





A potaciio acima pressupde que existam m canais possiveis de interconexdo, cor-
respondendo a um projeto topoldgico dado. O projeto topoldgico corresponde a definirmos
o esquema de interconexio entre os nés comutadores de mensagens. Esta definigio ¢
paturalmente modelada através de um grafo G = (N , A), onde A, conjunto dos arcos do
grafo G, representa a existéncia de canais de comunicagio entre os nde (comutadores).

Como A ¢ finito, nio hé perda de generalidade em utilizarmos A={1,2,...,m}
caracterizando os extremos das arestas por

a:dm{fi}c2Vli>i}=Q

Note-se que a definigio acima (Q), implica em nio considerarmos canais cuja origem
e destino coincidam (hipétese esta bastante natural). Na mesma linha, suporemos a(-)
injetora (canais em paralelo sio tratados como canal de maior capacidade).

Na medida em que considerarmos os canais “full-duplex” e formos estudar fluxos,
é conveniente considerar o digrafo associado & interconexéo. Digrafo este cujas arestas
ocientadas sio dadas por: '

a:Aw {(i,j) € N x N}
caracterizadas por

a(i) = {(k,1), (1, B)} & &(5) = {&,1)

O conjunto de arestas do digrafo serd indicado por A, onde

A = U, 1a(é) = a(4).

Considerando como dados:

N = {1,2,...,n} = conjunto de localiza¢ies de nés comutadores de mensagens, isto
¢, poatos onde um ou mais dos canais de comunicagéo tem extremos,

g: Nx N~ R, = demanda média de transmisséo entre o née comutadores de
mensagem. Tipicamente esta demanda é medida em kilobits/seg,*1

§: N x N = R, = demanda média de envio de mensagens entre os nds comutadores.
Tipicamente, esta demanda é medids em milhares de mensagens/seg,*1
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[: N x N — Ry, = comprimento médio das mensagens entre os nés comutadores.*
Podemos entao definir o problema de projeto de redes ‘de computadores como:
“Dados N e ¢: N x N = Ry, encontre, se existir, & regido de pontos eficientes
(ou um subconjunto desta regiio) em relagio ao critério (T(f,c), D(c))!, obedecendo as
restricoes i
(R1) f* € F* = {F € R | Trneafu—ZegmeaFin = (Gor -ch)?r-} para
(rys) € N x N (com g,, > 0),*2
(R2) fij = L(rayenxn fif's para (i, §) € 4;
(R3) fi = fu + fu, para &(i) = {k,1};
(R4) Vi€ A,(fi,c;) € Yi={(0,0}U{(z,y) ERx C; |0 < z <y}, onde C; édado;
(R5) A é um conjunto de arcos com extremos em N, gozando, conforme a formulagio, de

uma propriedade P.”

As restrigdes (R1) e (R2) correspondem a modelar um fluxo multicomodidade (“multi-
commodity flow”) onde cada tipo de comodidade (unidade de transmissio) é caracterizada
por sua origem e destino.

A restricdo (R3) corresponde a uma modelagem cldssica para canais “full-duplex”,
onde o sentido em que a unidade de transmissio percorre o canal nao é determinanie de
seu efeito no fluxo.

Em alguns pontos, serd conveniente notar que estamos trabalhando com vetores f €
Ri™, taisque fe€ Yira)enxn F™ ¢ com vetores f € R™, onde f; = fu+ fu para
a(i) = {k,!}. Porém, nos reservamos o direito de, a menos de necessidade para a clareza

do texto, usar a expressio “f = (f1f2...fm)! ¢ a soma de fluxos multicomodidade”.

*1 Por simplicidade de notagio usaremos: g¢i; = ¢((i,7)), ¢ = Tien Ljen Gijr
G = §((h)) @ = Tien Tjendis» b = I((3,4)). Mais ainda, faremos as seguintes
hipéteses simplificadoras: l.,, 1 (homogenexdade no tamanho de mensagens); g;; = ‘q'.-,-

(independéncia de processos); ¢;; =0, §;; =0, para j€N.

*2 Caso contrério, f? =0, para todos os arcos (i,j) € A.
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Note-se que nas condigbes acima niio hd perda de generalidade em assumir que:
{r<s=gn=0}&F°={0€R"}
Mais ainda, deve ser claro que em qualquer solugéo eficiente
V(k,0) € A, .V(r,a) eENxN, fg-fii=

A restrigio (R4) indica que o canal inativo (fi = 0) pode nio existir fisicamente
(ci =0) e que, exceto neste caso, o grau de congestionamento (fifc;) é bem definido e
pertence ao intervalo [0, 1).

A questdo de canais inativos poderem nfo existir fisicamente é complexa ao consi-
derarmos que na restrigio (R5) poderfamos impor condigdes tais como biconexidade sobre
o grafo (N, j) Uma possivel solugio para tal questdo seria impor restri¢des do tipo
fi>2f; ou ¢; 2T para i€ A. 0O segundo tipo de restricbes pode fazer sentido no caso

Ci = {0,c1i, C2iy - - - s pi}-

Para evitar maiores prol;lemas, consideremos A como dado e seguindo a abordagem
usual para problemas bicritério (ver, p.ex., Lin [3] ¢ [4]), consideremos os problemas abaixo:
? m
minimizar Y di(ci)

L
. ]

PD(Tuax) ¢ 3 ti(fise) < §Tmax

f=1

(!l'scl')el’i
| feF

r minimizar i t.'(fl-1c'-)
f=1

PT(Dumax) s Y _di(ci) S Dmax

i=1

(fl"ci) € l’l
| feF
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onde F & o poliedro das somas de fluxos multicomodidades descritas pelas restricdes (R1)
a (R3) acima e estamos considerando A = {1,2,...,m} dado. Claramente, supomos
F # §. Estes problemas sdo denominados problemas de designacéo de fluxo e capacidade
(CFA - Capacity and Flow Assignment).

Neste trabatho, nos concentraremos no caso Cj = [0,+0c0), chamado de relaxagio
continua ou caso continuo,

Por simplicidade, nds consideramos acima que o custo da rede é somente o custo dos
canais. Utilizando a notagio D(-) para o custo total e di() para o custo dos canais
individuais, é claro que

D(:)= i di(-).

=] .
Os custos individuais dos canais sfo definidos nos valores possiveis de capacidades
d; : C; » R, mas, nio hid perda de generalidade em supor:

Vie A, d;: Ry — Ry.

Em termos simplistas, a hipétese acima conflita com, por exemplo, #C; = p € N.
Neste caso, existiria uma infinidade de fungdes custo d; : Ry ~— Ry que retratariam a
estrutura de custos restrita 4s capacidades disponiveis.

Mas, é natural supor que as funcdes d;(-) procurem representar fenémenos eco;li'imiooe
e que desta forma sejam gerados seus valores. Assim sendo, suporemos ao longo deste

]

trabalho: B

(H1) d;(0) =0 (capacidade nula <> canal nao instalado ¢ custo nulo);

(H2) lim,.o0di(z) = +00 (ndo hd limite superior para os custos a menos que as capaci-
dades sejam limitadas);

(H3) z >y 2 0= di(z) > di(y) 2 0 (custos monotonicamente crescentes);

(H4) di() é C™ em (0,+00) (com continuidade simples na fronteira);
Além destas hipdteses usaremos freqiientemente:
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(H5) di(-) é concava ou (H5A) di(+) é estritamente concava;

(H6) di(-) € concava na origem ou (H6A) di(:) & estritamente concava na origem.

A nio obﬁgatoﬁe&ade das hipéteses de concavidade estd associada a0 nosso interesse
em obter resultados tedricos sem estas hipiteses. A hipétese que corresponde a uma
tecnicalidade &  hipdtese (H4), Defendemos fortemente a validade desta hipdtese, no caso
geral, pois acreditamos que os modelos de geragéio de pregos pelos servigos de comunicagéo
utilizem funges para as quais (H4) vale.

No caso brasileiro, temos

di(c) = lic®, onde

(i) a € (0,1),i.e, am0.56

(ii) ;; depende da distincia em quilémetros entre os extremos do canal de comu-

nicagdo. c
E interessante notar que este resultado foi obtido inicialmente por andlise de tabelas

da EMBRATEL e confirmada posteriormente em contatos com profissionais desta orga-

nizagio.

Em relagio ao retardé», consideramos vilida a hipétese de existéncia de uma forma
produto para a8 probabilidades de mensagens nos “buffers” dos nds chaveadores de men-
sagens, ou seja, (p.ex., ver Kleinrock [5]):

Ty =33 tlhed =T

|=l

No caso particular de retardo médio em redes de filas M/M/1 teremos

B ey i -
= eT'-,.Z}” --’e?

Isto ¢, para retardo médio em redes deﬁlas M/M/[1, teremos

sifiaie f' —
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As fun¢bes ¢i(-,+) ndo apresentam um carater qualquer por representarem parcelas
do fendmeno fisico de retardo. Assim sendo, ao longo do trabalho suporemos que algumas

hipdteses sdo a elas aplicdveis. Estas hipdteses, para § = 1,2,...,m, sio:
(HT) % 4:Y s Ry, onde ¥ = {(0,0)}UY: e Y= {(£,6) |0 f <c}, 4:(0,) =0.
(H8) t;: Yy — Ry é C* (com os devidos cuidados na fronteira); !
“(H9) VM >0, ti(f,c) = t;(Mf,Mc);

(H10) V&> 0, &(-,3):Yn{{e,5)|ac R}~ R, ¢

(a) estritamente convexa,

(b) monotonicamente crescente (no sentido estrito),
(c) imy_z_ti(f,T) = +oo;
(H11) V>0, t:(F,-): Y n{(f,a) |[a € R} — Ry, é
(a) estritamente convexa, { :
(b) monotonicamente decrescente (no sentido estrito),
(c) limc._‘ht.-(?., c)=+o00.

A hipétese (H7) especifica que o grau de congestionamento deve ser menor do que a
unidade e que canais nio ativos (f; = 0) néo contribuem para nossa medida de retardo
(mais ainda, neste caso, a melhor opgiio é a nio instalagio do canal, isto é, ¢; = 0).

A hipétese (H8) é meramente técnica e refletida nos modelos de filas usuais. A hipétese
(H9) de homogeneidade de grau zero esta intrinsecamente ligada & idéia de que o8 ¢(-,-)
sao adimensionais retratando a parcela do canal ¢ na composi¢io de T e, portanto,
nio podem ser influenciados por “mudancas de escala” na afericio de ¢; e f;.

As hipéteses (H10) e (H11) representam o comportamento natural de sistemas com
congestao.

Uma observagao relevante é que deve ser notado que a homogeneidade de grau zero
implica em descontinuidade em (0,0). Existem imprecises na literatura devido & auséncia
deste cuidado.

*3 As hipiteses H1 a H6 dizem respeito  estrutura de custos.



II. Resultados preliminares.
Para os problemas acima definidos, valem os seguintes resultados, para a relaxagio

continua: 3

Fato IL.1. PD(Tyax) é vidvel qualquer que seja Tpax >0 e PT(Dpmax) é vidvel
qualquer que seja D> D° onde D° =inf{Y1, di(fi) | f € F} > 0.

Demonstragio: trivial a partir das hipéteses (H1) a (H4) e (H7), (H8), (H10) e (H11),
notando que D° =min{Y 1, di(f:) | f € F}.
O mfnimo acima indicado é bem definido, pois F ¢ um poliedro na forma candnica

F = {[V(F)]+ Cr} ecomo d(-) émonotnica estritamente crescente,

D° =inf() di(f;)| f € F} =

=it ()| £ € VIEN) =

=1

=min{}_ di(f:) | f € V(F]}. u
i=m]

Para o caso continuo podemos ainda afirmar:
Fato II.2. Para todo Tyax > 0 e Dayax > Dy, os problemas PT(Dymax) e
PD(Tmax) tém solugio étima.

Demonstragio: Apresentaremos a prova em duas partes distintas:

(i) Trmax >0=> P-D(TMAX) tem solucdo otima.

_ - Antes de mais nada, notemos que a restrigio 0 < f; < ¢; pode ser substituida .por
) .
fi <Pici onde B; édefinido por (;,1) = Tmax. Claramente, p; € [0,1).

Tal fato é possivel pois para ¢; > 0, por (H9)

ti(fir i) =t fi/ei 1)



Mais ainda, usando (H7), (H8) e (H10), ¢;(-,1) é estritamente crescente continua e
com lim,,.; ti(pi,1) = +o0.

Portanto, a restrigdo (fi,c;) € ¥; pode ser substituida por
(fl"ci) € {(a,b) € R-zb- | asp; b}'

Mais ainda, se (f,€) & um ponto vidvel de PD(Tusx) podemos, sem perda de
generalidade, impor a hipétese adicional ¢; < ¢f onde ¢! & definido por di(c}) =
k1 4i(E5)-

A existéncia de ¢! ¢ garantida por (H1) a (H4).

Assim sendo, PD(Taxax) pode ser reescrito como
r minimizar i di(c;)

i=1

(firci) € Ki={(a,b)} |0<a < bp; <cf}

Y tilfici) < d Tuax
i=l

\ fEF

Claramente K, é compacto e porta;nto o conjunto de pontos vidveis estd contido no
compacto K= K; X K3 X ... X K. .

Mais ainda, por (H8) #(-,-) & continua em todos os pontos de K;, exceto (0,0). Mas,
neste ponto, qualquer que seja a seqiiéncia {(f¥,c*

(0,0), temos

Yhen, (f,c}) € Ki, convergindo para

ti(f,ef) = 0=1(0,0),
portanto, #(:,+) ¢ semicontinua inferior em K;.
Podemos entéo, afirmar que Y0, #(+,-) & semicontinua inferior em K e, portanto,
{(fLe) e K| T2, ti(firei) S § Tuax} éfechadoem K e, portanto é compacto.
Como F éfechadoe Y0 di-) ¢ continua (H4), segue que estamos minimizando
uma fungio continua em um compacto nio vazio (o ponto (f,) viiYeI, utilizado via



axioma da escolha pertence a0 compacto construido). Portanto, existe solugio 6tima do.
problema. ' ' |
(ii) Dmax > Do = PT(Dmax) tem solugdo 6tima.
A a.rgumentagao ¢ similar & apresentada acima, sendo que a restrigio de custo impde o
limite superior nas capacidades, um ponto vidvel gera um retardo utilizado para definir os
Pi» i=1,...,m, e a compacidade dos pontos vidveis segue da continuidade das restrigoes

de custo e de fluxo (lineares).
Como o retardo é limitado inferiormente (¢(-,-) = 0) e semicontinuo inferior, com a

compwdade obtida segue a existéncia de minimo. |

A importancia deste resultado fica clara ao enunciarmos o seguinte f_itto, para o caso
continuo:
Fato I1.3. Para todo T >0, o ponto (T,D*(T)), onde

D*(T) = valor étimo de PD(T)

€ um projeto eficiente.

Antes de demonstrar este fato, provemos o seguinte lema vélido para o caso continuo:
. Lema IL4. Paratodo T > 0, se (f*,c®) é solugio étima de PD(T), entdo
T(f*,c") =T ‘

Demonstragao: Sumnhaﬁm, por contradi¢éo, que T(f*,c*) < T. .Entdo podemos
:lummm- ¢! (¢ >0, sem perda de generalidade) para & = ¢j —A;, de modo que

8@, £) = (e, )+ T = T(f*e"), (7 >0),

Isto é possivel por (H11) e (HS).
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Entdo por (H3) obtemos um ponto vidvel com custo inferior ao da solugio 6tima. O
que é uma contradicgo. |

Com este lema em mente, segue a demonstragéo de (IL.3):

Demonstracao de 11.3: Suponhamos, por contrpdiqio, que (T, b‘(T)) nio é dicienic, isto
é, é possivel encontrar um vetor (f,¢) tal que (T(f,€), D(€)) < (T, D*(T)).
Se T(f,€) < T entio (f,) é vidvelem PD(T) e D(c) = D*(T). Portanto (F,)
solve PD(T) e por (11.3.10) T(f,€) =T, o que é uma contradigio. :
Se T(f,c) =T, entio D(c) < D*(T), o que negaria a definicio de D*(T). [ |

Analogamente, podemos enunciar:
Fato I1.5. Para todo D > D,, o ponto (T*(D),D), onde
T*(D) = valor étimo de PT(D) :

é um projeto eficiente.

Lema II.6. Para todo D > Do, se (f*,c") ¢ solugiio 6tima de PT(D), entdo
D(c*) = 3%, di(<})=D.

=1

As demonstractes sio omitidas por serem variages simples das provas anteriores.

Estes resultados iniciais correspondem a um aproveitamento parcial da peculiar es-
trutura matemdtica do problema em estudo. Sob o ponto de vista de Programacio
Matemitica de Grande Porte, devemos ainda destacar as estruturas de separabilidade,
monotonicidade e convexidade parciais. -

As fungbes custo e retardo sio somas de parcelas atribufvdsacad;cana.lespecfﬁco.
As funcies custo por canal siio monotonicamente crescentes e, usualmente, concavas. Os
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retardos por canal séo fungdes que com um argumento fixo séo estritamente convexas e.
estritamente monoténicas. Mais ainda, se pudéssemos desprezar a restrigio de retardo,

terfamos dois grupos de varidveis com completa independéncia. Neste caso, a aproximagao

m

' continua teria valor étimo obviamente igual a (I/%; di(fi)), caso o problema fosse vidvel.

Em relagéo no‘ retardo, existe a estrutura adicional de que #;(-,-) é fungio homogénea de
grau zero.

Este conjunto de consideragdes despertaram o nosso interesse e, em particular, -
induziram-nos a aceitar a abordagem usual da literatura: projecio. Note-se que a projecio
natural éorresponde a trabalhar alternadamente nos subespagos de fluxos e de capaci-
dades, resolvendo alternadamente problemas projetados que siio denominados problema
de designagéo de capacidades (CA) (fluxo fixo) e problema de designagio de fluxo (FA)
(capacidades fixas). Mais precisamente:

O problema de designagdo de capacidades (CA) ¢é aquele obtido através da
particularizagio do problema de designagio de fluxoe e capacidades ao prefixarmos um
fluxo multicomodidade. Isto &, (CA) & obtido a partir de PD(Tyax) ou PT(Dmax),
impondo F = {f}. _

Nestas condigdes, obtemos os problemas CD(Tmax) € CT(Duax) definidos por

mmf: di(ci)

=]

CD(Tuax) = i ti(firei) < G Tmax

=1

c; €ECiec; >7‘ i=1,2,....m

Ty T T : . miniti(f.i’ ci)
f i=1

CTOuax)= | . $° di(er) < Durax

? i=1

ci€Ciec;i>fii=12,...,m
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Note-se que estamos assumindo, sem perda de generalidade, f > 0.
O problema de designagao de fluxos (FA) ¢ aquele obtido através da pasticula

. rizagao do problema de designacio de fluxos e capacidades ao prefixarmos as capacidades

instaladas. Isto &, (FA) é obtido a partir de PT(D) impondo C; = {&}, i=1,2,...,m .

e D(c)= T (@), -
Assim sendo, o problema (FA), para ¢=¢, ¢ definido por

{ m

minz ti(fl'sal')
i=1

Faq FEF

i > fi, parai € I(c) = {i/¢; > 0}

fi=0, parag =0

onde F éo poliedro de fluxos multicomodidade descrito pelas restrigies (R1) a (R3) do
problema de projeto de redes.

Recordando o ja exposto:

(R1) f™* € F* = {f € B3 | TreneaTu — Teamea Fix = (ke = 620)ars)

(R2} fi; = Lr.enxn fij'+ para (i,J) € A,

(R3) fi = fu + fu, para a(i) = {k,1}.

Note-se que niio ha perda de generalidade em assumir I(g) = {1,2,...,m}.

O problema de designagiio de fluxos é um problema néo linear convexo de fluxos
multicomodidade. Apesar de dificuldades naturais associadas & porte, este problema ¢
bem comportado no sentido de que para ele teoremas fortes de dualidade (tanto minimax
como Wolfe) sio vilidos. Mais ainda, todo minimo local é global.

O problema de designagio de capacidades tem duas versies: continua e discreta. No
caso discreto, é um problema de mochila néo linear. No caso continuo, o (CA) aparenta
ter a dificuldade de apresentar minimos locais que nio sio globais (devido & concavidade
de d;i(-)), exceto no caso simples de custos lineares. Tais dificuldades sio aparentes ¢ em
Humes [2] elas sio eliminadas com a introdugio de uma hipétese adicional (HA).
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Definicéo I1.7. Dizemos que vale a hipétese adicional para a estrutura de custose retardos.

(HA) para o problema de projeto, se

Vi=1,2,...,m, Vf;>0, V&>TF;

() ) () i) e

ou, mais sumariamente,

d"(e)ti(e:) — ] (T)di() < 0. L

Note-se que se o custo for linear, a convexidade estrita do retardo e a monotonicidade
crescente do cus'to implicam na validade da hipétese adicional. .

E interessante notar que pa.ra.o caso mais estudado na literatura, que é o de filas
M/M/1 com custo dado por “power law”, a hipdtese adicional (HA) & valida.

Mas, um ponto que devemos ter em mente é que um ponto (f*,c*) tal que f* resolve
o (FA) com C;={c]} e.c* resolveo (CA) com F = {f*} néo ¢ necessariamente

sequer um minimo local, como ¢ afirmado erroneamente na literatura.

II1. Designacio de fluxos e capacidades usando projegao.

No seu cléssico artigo de 1970, Geoffrion [6] introduziu as idéias de manipulacio e
estratégias, para o tratamento de problemas de grande porte em programagio matematica.
Uma das manipulagies destacadas é a chamada projegdo (ver, p.ex., Humes [2]).

_ Tipicamente, dado o problema (PTP)
min f(z,y)
(PTP){ sujeito a g(z,y) <0
z€X, yeY

14



a manipulagio de projeio deste problema, sobre o espaco das varidveis y, como:
' { minv(y);
(PAP, v) =
- sujeitoay €V,

onde:

V={yeY |3z € X:g(z,y) <0},

v:V —~ RU{~o} é definida por

v(y) = inf{f(z,7) [z € X e g(z,7) <0}. )

A técnica de projecio é naturalmente aplicivel ao problema de designacéo de fluxos e
capacidades, desde que seja tomado o cuidado técnico do tratamento da restrigio ¢ > f.

Basicamente a idéia é que para ¢ =€ (ou f = f) parao qual o problema seja vidvel,
istoé, € V (f € V), existe um limitante superior do retardo e pode-se substituir ¢ > f
por. € kf (ou ¢ > kf).

Os principais. resultados necessérios a uma facil aplicacio do método de projegiio estao -
associados aos seguintes fatos:

Fato IIL.1. Os problemas PD(I) e PT(D), se viiveis, tém solucio 6tima tanto no
caso C; =[0,4+00) como no caso C; = {0,ci1,-..,¢ip}y 1 =1,2,...,m.
Demonstragao: No caso continuo (III.i) é repetigio de (I1.2). No caso discreto, é Sbvio

pela finitude de capacidades disponiveis. a

Fato IIL1.2. Se o ponto (f*,c*) é solugio otu.na. de PD(T) (PT(D)), entio
(a) ¢* & solugiio 6tima de CD(T) (CT(D)), com f = f*
(b) f* é solugio Stima de (FA), com e=c".

Demonstragio: Obvia. [ |

Os fatos acima indicam a existéncia de solugiio 6tima para PD(T) e PT(D) e
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que, caso usemos projegiio sobre as capacidades ou sobre os fluxos, o {nfimo presente na
definigio de ¥(-) ¢ um minimo. '

A abordagem tradicional para a solugéo (ou tentativa de solugdo) do problema de
designaciio de capacidades e fluxos é o método (CFA) que a partir de um fluxo vidvel f°
gera a seqiiéncia {(c', f*)}ien, definida por

¢ = solugio 6tima do (CA), com f = fi~1;

fi = solugio étima do (FA), com ¢ = ¢'.

Este método pode ser visto como um de dupla projegdo e ¢ o encontrado na literatura,
como p.ex., Kleinrock [5] e Gerla [1].

A consideraciio pragmatica de que o custo da solugio do (CA) é de ordem de grandeza
inferior ao da solugéio do (FA), nos leva a sugerir que utilizemos um método acoplando a
estratégia de diregdes vibveis com a manipulagiio de projegies sobre o espago das varidveis

fuxo. Em termos imprecisos, a partir de um fluxo vidvel f°, gerariamos uma seqiéncia
{(¢', f)}ien, tal que

¢ = solugiio étima do (CA), com f=f"'eF

fi=(ff+ k) eF,
com a propriedade de melhora do critério para cada par (ff,cf). Isto é, para PD(T),
D(c**') < D(c¢') epara PT(D), T(f*+,c") < T(f,c).

Proporemos a seguir um método desta familia e analisaremos seu comportamento para
o caso continuo. I"or facilidade de expressio usaremos a expressio projegio para significar
projeciio sobre o espago das variaveis fluxo,
- Para podem}los estudar esta abordagem, temos que analisar a existéncia de solugdes
étimas e 0 comportamento do valor 6timo do problema de designagio de capacidades, para
viérios valores de fluxo multicomodidade f.

Para tal indiquemos os seguintes fatos:
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Fato II1.3. Os problemas CD(Tyax) e CT(Dpax) sio vidveis para

Tmax >To = mf{z t.'(T,-,c.-) | & > 7,- ec,€Ci i=12,...,m}

i=1

Dygax > Dy = lnf{z di(ci) | ei >7; ec;€C;, 1=1,2,. ..,'m},

i=1
sendo que para o caso discreto Tamax = Tp ¢ Dyax = Dy também sio condigies de
viabilidade. Para o caso continuo (C; = Ry), temos Ty =0 ¢ Do =Y, di(fi).-

Demonstragio: Omitida por ser trivial no caso discreto, uma particularizagao de (I1.1)

no caso continuo e uma simples constatagio no caso geral, ' on

Fato ITL.4. Se o problema CD(Tqu)(C'T(DuA'x)) ¢ vidvel, entdo possui solugéo

étima, tanto no caso discreto como no continuo.

Demonstragao: Omitida por ser trivial no caso discreto ¢ uma simples particularizacio

de (I1.2) no caso continuo. |

Na realidade, o resultado (II1.4) é vdlido para o caso geral onde C; ¢é fechado, o que
pode ser demonstrado com pequena variagao nos argumentos da demonstracio de (I1.2).

Entre os dois problemas CD(:) e CT(-) ha fortes relacSes no seatido de que ambos
;;S,o condigdes necessirias de otimalidade para PD{-) e PT(:), portanto ambos sio
condigdes necessdrias para Pareto eficiencia de projeto e valem os anilogos triviais de
(IL5) e (IL.6).

O caso continuo nos permite um conjunto de resultados mais potentes. Portanto, ao

longo desta segio, faremos a hipétese C; = Ry. Por exemplo, nestas condicdes

Fato IIL.5. Para uma solugéo 6tima de CD(Tyax XCT(Daax)) a restrigao de retardo
(custo) é obedecida com igualdade. '
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Demonstracio: Omitida por ser particularizacio de (I1.4) e (I1.6). n.

Fato IIL6. Sob a hiptese adicional (HA), as fungbes vp e vr abaixo definidas sio

convexas, subdiferencidveis e semicont{nuas inferiormente, onde:

vp:{T € R|T >0} — R é definida por:

vo(T) = inf( Y di(e) |} tilFie) <dT eci> fil,
i=1 i=1

e
vr:{D € R|D > Dy}~ R é definida por:

vr(D) = inf{}" ti(Firc) |}, dile:) S Deci>fi}.

i=1 f=z1

V> Demonstragao: Vide Humes [2].

Esta propriedade foi verificada empiricamente no pioneiro trabalho de Gerla [1] para
redes de filas M/M/l com custos do tipo (X, li c¥), onde a € (0,1).

Esta forte ‘propriedmie de convexidade e subdiferenciabilidade levou-nos a esforgos
grandes (e mal-direcionados, em nossa presente opinio) para obter solugdes do problema
por esquemas préximos s idéias de decomposicéo de Benders.

Estas idéias parecem-nos mal direcionadas, pelo menos acopladas & projecio usual,
pois Benders esta ligado & presenga de suportes convexos e, portanto, & subdiferencia-
bilidade (se impusermos suportes diferencidveis ou subdiferencidveis) e, portanto, a con-
vexidade, Convexidade esta, cuja principt.ll caracteristica é a “globalidade” de minimos
Aocais.

Estes comentarios tornar-se-o mais claros perante o préximo fato e seu uso posterior.
Antes, porém, de podermos enunciar o fato significante, hé que introduzir a definigio
imediatamente abaixo: .
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Definigao ITI.7. As funcdes custo 6timo D*(-,-) e retardo 6timo T°(,-) funcio do
fluxo e, respectivamente, do retardo méiximo e do or¢amento méximo so definidas por:

DT =inf{ T dile)| T tilfine) SdT e &> fy parai € (M),

i€I(f) €I ‘
T*(f,T)=inf{ }_ tfoc)| Y dile:} < Deci>fiparni € I(f)),
§€I(f) i€lf)

onde I(f)={i € A| f; > 0}.

Por conveniéncia, nés trabatharemos somente com pares (f,T) € F x Ry, e com
pares (f,D)eEFx{z € R|z> Yty di(fi)}. Nestas condigdes, o “inf" presente em
ambas as defini¢des torna-se um minimo. '

Com estas definicies em mente, podemos afirmar:

Fato ITI.8. Para todo real estritamente positivo T, supondo a validade de (H5j, a funcio
D*(-,T): F+— R & concava. Mais ainda, se vale (H5A) (custos estritamente concavos),

entio D*(-,T) é estritamente concava em F.

Demonstraciio: Hé virias formas de provar este resultado, mas s que consideramos mais
simples e interessante é aquela em que tratamos o problema CI(T) como sendo um de

~
~

designacio de graus de congestionamento p; = f;/c;. ..
E trivial verificar, usando (II1.4), que Vf € F, VT >0,
D(f,T) =min{ }_ dili)| Y. ti(firci) S 4T e fi > ¢; parni € I(f)}
i€l i€l

=min{ ¥ di(filei)| Y ti(pir1) S 4T € pi € (0,1) parai € I(f)}
s€I(f) i€l

=min{ 3 di(fi/pi) | o € RO

i€I(S)
onde
RO(f)={peR™| Y_ tipiy1) S 4T e pi € (0,1) parn i =1,2,...,m}
. €N
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Para tal constatacio basta lembrar que

Vz €(0,1), di(0/z) = di(0) =0, i = 1,2,...,m por (H1).

Poctanto, VA € (0,1), V(f*, f?) € Fx F convexo: f'# f2, se utilizarmos a notagdo
£(3) = Af' 4 (1= 2)f?, temos

D*(f(2), T) = min{F 2, di(fi(N)/pi) | p € RO(f(A))}-

Mais ainda, Vi € I(f(\) = I(FYUI(f?), e Vz€(0,1)

di(fi(N)/2) 2 Mi(f}/2) + (1 = Ndi(f2/2)  (por (BB))

Noto-se que, se (H5A) vale, a desigualdade estrita vale, e que, para i ¢ I(f)),
&(f(N)/z) =o0.

Portanto, como (I(f(A)) = I(f*) U I(f*) = RO(f*) > RO(f(N)), (i = 1,2), segue
que

D*(f(A),T) 2 min{Y_ Mi(f}/pi) + (1 = N)d(f}/p:) | p € RO(S(N))}
b =1

> Amin(3 " di(f} /o) | o € ROGFON) +(1 — NS dif2/p0) | 0 € ROO))
=1 =]
> AD*(1,T) + (1 - ND*(/%,T),

sendo que a primeira desigualdade ¢ estrita caso (H5A) valha. |

E interessante notar que as tinicas propriedades de F utilizadas foram convexidade de
F eque f€F= f20. Postanto, o resultado acima enunciado para D*(-,T): F - R
& vilido para D*(:,T): RT — R.

Esta constatacio é a base para a seguinte afirmagio:

Fato III.9. Para todo real estritamente positivo T, para toda particio (1,J) de
{1,2,...,m},

D*(\T)={f€R™|fi>0 para i€l, e f;=0 para jEJ}~ R
& continua e superdiferencidvel



Demonstragao: No caso I = {1,2,...,m} e J =0, o resultado segue trivialmente do
fato de que fungdes concavas definidas em abertos sio continuas e superdiferencidveis.
Para o caso J n#o vazio, o raciocinio é o mesmo utilizando-se como espago o subespaco
linear {f € R™ | fj =0 para j € J} e o interior relativo a este subespago, sendo que as
coordenadas j(j € J) do supergradiente sio indeterminadas. - [ ]

A restrigio de trabalharmos com fluxos f com exatamente as mesmas componentes
nio nulas nos permite enunciar um resultado de concavidade estrita no caso de custos
lineares e redes de filas M/M/1:

Fato II1.10. No caso de custos lineares e redes de filas M/M/1, a funcio
D*(\T):{feF|fj=0 <+« jeJ}=R

é C° e estritamente concava, para todo real estritamente positivo T.
Demonstragio: Vide Humes [2].

O Fato I11.10 permite-nos reforgar parcialmente (I11.8), enunciando

Fato II1.11. No caso de redes de filas M/M(l, a funcio
D*(-T):{feF|fj=0 > jeJ}~R

¢é estritamente concava.

Demonstragio: Sem perda de generalidade, suponhamos I{f) = {1,2,...,m},
pars feF={feF|fi=0 < jeJ}. .
Sejam (f!,f?,)) € F x F x(0,1) e ¢ a solucio étima de CD(T) para [ =
) =21+ =- N _ ‘
Claramente ¢* € RT, e, portanto, Dfc) ¢ superdiferencidvel em ¢°, pois, por
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(85), D(-) é oﬁnpava.- Nestas condigdes,
. VYe€ RYys D(e) S Dy(e) =D(c" M+ <me—c">.

Por (IIL10), ,
" DA +(1- NPT) > ADY(S,T) + (1 - DL T)
2 AD(f,T) + (1 - ND*(f,T)

onde’
Dy(f.T) =min{Dy(c) | Y ti(fsci) SqT e ci> fi, i ¢ J)
: ' . i=l
* @, claramente, _ |
» DM+ (1 - Nf2,T) = DA +(1- N2, T)

e, portanto, segue & tese. : a

" No presente ponto, duu.questiies tarnam-se naturais: (i) o que podemos afirmar sobre
- T*(-, D) e (ii) qual o comportamento de D*(-,T) (T*(-, D)) quando alguma componente
do fluxo anula-se. :

Quanto a0 comportamento de T(-, D)) os resultados obtidos nio sio téo fortes
" quanto os obtidos para D*(T)). Esta afirmagio é de certo modo frustrante, pois as
fungies T*(-,D) e D°(-,T) estio intimamente ligadas por:

Fato ITL.12. Para todo f € F, valem as seguintes relagdes:
(‘) vT >0, T‘(LD.(LT)) =T
(b) VD > D(f), D*(£,T*(f,D))=D

D;moutn;ioz Trivial a partir de (I11.3) e (1I1.4). |

Aﬁnicllpmaaimria(a)e(b)ndméuimpoaigiode D > D(f). Estaas-
MMMmomﬁdamwmbhaqﬁumvmsdeﬂm, pois, exce¢do
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feita a0 caso linear (custos lineares), ndo podemos afirmar que {f € F | D(f) > D}
é convexo. Intuitivamente, afirmarfamos o oposto, isto é, que se os custos sio estrita-
mente concavos, existitiam sempre (f!,f?) € Fx F taisque D(f')< D, i =1,2, ¢
D(0.5f! + 0.5f2) > D. Em termos mais precisos, podemos enunciar:

Fato II1.13. Para todo real (positivo) D, o conjunto {f € F | D(f) 2 D} & convexo. -
Demonstracio: Trivial pela concavidade do custo (HS5). ||

Com estas consideragoes, ;;odemos apresentar ums versio mais fraca de (IIL8), aqual -

Fato II1.14. Para todo real D > {inf D(f)| f € F} a funcio
T*(-D):{f € F| D(f) < D} = R & quasicincawn, isto é,
sendo A = {f € F | D(f) < D},

V(AN EAXAX(0,1): (A1 +(1-A) e A
T*(Af! + (1 — N)f2, D) 2 minim1 2{T*(f*, D)}

Demonstragio: Por simplicidade, utilizamos
T =T*(f,D), i=12;,
To=T"(fO)D), onde fN)=Af +(A-Nf%
Suponhamos, sem perda de generalidade, T' < T? e que, por contradiclo, existe A,
tal que T\ < T' < T?. Entio .

D=D'0f'+(1-2)%T) (por IL12)
2 AD*(f',Ta) + (1= )D*(f*, 1) (por IL8)
> AD*(f1, T") + (1 - )D°(f,T?) (pois A< T' <T%)
=D (por 111.12) =
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Note-se que com o mesmo raciocinio de (III.14) podemos enunciar:

. Fato IIL18. Para todo real D > inf{D(f) | f € F}, a fungio
T°(D):{feF:D(f)y<D}~R '
é estritamente quasicdncava.

Demonstragio: Omitida por ser idéntica a (IIL14), substituindo (Tx <T' <T?). W

A questio natural que surge & sobre a quasiconcavidade de T*(-,D) em F.
Claramente, se (f',f?) goza da propriedade D(f*) 2 D, por (IIL13)
U VA€(0,1), f(A)=Af'+(1-2)f? goza da propriedade
D(f(\)) 2 D.
Neste caso, com a convencio (400 2 +o0), a caracterizacio-de quasiconcavidade
e
Portanto, nos interessa o caso onde D(f') < D e D(f*) 2 D. Neste caso vale:

Fato IIL16. Sejam (f!,f3) € F, tais que D(f') <D e D(f?) 2 D, entdo:
existe A € [0,1), tal que:

@ DO +(1-NF) <D <> A>3,

@) DOS* + (1= D)) = D.

Demonstracio: Trivialmente, pela contimuidade de D(-),
A={2€[0,1] | DAf* + (1 — A)f?) 2 D} é fechado.
- Pela contimiidade de D(-) epor D(1f+(1—1)f?) < D, A poesui limite superior
menor que 1 e, portanto, é bem definido ,
X=sup{A€ A} <1 e DO +(1-)f?} =D.
A propriedade (i) segue da concavidade de D(-). n
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Fato II1.17. Nas condicdes de II1.16, 3¢ > 0, tal que
vae (A, X+¢], T*(f(\),D)>T*(f,D).

Demonstragiio: Como D(f?) > D(f'), pedemos assumir, sem perda de generalidade,
que f? > f} e, portanto, fi(A) é decrescente com M. '
Consideremos ¢ definido por
t1(£1(0.5(1 + X)), &) = T*(f*, D),
cuja existéncia é garantida por (H8) a (H11), e seja
dy=dy(&) >0, pois fI>fl2>0.
Seja D' =D —d;. .
_ Pela continuidade de D(-) e pela definiciode A e 2, como em (I11.16) -g;n que
e’ > 0, tal que
vae(XA+¢l, D>D(f(\)2D. . _
Tomando ¢ = min{¢’,0.5(1 — X))}, temos que, sendo c*(A) s solugio 6tima de
CT(D),
T°(f(A), D) 2 t1(f1(A), €5(A)),
di(ci(A\) < D -D(f(A) D - D' =d,.
Portanto, c{(}) < &". '
Como fi{)) & decrescente com A, VA€ A +€)
T*(£(A), D) 2 t1(f1(2), €§(R))
> t1(f1(0.5(1 + X)), §(X)
> t(£1(0.5(1 +3)},8))
=T*(f*,D) . [ |

Utilizando (1116 a (IIL17) é fécil provar que

Fato II1.17.a. Para todo real positivo D, a funcio
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T(-,D): F — RU {400} & estritamente quasiconcava.
Demonstracio: Omitida por ser trivial n

‘O resultado aparentemente desejével de que T‘(-? D) fosse concava é falso em geral,
como pode ser verificado com um exemplo simples no caso de custos lineares e redes de
filas M/M/1 [2).

Estes fatos, aparentemente bizantinos, nos permitem apresentar um algoritmo mais
simples que o de dupla projegio e que possui a propriedade de convergéncia em um niimero
finito de passos (eatendendo-se passo como uma solugio de (CA)).

ANBRET s ek # apresentacts pelloa ke i e segiezh;

Fato IIL18. Seja & a solugio do CT(D)(CD(T)) com f=7F. Separao (FA), com
¢ =g, existe uma diregio de descida no panto f, entio esta é uma diregiio de descida
para T*(+ D) (D*(,T)) moponto f =7.

Demonstragio: A demoastragio para T°(-,D) é calcada no fato de que ocorre uma.
queda. de retardo para direces de descida.
A demonstracio para D*(-,T) ¢ conseqiiéncia do fato de que se existe uma diregio
de descida, para o ponto f= f, no (FA) com c=¢
D*(F+Ah,T) < D@ =D*(},T) e
1'(7+M,E')<T,pan¢\emumavizinhangadaorigeme;\>0. |

Fato ITL19. Seja w: F~ R uma funcio quasicincava em F e seja A uma diregio
dedescida para w(-) em f€ F. Istoé, I(X,h) € Ryy x (F - F), tal que '
@) eOX, T+ h)eF
@ VA€e0), wF+R) <w()
entio VA2, talque (F+AR)EF
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o(F +AR) < w(7).
Demonstracdo: Supondo, por contradi¢ao, que Ja > 0:
(F+ah)eF
w(f + ah) 2 w(f),
entdo existe p € [0,1], tal que
w(p(f +eB)+(1-p)f)2w(f), e
0 < pa <,

o0 que gera a contradigéo. ' . B

A relevincia do Fato II1.18 ¢ clara se lembrarmos que T*(-,D) ¢é quasicincava em
F e D*(-,T) é (estritamente) concava e portanto quasiconcava em F. '

Nestas condi¢des propomos o seguinte método:

Método III.20. Seja f° um fluxo vidvel no problema de designacio de capacidades
(isto é, D(f*)> D parao PT(D) ou T >0 parao PD(T)).

Passo 1) Normalizacio,

Encontre ¢® solucio do problema de designaciio de capacidades. _

Para ¢ = c®, para todo par (r,s), com g, >0, encontre uma drvore de caminho
mais curto, com distincias

o‘.(f'o ’ c? )
of:

Envie todas as mensagensde k a ! peloummhomuscnrtoeneontndo.pultodm
os pares (k,I). Caso esta seja a situagio com o fluxo £°, pare. Caso contrério chame o
fluxo obtido de f1.-

ap =ap =a; = , para a(i)={k{}, i=12,...,m.

Passo 2) Melhora.
Parao fluxo fi, i1, encontre ¢! uma solugio étima do CA, com f=f
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Para ¢ =i, encontre, se existir, uma drvore de caminhos mais curtos para ¢r, >0,
que néo scjs o roteamento associado & f* (s métrica usada é ay = ay = a; = 240
pars a(j) = {k,I}) e cujo caminho mais curto indicado seja estritamente melhor que o
associado ao atual roteamento.

Se nio existir tal &rvore, pare. Caso contrario, altere o fluxo para que os caminhos
mais curtos scjam obedecidos. O novo fluxo & fi+1.

Retorne para o passo 2. |

Fato II1.21. O método proposto em (II1.20) converge em um nimero finito de passos
pera um ponto (£,7), tal que:

(P1) @ é a solugio 6tima do .(CA), com f=1F;

(P2) 7 éa salugio 6tima do (FA), com c¢=¢.

Demonstragio: Apds a normalizagio, os fluxos fi, 21, estdo associados biunivo-
camente a arborescéncias do grafo G.
Como as arborescéncias s3o em niimero finito e a cada passo a funcéo objetivo do
problema é diminuida estritamente, o método péra em um niimero finito de passos.
Analisando as regras de parada, segue a tese. [ ]

Q método (II1.20) é essencialmente um método similar ao simplex. Além da garan-
tia de convergéncia e a aparente necessidade de (HA), ;: método apresenta uma grande
vantagem sobre o método de dupla projegio, que & a de ndo necessitar de solugio do (FA).

Esta vantagem ¢ a substituigéio da solugio do (FA), que exige uma série de iteragdes,
onde, em cada uma, devem ser construidas (3) &rvores de Dijkstra e uma busca unidi-
mensional, pelo cémputo de uma diregio de descida. Usando a idéia de desvio de fluxo,
 este iiltimo cdmputo exige, no pior caso, (§) érvores de Dijkstra.
ﬁmpahntenotuqml(hnmck [6], a semente desta idéia esté presente, quando
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ele recomenda desvio total de fluxo. Infelizmente, esta idéia aplicada & solucio do (FA)
pode levar & perda de viabilidade, além de néo reduzir o niimero de desvios de fluxo a um
86, como aqui é feito. .

Um ponto de aceleragio do algoritmo de desvio de fluxo seria a utilizacio de drvores
prévias para auxiliar a construgiio das drvores seguintes. This idéian foram implementadas
por Bezerra [07], mas ainda hd possibilidade de melhoria sobre este aspecto.

A facilidade do processo de encontrar a diregio de méxima descida, para o (FA),
sugere naturalmente o uso do algoritmo “steepest decent”, apesar de que em geral este
método seja criticivel quando comparado a métodos de segunda ordem, para a minimisacio
correspondente & (FA). Para especificar completamente o algoritmo, 86 resta especificar a
busca unidimensional. O usual na tradicio de Zoutendijk é buscar o minimo ao longo da
semireta (f+ AR), com restrigio de viabilidade. Como sabemos que limg.z, ti(fi, &) =
400, a viabilidade pode aparentar restringir-se a manter f; >0, i = 1,2....; m, oque
é automaticamente garantido, com A < 1. E interessante notar que nos casos rodados
sobre os exemplos da rede LARC, obtivemos consistentemente A = 1. Tal nio ocorreu
em exemplos gerados aleatoriamente.

Em geral, recomendariamos o uso da regra de Armijo, baseadas nas experiéncias
relatadas por Polak (8].

Apesar da sua simplicidade teérica, a solugio do (FA) tende a consumir ocd\uu de
grandeza de tempo a mais que a solugio do (CA).

Um ponto final nesta secio é notar que a solucio do (FA) & tinica em termos de
{f:},. Este fato nio deve ser entendido como unicidade do roteamento, e sim como
unicidade em relagéo ao fluxo fisico.



-

IV - Comentdérios Finais. . .

A utilizacio do método proposto simplifica a solugio do problema da designacéo de
fluxos e capacidades no sentido de encontrar um ponto estaciondrio da Kuhn-Tucker, mas
a constatacio de “concavidade” nas fungdes T*(-,D) e D*(:,T) é clara indicagdo da
existéncia de minimos locais. Em particular, qu;ando o fluxo fisico restringe-se a uma

drvace (m =n—1 e grafo conexo), pode-se provar que estamos em um minimo local [2].

Assim sendo, maiores resultados orientados para encontrar a solugio de PD(T) ou
PT(D) ainda nio existem afora a recomendagiio de Gerla [1] de utilizar vérios pontos
iniciais vidveis e a esperanca de obtermos resultados positivos seguindo as idéias de Tuy
et alii [9), em particular, no caso de custos lineares e filas M/M/1.

Co;nim entretanto interessante neste trabalho a jung@o de intui¢do encontrada
nos escritos de Gerla [1) e Kleinrock [5], com o tratamento formal dado & fungdes valor 6timo
dependendo de argumentos do problema, levando a algoritmo mais simples e eficiente, na
linha de projeciio - diregdes vidveis, como classificado em Geoffrion.
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