte lema válido para o caso contínuo: 

Lema II.4. Para todo T > O, ee (r, e•) é solução ótima de P D(T), então 

T(r,c•) = T. 

Demonstração, Suponhamos, por contradição, que T(r, e•) < T. . Então podemos 

dimim1ir ,.._ ci (ci > O, eem perda de generalidade} para c1 =,; ci - .61, de modo que 

. ·' 

lato é p088Íffl por (Hll) e (HS). 
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· Então por (H3) obtemos um ponto viável com custo interior ao da solução ótima. O 

que é uma contradição. • 
Com este lema em mente, segue a demonstração de (11.3): 

Demonstração de II.3: Suponhamos, por contradição, que (T, D* (T)) não é eficiente, isto 

é, é possível encontrar um vetor {7,ê) tal que (T(/,ê), D(ê)) ~ (T,D•(T)). 

Se T(l,c) < T então (/,e)' é viável em PD(T) e D(c) = D•(T). Portanto {7,c) 

solve PD(T) e por (11.3.10) T(l,c) = T, o que é uma contradição. 

Se T(7,ê) = T, então D(ê) < D•(T), o que negaria a definição de D*(T). ■ 

Analogamente, podemos enunciar: 

Fato II.5. Para todo D > Do, o ponto (T*(D), D), onde 

T*(D) = valor ótimo de PT(D) 

é um projeto eficiente. 

Lema II.6. Paratodo D > Do, se (f*,c•) é solução ótima de PT(D),. então 

D(c•) = E:.1 di(c:) = D. 

As demonstrações são omitidas por serem variações simples du provaa anteriores. 

Estes resultados iniciais correspondem a um aproveitamento parcial da peculiar es­

trutura matemática do problema. em estudo. Sob o ponto de vista de Programação 

Matemática de Grande Porte, devemos ainda destacar u estruturas de eeparabilidade, 

monotonicidade e convexidade parciais. 

As funções custo e retardo são somas de parcelaa atribuíveis a cada canal específico. 

As funções custo por canal são monotonicamente craceo.tea e, uaualme.ote, cônca\1118. O. 
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retard011 por canal são funções que com um argumento fixo são estritamente convexas e. 

estritamente monotônicàs. Mais ainda, se pudéssemoe desprezar a restrição de retardo, 

teríamoe dois grupoe de variáveis com completa independêncil\. Neste caso, a aproximação 

contínua teria valor 6timo obviamente igual a (E;:1 d;(/;)), caso o problema fosse viável. 

Em relação ao retardo, existe- a estrutura adicional de que t;( •, ·) é função homogênea de 

grau zero. 

F.ste conjunto de consider~ despertaram o nosso interesse e, em particular, -

induziram-n011 a aceitar a abordagem usual da literatura: projeção. Note-se que a projeção 

natural corresponde a trabalhar alternadamente noe subespaços de fluxos e de capaci­

dades, resolvendo alternadamente problemas projetad011 que são denominados problema 

de designação de capacidades (CA) (fluxo fixo) e problema de designação de fluxo (FA) 

( capacidades fixas). Mais precisamente: 

:• O problema de deaignação de capacidades (CA) é aquele obtido através da 

particularização do problema de designação de fluxoe e capacidades ao prefixarmos um 

fluxo multicomodidade. Isto é, (CA) é obtido a partir de PD(TMAX) ou PT(DMAX), 

impondo F = {]}. 
Nestu condições, obtem011011 problemas CD(TMAX) e CT(DMAX) definidos por _ 

CD(TMAX) = "' L t;(/;,c;) S 9 TMAX 
i=l 

Ci E e. e Ci > 7, i = 1, 2, ... 'm 

"' 
min L t;(/;, e;) 

i•l -L d;(c.) ~ D1t1AX 
ial 

Ci E C. e Ci > ], i = 1, 2, ... , m 

12 



Note-se que estamos assumindo, sem perda de generalidade, 7 > O. 

O problema de designação de fluxoa (FA) é aquele obtido &kavéa da particula 

rizat;iio do problema de designação de fluxos e capacidades ao preflxarmoe as capacidades 

instaladas. Isto é, (FA) é obtido a partir de .PT(D) impondo Ci = {e.}, i = 1,2, ... ,m . 

e D(c) = E:1 di(ci)• 

Assim sendo, o problema (F A), para e= e, é definido por 

(FA) 

m 

min E t;(/;, e;) 
ial 

feF 

e;> /i, parai E l(c) = {i/c; > O} 

/; = O, para e; = O 

onde F é o poliedro de fluxos multicouiodidade desaito pelas restrições (Rl) a (R3) do 

problema de projeto de redes. 

Recordando o já exposto: 

(Rl) r· E r• ={/E R!"' 1 Ll:(A:,l)EA 7"' - Ll:(l,i)EA 7,,, = (6tr:... 6,..)qr.}, 

(R2) /;; = L.(r,•)ENxN f[l, para (i,j) e A, 

(RJ) /, = /A:1 + /,A,, para â(i) = {k,l}. 

Note-se que não há perda de generalidade em assumir .r(c) = {1,2, ... ·,m}. · · . 

O problema de designat;ão de fluxos é qm problema não linear convexo de fluxoe 

multicomodidade. Apesar de dificuldades naturais associadas a porte, este problema é 

bem ~portado no sentido de que para ele teoremas fortes de dualidade (tanto roioiroax 

como Wolfe) são válidos. Mais ainda, todo mínimo local é global. 

O problema. de designação de capacidades tem duas versões: contínua e discreta. No 

caso discreto, é um problema. de mochila não linear. No caso contínuo, o (CA) aparenta 

ter a dificuldade de apresentar mínimos locais que Dão são globais ( devido à concavidade 

de d;(·)), exceto no caso simples de custos lineares. Tais dificuldades são aparentes e em 

Humes [2] elu são eliminadas com a introdução de uma bipóteae adicional (HA). 
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Definição n. 7. Dizemos que vale a hipótese adicional. para a estrutura de custos e retardos. 

(HA) para o problema de projeto, se 

ou, mais sumariam~, 

• 
Note-se qu~ se o custo for linear, a convexidade estrita do retardo e a monotonicidade 

f 

crescente do custo implicam na validade da hipótese adicional. 

É interessante notar que para o CM<> mais estudado· na literatura, que é o de filas 

M/M/1 com custo dado por "power law", a hipótese adicional (HA) é válida. 

Mas, um ponto que devemos ter em mente é que um ponto (r, e•) tal que r resolve 

o (F A) com Ci = {e;} e. e• re,olw o (CA) com F = {r} não é necessariamente 

eequer um mínimo local, como é afirmado erroneamente na literatura. 

DI. Designação de Buxos e capacidades usando projeção. 

No seu clássico artigo de 1970, Geoftiion (6) introduziu as idéias de manipulação e 

estratégias, para o tratamento de problemas de grande porte em programação matemática. 

Uma das manipulações destacadas é a chama.d& projeção (ver, p.ex., Rumes (2)). 

Tipicamente, dado o problema (PTP} 

min/(z,11) 

sujeito a g(z, 11) S O 

z E X, 11 E Y 
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a manipulação de projeção des~ problema, eobre o espaço das variáveis s,, como: 

{ 

minv(s,); 
(PAP,) = 

- sujeito a II E V, 

onde: 

V= {y E Y l 3z E X: g(z,y) ~ O}, 

11 : V ~ R u { -oo} é definida por 

11(y) = inf{/(z, i) 1 z E X e g(z, ri) ~ O}. 

A técnica de projeção é naturalmente aplicável ao problema de designação de ftuxOB e 

capacidades, desde que seja tomado o cuidado técnico do tratamento da restrição e > f. 

Basicamente a idéia é que para e = e ( ou / = 7) para o qual o problema seja viável, 

isto é, e E V (7 E V), existe um limitante superior do retardo e pode-ae substituir e > f 

por. e;:: li:/ (ou e~ li:/). 

Os principais resultados necessáriOB a uma fácil aplicação do método de ·projeção estão 

associados 1108 seguintes fatos: 

Fato 111.1. Os problemas P D(T) e PT(D), ee viáveis, têm IIO!ução ótima tanto no 

caso Ci=(0,+oo) comonocaso Ci={0,Cii.•••,Ci,}, i=l,2, ... ,m. 

. ·-
Demonstração: No caso contínuo (Ill.1) é repetição de (11.2). No caso discreto, é óbvio 

·pela finitude de capacidades disponíveis. 

. Fato III.2. Se o ponto (r ,e•) é solução ótima de PD{T) {PT{D)), então 

(a) e• é solução ótima de CD(T) (CT(D)), c:Óm / = r; 
(b) r é solução ótima de (FA), com e= e•. 

Demonstração: Óbvia. 

■ 

■ 

Os fatos acima indicam a existência de aoluçio ótima para PD(T) e PT(D) e 
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que, caso us~ projeção sobre as capacidades ou sobre os fluxos, o ínfimo presente na . 

definição de v( •) é um mínimo. 

A abordagem tradicional para a solução ( ou tentativa de solm;ão) do problema de 

designação de capacidades e fluxos é o método (CFA) que" partir de um fluxo viável /º 

gera a sequência {( ci' /i)} iEN' definida por 

e' = solução ótima do (CA), com / = Ji-1; 

f' = solução ótima do (FA), com e= é. 

&te 'método pode ser visto como um de dupla projeção e é o encontrado ns literatura, 

como p.ex., Kleinrock (5) e Gerla [1]. 

A consideração pragmática de que o custo da solução do ( CA) é de ordem de grandeza 

iníerior ao da solução do (FA), noe leva a sugerir que utilizemos um método acoplando a 

;-;, estratégia de ~ viáms com a manipulação de projeções aobre o esp114j0 da.li variáveis 

fluxo. Em termoa impreci11011, a partir de um fluxo viám r, geraríamos U1D8 seqüência 

{(c',_Ji)},eN, tal que 

ci = solução ótima do (CA), com / = 1•-1 E F 

Ji = (/i-1 + ~;hi) E F, 

com a propriedade de melhora do critério para cada par (/',CÍ). Isto é, para PD(T), 

D(ci+1 ) < D(ci) e para PT(D), T(Ji+l,ci+1) < T{/i,ci), 

Proporemos a eeguir um método desta família e analisaremos seu comportamento para 

o caso contínuo. Por facilidade de expressão usaremos a expreasão projeção para significar 

projeção eohre o espaço das variáveie fluxo. 

' . 

,.._ • Para podenrios estudar esta abordagem, temos que analisar a existência de soluções 
• J 

ótimas e o comportamento do valor ótimo do problema de designac;iio de capacidades, para 

ririoe va.lorea de fluxo multicomodidade /. 

Para tal indiquemos os eeguintes fatos: 
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Fato IIl.3. Os problemas CD(TMAX) e CT(DMAX) são viáveis para 

m 

TMAX >To= inf{L ti{/i,Ci) 1 Ci > li e Ci e ci, i = 1,2, •.• ,m} 
i=l -

m 

DMAX >Do= inf{L d,(ci) 1 e;>/; e e; E C;, i = 1,2, ... ,-m}, 
i=l 

sendo que para o caso discreto TM AX = To e D MAX = Do também são condições de 

viabilidade. Para o caso contínuo (C; = R+), temos To= O e Do= E:.1 di(/;). · 

Demonstração: Omitida por ser trivial no caso discreto, uma particularização de (II.1) 

no caso contínuo e uma simples constatação no caso geral. ■ 

Fato 111.4. Se o problema CD(Taux)(CT(D.vAX)) é viável, então possui solução 

6tima, tanto no caso discreto como no contínuo. 

Demonstração: Omitida por ser trivial no caao discreto e uma simples particularização 

de (11.2) no caso contínuo. • 
Na realidade, o resultado (III.4) é válido para o caso geral onde C; é fechado, o que 

pode ser demonstrado com pequena variação nos argumentos da demonstração de (~1.2). 

Entre os dois problemas CD(•) e CT( •) há fortes relações no sentido de que ambos 
' 

são condições necessárias de otimalidade para PD(·) e PT(•), portanto ambos são 

condições necessárias para Pareto eficiência ~ projeto e valem oe análogos triviais de 

(11.5) e (11.6). 

O caso contínuo nos permite um conjunto de resultados mais potentes. Portanto, ao 

longo desta seção, faremoa a hipótese Ci = R+- Per exemplo, nestas condições . 

Fato III.5. Para uma solução ótima de CD(T.11Ax)(CT(D.11Ax)) a restrição de retardo 

(custo) é obedecida com igualdade. 
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Demonstração: Omitida por ser particularização de (II.4) e (Il.6). •• 

Fato III.6. Sob a hip6tese adicional (HA), as funções 110 e 11T abaixo definidas são 

convexas, aubdüerenciávei11 e aemicontínuu iníerionnente, onde: 

vo : {T E R I T > O} ..,.. R é definida. por: 
,n m 

11o(T) = iní{I: d.(ci) 1 ~ ti(/hci) ~ qT e e;>/;}, 
i•l i•l 

e 

VT: {D e RI D> Do}..,.. Ré definida por: 
,. m 

VT(D) = iní{L ti(7i,ci) 1 L di(ci) ~De e;> 7il• 
i=I i.,.l 

Demonstração: Vide Humea (2). 

Esta propriedade foi verificada empiricamente no pioneiro trabalho de Geria (1] para 

redes de filas M/M/1 com custos do tipo (E:,1 li e?), onde a E (O, 1). 
1 

Esta forte propriedade de convexidade e subdiferenciabilidade levou-nos a esforços 

grandes ( e mal-direciooad011, em n088a presente opinião) para obter soluções do problema 

por esquemu próximos às idéias de decomposição de Benders. 

Estas idéias parecem-DOS mal direcionadas, pelo menos acopladas à projeção usual, 

pois Benden está ligado à presença de suportes convexos e, portanto, à subdiferencia­

bilidade (se impusermos suportes diferenciáveis ou subdiícrenciáveis) e, portanto, a con­

vexidade. Convexidade esta, cuja principal característica é a "globalidade" de m.ínimoe 

,locais . . ., 
F.etea comentários tornar-ee-ão maia claros perante o próximo fa.to e aeu uso posterior. 

Antes, porém, de podermos enunciar o fato aignificantP., há que introduzir a definição 

imediatamente abaixo: 
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Definição 111.7. As funções custo 6timo D•(·,·) e retardo 6timo T-(•,·) em~ do 

fl.uxo e, respectivamente, do retardo máximo e do orçamento múimo são deftnidu por. 

D·(J,T)=inf{ L d;(c;)I L f;(/;,e;)Sq'I'ee;>/11>an.âeI(n}, 
• ,erc11 · ,ercn 

T·(J,T) = inf{ L t;(f;,c.) 1 L d;(c.) s D e e.>-/, parai e rcn}, 
iEl(n iEl(n 

onde I(/) = {i E Â f Íi > O}. 

Por conveniência, nós trabalharem0& somente com pare9 (J, 7') e F x R++ e com 

pares (/,D) E F x {z E RI z :"' L;er<n di(/,)} • . Nestu CODdiçõel, o "inf" JJn11e1M em 

ambas as definições torna-se um mínimo. 

Com estas definições em mente, podem0& afirmar: 

Fato 111.8. Para todo real estritamente positivo T, supondo a ~dade de (B5), a~ 

n•(·, T) : F 1-+ R é cônam1. Mais ainda, se ftle (B5A) (custol eatritunerde cxiocavw), 

então D•(·, T) é estritamente côncava em F. 

Demonstração: Há várias formas de J>l"098l' este resultado, mu a que canaidenma mais 

simples e interessante é aquela em que tratamoe o problema CD(T) como eendo um ele 

d~ação de graus de congestionamento p; = /;/e.. 

É trivial verificar, usando (IIl.4}, que V/ ,E F, VI'> O, 

onde 

U(/, 7') = min{ L d;(c;) 1 L ti(/;,c;) :S q'1' e /i > e. parai e 1(/)} 
iEl(n iEI(n 

= min{ E dã(/i/p,) 1 E ti(Pi,1) S fTe Pi e (0,1) parai e IU)) 
iEl(n iEI(n 

= min{ }: dã(/;/p,) 1 P e RO(nJ 
iEl(n 

RO(J) = {p e R"' 1 }: ti(P,,1) :S 47' e p, e (0,1) pera i = 1,2, ••• ,m} 
. iEl(n 
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Pva tal COD8~ basta lembrar que . 

Vz E (O, 1), di(O/z) = dã(O) = O, i = 1, 2, ... , m por (Hl). 

Podamo, V>. E (O, 1), V(/1, r) e F x F convexo: /1 'F r, ee utilizarmos a notação 

/(l) = l/1 + (1 - >.)r, temo& 

Jr(/(l),T) • min{E:,1 di(Ji(>.)/Pi) 1 p E RO(J(.\))}. 

Maia ainda, Vi E 1(/(>.)) = 1(/1) U l(r), e Vz E (O, 1) 

dã(/i(>.)/•) ~ ¼(/l/•) + (1- >.)dã(/l/z) (por (H5)) 

N..._ que, 1e (BSA) vale, a desigualdade estrita vale, e que, para i tJ l(f>,), 

ti.Ui(>.)/•)• o. 
PodaD&o, como (1(/(>.)) = 1(/1) U l(r) * RO(i) :> .RO(/(>.)), (i = 1,2), aegue 

que 

-Jr(/(l),T) ~ min{El~(/f/p;) + (1- >.)d(Jl/p.) 1 p e RO(/(l))} 
ial . - -~ >.min{Lcf.(// /p;) 1 p e RO(l(l))} + (1- >.){Ed;(/l /p;) 1 p e RO(/(l))} 

ial i•l 

~ lD•(/1 , T) + (1 - .\)D.(/2
, T), 

aeado que a primeira desigualdade é estrita caso (H5A) valha. ■ 

É ~r 11■nte TIO&ar que u únicas propriedades de F utilizadas foram convexidade de 

F e ~ue / e F * f ~ O. Portanto, o rmultado acima enunciado para D•(·, T) : F ..... R 

é rilido para D•(·,T): R+ ..... R. 

~~é a bue para a aeguinie afirmação: 

Faia lll.9. Para todo raJ."estritamente positivo T, para toda partição (I,J) de 

{1,2,.~.,m}, 

Jr(•,T) ={/e R- 1 /i > o para i e 1, e /;=o para ; e J} ..... R 

, c,opt,(g,a e auperdiferenciável. 
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Demonstração: No caso I = {1, 2, ... , m} e J = 1, o resultado segue trivialmente do 

fato de que funções côncavas· definidas em abertos são contÍDUÍUI e nperdifffl!llmfflL 

Para o caso J não vazio, o raciocínio é o mesmo utilizand~ae como espaço~ nbespaço 

linear {/ E R"' 1 /; = O para j E J} e o interior relati-vo a este nbespaço, emdo que u 

coordenadas j(j E J) do supergradiente são indeterminadas. · ■ 

A restrição de trabalharmoe com fluxoe / com exatamente aa mesmas campoam&ee 

não nulas nos permite enunciar um resultado de concavidade estrita no c:uo de cuatol 

lineares e redes de filas M/M/1: 

Fato 111.10. No caao de custos lineares e redes de filas M/M/1, a função 

é C00 e estritamente côncava, para todo real estritamente poaiti-n, T. 

Demonstração: Vide Rumes (2). 

O Fato IIl.10 permite-noe reforçar parciahnente (111.8), enunciando 

Fato 111.11. No caso de redes de filas M/M~1, a função 

D*(•,T}:{/eFl/;=0 ~ jeJ}-R 

é estritamente côncava. 

... •., 

Demonstração: Sem perda de generalidade, suponbamne l(n = {1, 2. .. ·, m }, 

par~ / e P = {/ e F 1 /; = o ~ ; e J}. 

Sejam (/1,r.À) E F x F x (O, 1) e e• a aolução ótima de CD(T) pen / • 

1<:,.> = :,.p + c1 - :,.>r. 
Claramente e• E~+ e, portanto, .D(c) 'nperdi!ermm-m em e*, pois, par 
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(Ili), D(•) é côaça-. N-.a condições, 

Par (Ill.10), 

.. c:1anmm&e, 

D1(l/1 + (1 - l)r I T) > Wi(/1 'T) + (1 - l)Di(r I T) 

~ w·(/1
' T) + (1 - >.)D.(/21 T) 

.. 
Dt(/,T)-= mm{D1,(c) 1 L ti(/i,Ci) ~ iiT e Ci > /i, , i J} 

ial 

■ 

· No pnaea&e ponto, duas questões tomam-se naturais: (i) o que podemos afirmar sobre 

X-(•,.D) e (ü) qual o comportamento de D•(•,T) (T•(•,D)) quando alguma componente 

do 8am an.ut.ae. 

Quu&o ao campariamaito de T-(•,D)) oe resulta.doe obtidoe não aio tão fortes 

quaa&o m obtidoe para D•(•,T)). F.eta afirmação é de certo modo fruatrante, pois as 

6mçõee X-(,.D) e D•(·,T) estão intimamente ligadas por: 

lato UJ.12. Para todo / e F, valem u aeguimes relações: 

(a) V'r > O, X-(J,D•(J,T)) = T 

(b) VD > D(/), D•(l,X-(/,D)) = D . 

Demoaatnçioa 'lnvial a partir de (lll.3) e (Ill.4). ■ 

A úmcaapueu&e ....;,netria em (a) e (b) acima é a imposição de D > D(f). Esta as­

lülldria ....._ pn,am&e ao c:ouai~ cxmabiuaq;e11 convexas de fiUXO&, pois, exceção 
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Ceita ao caso linear (custos lineares), não podemos afirmar que {/ E F I D(/) > D} 

é convexo. Intuitivamente, afirmaríamos o oposto, isto é, que 1e OI CUltol ~ estrita­

mente côncavos, existiriam sempre (/1, r) E F x F tais que D(/i) < D, 'i • 1,2, e 

D(0.5/1 + O.sr) > D. Em termos maia precil!08\ podemoe enunciar: 

Fato III.13. Para todo real (positivo) D, o conjunto {/ E F I DCn ~ D} 'CDGMO. . 

Demonstração: 'l\ivial pela concavidade do custo (H5). • 
Com estas consid~, podemoe apreeentar uma versão mais fraca de (111.8), a qual 

é: 

Fato III.14. Para todo real D > {in! D(/) I / E F} a função 

r(-,D): {/ E F I D(/)< D} - R ~ quuicôoama, isto', 

sendo A= {/ E F I D(/) < D}, 

V(/1 ,r,>.) E A x A x (O, 1): (>./1 + (1- >.)r) E A 

'r(>,/1 + (1- >.)r,D) ~ mini.1,2{T•(t,D)}. 

Demonstração: Por simplicidade, utilizamos 

~ = rcr,v>, i = 1,2;, 

TA= r(l(>.),D), ondei /(>.) == >./1 +(l-A)/2
• 

Suponhamos, sem perda de generalidade, T1 S T2 e que, por cootradiçlo. aiale l, 

tal que TA < T1 ~ T2. Então 

D = D•(),/1 + (1 - >.)/2, TA) (por lll.12) 

~ >.D•(/1
1 TA) + (~ - >.)D.(/2

, TA) (por ID.8) 

> >.v•cf1, T1) + (1 - >.)v·cr, 7°) (pois TA < T1 S T2) 

=D (por III.12) • 
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Note-ae que~ o mesmo raciocínio de (III.14) podemos enunciar: 

IWo m ·u. Para todo ral D > inf {D(I) 11 e F}, a função 

T-(•,D): {/ e F: D(J) < D}-R 

é eatritameme quuicôncava. 

Demoutraçãoz Omitida por Bel' idêntica a (III.14), aubatituiodo (T~ ~ T1 < 7'2). ■ 

A questão natural que aurge é eobre a quuic:oncavidade de 'r(·, D) em F. 

Clanmm&e, ae (/1,r) gou da propriedade D(Ji) °i, D, por (III.13) 

.. Vl e (O, 1), /(l) • l/1 + (1 - >.)r goza da propriedad~ 

D(/(l)) 2: D. 

Nene euo, com a eonWJDção ( +oo ~ -4-oo ), a caracterização de quaaiconc:avidade 

mantma-ae. 

Podamo, D011 imereaa o c:uo onde D(/1) < D e D(r) 2: D. Neste caao vale: 

l'ato llLll. ~am (/1,r) e F, tais que ~(/1) < D e D(r) 2: D, então: 

mate l E [O, 1), tal que: 

(i) D(l/1 + (1- >.)r) < D ~ >. > l, 

(ü) D(lr + (1 :-- I)r) = D. 

Demout~: Trivialmente, pela continuidade de D(•), 

A= {l E (O, l] I D(>./1 + (1 - >.)/2) 2: D} é fechado. 

· Pela cxmtinuidade de D{•) e por D(l/1 + (1-1)/2 ) < D, A J>088UÍ limite superior 

mmar que 1 e, portanto, é bem definido 

l - aup{l e A} < 1 e _ D(l/1 + (1 - I)r} = D. 

A propriedade (i) aegue ela concavi~ de D(·). 
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Fato IlI.17. Nu condições de Ill.16, 3t > O, tal que 

V,\ e (X,l'+t:], ?-(/(,\),D)> T-(/1,D). 

Demonstração: Como D(/2) > D(/1 ), podemoe usumir, 1e111 perda de gmenlldade, 
, 

que · /l > fl e, portanto, /1(,\) é decrescente com A • . 

Consideremos ê definido por .. 

f1 (/1 (0.5(1 + X)), ê) = T-(/1, D), 

cuja existência é garantida por (HS) a (Hll}, e aeja 

di = di(ê) > o, poia n > ll ~ o. 

Seja D' = D - d1. 

Pela continuidade de D(•) e pela definição de A e I, como em (ID.18) • cr- · 

:k' > O, tal que 

V,\ E (I, I + E'], D> D(/(,\))~ D'. . 

Tomando E= min{E',0.5(1 - I))}, temoe que, eendo C-(A) a duçio 6tima de 

CT(D), 

r(/(,\),D) ~ ft(ft(A),ci(A)), 

d1(cj(,\)) <D-D(/(,\)) S D-IY = d1. 

Portanto, ci(,\) < ê•. 

Como / 1(,\) é deae80e1Jte com l, VA E (l,I +E) 

r(/(A),D) ~ f1(/1(A),cj(A)) 

> t1(/1(0.5(l + l)),ci(A)) 

> t,(/1(0.5(1 + I)),ê)) 

='r(l•,D) 

Utilizando (III.16) a (III.17) é fácil provar que 

Fato Ill.lT.a. Para todo real positivo D, a função 
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~-,D): F_t-t.RU {+00} é estritamente quaaicôncava. 

Demomtnçãos Omitida por aer trivial. ■ 

O reaukado ~ desejável de que T"'( •, D) fosse côncava. é falso em geral, 

. CDDO pode 1er ftlificado com um exemplo simples no cuo de custos lineares e redes de 

llu JL/Jl/1 (2). 

Eda fatal, apareniem.ente bizantinos, nos permitem apresentar um algoritmo mais 

IÜDplm que~ ele dupla projeção e que poaaui a propriedade de convergência em um número 

lnilo de pmm (entendm:ldo-ae paaao como uma aolução de (CA)). 

A bue del&e algoritmo é apresentada peloa Cato. que ae aeguem. 

hio JILll. Seja• e a aolução do CT(D)(CD(T)) com / = ]. Se para o (FA), com 

e • l, mate uma direçio de descida no ponto 7, então esta é uma direção de descida 

~ r(•,D)(Dª(·,T)) uo ponto / = /. 

Demom&nçiÓ1 A demoaatração para T"'(•,D) é calcada DO fato de que ocorre uma 

..... ele retardo para diier;ões de descida. 

A~ para D■(•,T) é conseqüência do fato de que ae existe uma dir~ 

d- d«wc:ida, para o pc111lo / == /, DO (FA) com e= e 

r,:'(1 + ll,T) S .D(c) • D•(1, T) e 

7'(J + l/a,c) < T, para l em uma vizinhança da origem e l > O. ■ 

l'a&o lll.19. Seja w·: F·t-t R uma função quaaicôncava em F e aeja h uma direção 

de~para w(·) em ]eF. Iatoé, 3(I,iã)°eR++><(F-F), talque 

(i) Vl e· [O,l], a+ lX) E F 

· cu>· vl e ro.ll, wa + M> < we7>, 
~ 'll e: O, l&l que a+ lÃ) e F 
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""'/ + >.h) < w(/). 

Demonstração: Supondo, por contradição, que 3o > O: . 

(7 +ah) E F 

w(f + ah) ~ w(/), 

então existe p E (O, 1], tal que 

""'ri../+ ah)+ (1- p)/) ~ w(/), e 

O<pa <l, 

o que gera a contradição. ■ 

A relevância do Fato Ill.18. é clara se lembrarmoe que r"( ·, D) , quaaicônca-,a em 

F e D*(•,T) é (estritamente) côncava e portanto quuicôncnaem F. 

NestM condições propom011 o aeguinte método: 

Método m.20. Seja r um Buxo viivel no problema de deligneçio de capacidada 

(isto é, D(r) > D para o PT(D) ou T > O para o PD(T)) . 

. 
Passo 1) Normalização. 

Encontre c0 solução do problema de designação de capacidadea. 

Para e= c0
, para todo par (r,a), com fr• > O, encontre uma~ ele c:aminbo 

mais curto, com distânciM ... 
· 8ti(fl. 4) 

a•1=~1•=ai= B/ã , para ci(i)={lr,I}, ial,2, ... ,m. 

Envie toda11 M mensagens de Ir a l pelo caminho mais curto encÓatrado, para todaa 

os parea (k,l). Caso esta 1eja a situação com o fluxo r, pare. Cuo COlllnrÍo chame.o 

fluxo obtido de /1. · 

· PBS1JO 2) Melbora. 

Para o fluxo /', i ~ 1, encontre ci uma duçio óüma do CA. eam / • Í'. 
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Para e= e', .encontre, ae existir, uma árvore de caminhoe mais curtos para . qr, > O, 
· a~ct,cU 

que Dio aej•o ro&eameoto usociado a /' (a métrica usada é ª"' = ª'" = cr.; = a,i 

para â(;) • {i,l}) e cujo caminho mais curto indicado seja estritamente melhor que o 

aaociado ao atual rotearnr.nto. 

Se Dio aiaür tal árvore, pare. Caso contrário, altere o fluxo para que os caminhos 

maâl c:mto. tejam obedecidoe. O novo fiuxo é /i+1• 

Retome para o pulO 2. ■ 

l'aio m.21. O método proposto em (IIl.20) converge em um número finito de p&SSOS 

pua um ponto (7, e), tal que: 

(Pl) i! é• aoluçio 6tima do (CA), com / = /; 
(P2)] i, • aoluçio 6tima do (FA), com e= e. 

Demonnnçãoz ApcSe a normalização, os ftUXOII /', i 2!: 1, estão associados biunivo­

C"oNDfflte "arborelcênciu do grafo G. 

Como u arbon:ecêociu aão em número finito e a cada paaso a função objetivo do· 

i-obJema i, dimmuída. estritamente, o método pm em um número finito de pa8808. 

AoaJiMOdo tia regru de parada, segue a tese. ■ 

Q método (ffi.20) é essencialmente um método similar ao simplex. Além da garan­

t.ia de amvergincia e a aparente necessidade de (HA), o método apresenta uma grande 

fl.lllagma aobre o método de dupla projeção, que é a de não necessitar de aolução do (FA). 

F..ta 'RDtagem ~ a 1Ubstituição da solução do (FA), que exige uma série de iterações, 

cmdei em cada uma, deviem aer construídaa (;) árvores de Dijkstra e uma busca unidi­

mcasionaJ, pelo cômputo de uma direção de descida. Usando a idéia de desvio de fluxo, 

ate úhimo cômputo exige, ~ pior caso, (;) ánorea de Di,J"katra. 

·É~ DDtar que em ~ (5), a aemente desta idéia está preaente, quando 
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ele recomenda desvio total de fluxo. Infelizmente, esta idéia aplicada à aolução do (FA) 

pode levar à perda de viabilidade, além de não reduzir o número de desvios de ftwco a um 

só, como aqui é feito. 

Um ponto de aceleração do algoritmo de desvio de fluxo seria a utilização de áffOffll 

prévias para auxiliar a construc;ão das árvores seguintes. Tais id&u foram implementadu 

por Bezerra [07J, mas ainda há possibilidade de melhoria eobre este aspecto. 

' A facilidade do processo de encontrar a direção de máTÍma descida, para o {FA), 

sugere naturalmente o uso do algoritmo "steepest decent", apesar de que em geral este 

método seja criticável quando comparado a métodOB de segunda ordem, para a minimiaçio 

correspondente à {FA). Para especificar completamente o algoritmo, e6 resta eapeciftcar a 

busca unidimensional. O usual na tradição de 7.outendijk é bwtear o mínimo ao longo da 

semireta (7 + ,\h), com restrição de viabilidade. Como sabemoe que limr,-ic t,{/,,c.) -

+oo, a viabilidade pode aparentar re11tringir-11e a manter /i ~ O, i = 1, 2, ... , m, _ o que 

é automaticamente garantido, com ,\ !:: 1. É interessante notar que DOS c:uoa roclacb 

sobre os exemplos da rede LARC, obti-vemoe consistentemente ,\ = 1. Tal nio OCIDffeU 

em exemplos gerados aleatoriamente. 

Em geral, recomendaríamoe o 11110 da regril de Armijo, bueadu ou experiências 

relatadas por Polak (8), 

Apesar da ma simplicidade teórica, a eolução do (FA) tende • coaaumir ordem de 

grandeza de tempo a maia que a solução do (CA). 

Um ponto final nesta seção é notar que a eolução do {FA) é única em tennoe de 

{/;} :_1• &te fato ~ deve ser entendido como rmicidade do rolamento, e lhD como 

unicidade em relação ao fluxo fisioo. 
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IV - Comentári9S Finaia. 

A ntilização do método proposto simplifica a solução do problema da designação de 

fluxm e c:apac:idada DO aeotido de encontrar um ponto est.acionário da Kuhn-Tucker, mas 

a ccmatataçio de "concavidade" nu funções T-(•,D) e D•(•,T) é clara indicação da 

aiatêocia de rníoirooe locaia. Em particular, quando o fluxo físico restringe-se a uma 

ú-m (m = n -1 e grafo conexo), pode-se provar que estamos em um mínimo local 12). 

Aaim lendo, maiores resultados orientados para encontrar a solução de P D(T) ou 

PT(D) &bacia Dão exilCem afora a recomendação de Geria [1] de utilizar vários pontos 

iDidaia viáveis e a esperança de obtermos resultados positivos seguindo as idéias de Tuy 

et a1ii (9), em parücular, no cuo de cuatoe lineares e filas M/M/1. 
~ 

Comidenmoe enketanto interessante neste trabalho a junção de intuição encontrada 

DDI eacritoa de Geria (1) e Kleinrock [5], com o tratamento formal dado à funções ~or 6timo 

4epcadaado de ugumeotoa do problema, levando a algoribno maia eimplea e eficiente, na 

linha de pvjeçio - direçõea Yiáveis, como clusificado em Geoffrion. 
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