Comparative Analysis of Smart Contract Generation Using
Large Language Models

Hiago Vinicius Benedito dos Santos', Raissa Rosa dos Santos Januario!,
Ravelly Carvalho Zanatta', Saulo Neves Matos'?, J6 Ueyama'

"nstituto de Ciéncias Matematicas e de Computacgdo
Universidade de Sao Paulo (USP) — Sao Carlos, SP — Brasil

2School of Computing and Communications, Lancaster University,
Lancaster, United Kingdom

{hiagovini, raissa.rosa, ravellyzanatta, saulo.matos}@usp.br

joueyama@icmc.usp.br

Abstract. In recent years, blockchain technology has established itself as an
effective, secure, and transparent data storage solution. In this context, smart
contracts play a fundamental role by enabling the automated execution of agree-
ments without intermediaries. With the advancement of language models, the
opportunity to automatically generate these contracts has emerged, raising con-
cerns about their reliability and potential vulnerabilities. This article proposes
a comparative analysis of the available language models for developing smart
contracts using Ethereum Virtual Machine’s contracts as a case study. Experi-
ments were made using various Large language models using different metrics
to evaluate the susceptibility to vulnerabilities and computational cost. After
comparing various models, ChatGPT appears to be the most suitable for gen-
erating smart contracts due to its higher compilation rate and, consequently, a
larger sample size, despite detecting more vulnerabilities.

1. Introduction

In recent years, advancements in Natural Language Processing (NLP) driven by Large
Language Models (LLMs) have revolutionized human-computer interaction. These mod-
els enable the generation and understanding of complex texts with unprecedented accu-
racy and fluency, opening new possibilities across various domains [Jayakody and Dias
2024, Lewis et al. 2024]. One particularly promising application is the automated gen-
eration of smart contracts—self-executing programs running on blockchain platforms
that facilitate secure and transparent transactions based on predefined conditions [Szabo
1997,Zhao 2023].

Smart contracts, introduced by Szabo 1997, are decentralized, immutable, and
self-executing, ensuring security and transparency without the need for intermediaries
[Sujeetha and Deiva Preetha 2021]. Since the advent of Ethereum [Buterin 2014], their
utility has extended to diverse fields, including the Internet of Things (IoT) and decentral-
ized autonomous organizations (DAOs) [Muneeb et al. 2022]. Despite their advantages,

ensuring the security and efficiency of smart contracts is paramount, as vulnerabilities can
lead to severe financial losses [Yang et al. 2022, Wang et al. 2024].

In the Ethereum Virtual Machine (EVM), gas serves as the unit of measurement
for computational effort, determining the cost of executing operations and transactions.
Each operation within the EVM has a predefined gas cost documented in the Ethereum
protocol, functioning as a fee system for resource usage. Consequently, gas consumption
directly impacts the execution costs of smart contracts, necessitating optimization to avoid
excessive fees [Li 2021, Farokhnia and Goharshady 2023].

While previous studies have explored the use of LLMs for generating smart con-
tracts, they have not systematically evaluated different types of LLMs or analyzed their
limitations in terms of gas consumption and security. This gap motivates our investiga-
tion into whether LLMs can generate secure and efficient smart contracts. Specifically,
we assess their susceptibility to vulnerabilities and their deployment gas cost, aiming to
identify the most suitable models for this task. From this, the following research questions
(RQs) emerge:

* RQ1: Are there vulnerabilities present in smart contracts generated by language
models?

* RQ2: Which language model generates smart contracts with the lowest deploy-
ment gas cost?

* RQ3: Which language model is most effective and reliable for generating secure
and efficient smart contracts?

To address these questions, this work conducts a comparative analysis of widely
used LLMs, contributing to the state of the art in smart contract generation. Our findings
aim to assist developers in selecting the most efficient and secure models for generat-
ing smart contracts. A sample of 30 contracts from Jusbrasil!, a Brazilian platform that
provides legal information, was used to generate the smart contracts.

2. Background

This section presents the fundamental concepts for the proposed work. Section 2.1 dis-
cusses Blockchain and smart contracts, while Section 2.2 addresses LLMs and Prompt
Engineering, highlighting techniques in NLP and strategies for optimized interaction with
language models.

2.1. Blockchain and Smart Contracts

Blockchain is a decentralized Peer-to-Peer (P2P) network that utilizes a ledger structured
in an immutable and shared chain of blocks, ensuring the reliable recording of transactions
and the control of assets. This technology provides real-time information in a completely
transparent manner [Nakamoto 2008]. One of its greatest advantages is decentralization,
where transactions are verified by multiple nodes in the network, using cryptographic
techniques (hash) to ensure the authenticity and security of the stored data [Bashir 2020].
Each block contains transaction data, a timestamp, and the hash of the previous block.

Thttps://www.jusbrasil.com.br/

To validate transactions, Blockchain uses consensus mechanisms such as Proof-
of-Work, Proof-of-Stake, and Proof-of-Authority, ensuring agreement among nodes about
the validity of transactions before adding them to the chain [Islam et al. 2023].

With the emergence of Ethereum in 2014, Blockchain was expanded to include
smart contracts. Smart contracts are computational protocols that automate the execution
of contractual agreements, eliminating intermediaries and ensuring transparency and se-
curity [Buterin 2014]. Implemented in languages such as Solidity?, the contracts contain
encoded clauses that perform operations on data stored in the Blockchain, ensuring the
precise and immutable execution of the agreed terms [Zheng et al. 2020].

The execution of smart contracts occurs in the Ethereum Virtual Machine (EVM),
an autonomous environment that isolates contract operations from the main blockchain.
For each execution, a resource called gas is charged, which measures the computational
effort required and regulates resource consumption during execution. If the gas runs out,
state changes are reverted, ensuring the integrity of the system [Ma et al. 2019, Wu et al.
2024].

EVM is widely adopted by other blockchains such as Binance Smart Chain and
Avalanche, has established itself as the leading platform for smart contracts. Among the
languages® compatible with the EVM, Solidity leads due to its comprehensive documen-
tation and extensive community support, which motivated its choice in this work.

To measure the deployment gas cost of the smart contracts developed in Solidity,
we used Remix, an IDE widely recognized for optimizing contract analysis by allowing
cost calculations for deployment and function execution.

2.2. Large Language Models and Prompt Engineering

LLMs have emerged as artificial intelligence systems capable of processing and gener-
ating coherent text, generalizing for various NLP tasks [Naveed et al. 2024]. Based
on Transformers architectures [Vaswani et al. 2017], they utilize deep neural networks
trained on large datasets, allowing for the identification of complex patterns and depen-
dencies in word sequences, which enables a precise understanding of linguistic and se-
mantic nuances [Jayakody and Dias 2024, Lewis et al. 2024].

In addition to traditional capabilities such as text generation, translation, and sum-
marization, large language models (LLMs) demonstrate emerging skills such as reason-
ing, contextual learning, and decision-making, even without explicit training for such
tasks [Wei et al. 2022a,Boiko et al. 2023]. They also perform zero-shot tasks, responding
to new scenarios without additional training [Naveed et al. 2024].

The success of using LLMs depends on the quality of the prompts, which directly
influence the relevance and coherence of the responses. Prompt Engineering emerges
as an essential discipline aimed at optimizing interaction with the models by designing
inputs that guide the responses toward specific tasks [Chen et al. 2024]. Strategies such
as Chain of Thought, zero-shot, and few-shot enhance the models’ capabilities, allowing
for more precise and adaptable responses in various scenarios [Wei et al. 2022b, Reynolds
and McDonell 2021].

22https://docs.soliditylang.org/en/v0.8.25/
3https://ethereum.org/en/developers/docs/smart-contracts/languages/

The combination of LLMs and Prompt Engineering represents a significant ad-
vancement in using artificial intelligence to solve complex NLP problems. It offers scal-
able, high-performance solutions. In the context of Prompt Engineering, the framework
CO-STAR is designed to structure and guide the creation of effective prompts. It has
gained traction in various studies, with promising results observed in various applica-
tions [Peng et al. 2024, Fadi et al. 2024, Napoli et al. 2024, Shen 2024].

2.3. Smart Contract Vulnerability Detection Tools

For a robust analysis of vulnerabilities in smart contracts, complementary tools are used
to enhance coverage and depth, as discussed in Wei et al. 2023. The combination of tools
with different techniques allows for the detection of a broader range of vulnerabilities,
leveraging the specific advantages of each method.

Based on this principle, exists several tools such as Mythril* and Slither’. Mythril
uses symbolic execution and flow analysis to detect known vulnerabilities and simulate
complex contract states. Conversely, Slither applies static analysis using pattern match-
ing, providing rapid detection of logical errors and ease of integration.

Since smart contracts are self-executing and immutable, ensuring they are free of
vulnerabilities is essential. Once deployed, their code cannot be altered, making any flaws
permanent and exploitable. While immutability is key to blockchain’s trustless design, it
also highlights the importance of preventing vulnerabilities during development.

3. Related Works

In this section, we explore the development of smart contracts, focusing on identifying
current gaps and the methods already implemented in this process. For instance, Jurge-
laitis et al. 2022 presents a methodology that follows the principles of Model Driven
Architecture (MDA), using Unified Modeling Language (UML) models to enhance the
understanding and reusability of smart contracts, as well as to generate code in Solidity.
The process involves modeling contracts as Platform Independent Models (PIM), which
are transformed into Platform Specific Models (PSM) through algorithms in the Eclipse
ATL and Acceleo tools. The approach was evaluated by comparing code metrics, simi-
larity, and execution costs between the original code and the generated code, achieving a
similarity rate greater than 90%.

The study conducted by Shynkarenko and Kopp 2022 explores the use of NLP
techniques for converting business rules into smart contracts. The methodology com-
bines intelligent text processing with software development techniques in Python, using
libraries such as Spacy for experimental implementation. As a result, the work demon-
strates the automated generation of a smart contract for the creation of a token based on a
text containing the business rules.

Fan et al. 2023 introduces an innovative approach to converting contracts writ-
ten in natural language into smart contracts using the Contract Text Markup Language
(CTML). The methodology employs semantic markup to structure contractual elements
in hierarchical levels — factors, properties, and legal components — which facilitates the

“https://mythril-classic.readthedocs.io/en/master/index.html
Shttps://crytic.github.io/slither/slither.html

extraction and organization of relevant information. A Metadata Data Model (EMD) is
also established, allowing for the control of access permissions and customization, and
through this, the methodology enables the conversion of contracts into automated for-
mats.

The research made by Ahmed et al. 2024 explores the generation of smart con-
tracts aimed at rental agreements. The study begins with the extraction of contractual
models, facing the challenge of the scarcity of well-labeled data, which necessitates man-
ual collection and labeling. The information extraction process considers the dynamics
of payments and collects key attributes of the agreement, such as type and values, using
a customized and trained Named Entity Recognition (NER) model. Finally, the user pre-
pares a markup with customized tags, ensuring compliance with the legal context for the
generation of the smart contract.

The article developed by Napoli et al. 2024 proposes a pipeline that utilizes LLMs
to automate the creation of smart contracts, facilitating access for individuals without
programming experience. The pipeline adopts the CO-STAR methodology [Science and
Division 2023] to optimize prompt generation and Slither [Feist et al. 2019] to identify
vulnerabilities in the generated contracts. The results indicate that 98.1% of the contracts
are compilable. However, the evaluation is conducted exclusively using ChatGPT, focus-
ing on metrics such as compilability, vulnerabilities, and the presence of comments.

The study conducted by Zhao et al. 2024 uses ChatGPT3.5 Turbo as the represen-
tative LLM for generating comments on smart contracts. The Smart Contract Comment
generation via Large Language Models approach (SCCLLM) combines contextual learn-
ing and the selection of relevant code demonstrations from a historical corpus, enhancing
the quality of the generated comments. Tests with data from the blocks explorer Ether-
scan.io show that SCCLLM outperforms previous approaches, highlighting the effective-
ness of ChatGPT for creating comments in an existing smart contract.

Fadi et al. 2024 also investigated the use of GPT-4 for the generation of smart
contracts based on textual descriptions, again utilizing the CO-STAR method to structure
the prompts effectively. The evaluation was conducted through automated analyses and
manual reviews, identifying limitations of the model, such as code failures and inconsis-
tencies between the prompts and the generated contracts, highlighting that GPT-4 is still
not suitable for producing ready-to-use contracts.

Over the years, the use of LLMs for generating smart contracts has intensified,
especially in more recent studies. Previous research, such as that of Jurgelaitis et al.
2022 and Shynkarenko and Kopp 2022, focused on methodologies like Model Driven
Architecture and the use of Natural Language Processing techniques in combination with
traditional software development. However, more contemporary approaches, like those
of Napoli et al. 2024, Zhao et al. 2024, and Fadi et al. 2024, highlight the adoption
of LLMs as central tools, reflecting a natural evolution in the field towards automation
through generative artificial intelligence.

Different from previous works [Napoli et al. 2024, Zhao et al. 2024, Fadi et al.
20241], this work stands out by expanding the analysis beyond ChatGPT, also incorporat-
ing LLMs such as Gemini, LLAMA, and Gemma, which allows for a broader evaluation
of smart contract generation. Moreover, it uses multiple tools for vulnerability analysis,

a feature that was not explored by previous studies. This aims to obtain a more accu-
rate average of the quality of contracts generated by each LLM. Furthermore, the costs
in terms of gas consumption on the Ethereum Virtual Machine are analyzed, providing a
new perspective on the efficiency and cost-effectiveness of the generated contracts. Table
1 summarizes related works, highlighting the objectives and methodologies employed.
This approach provides a solid foundation for the selection of the most suitable tools for
developers, thus contributing to the advancement of practices in smart contract develop-
ment.

Table 1. Related Works Focusing on LLMs to generate smart contracts.

Work Evaluation of LLMs Evaluation of CO-STAR Deployment Gas
Multiple Cost Evaluation
Vulnerability Tools
Jurgelaitis et al. 2022
Shynkarenko and Kopp
2022

Fan et al. 2023
Ahmed et al. 2024
Zhao et al. 2024
Fadi et al. 2024
Napoli et al. 2024

® 00000 OO
@ O0O00O OO
® 00000 OO
@ OO000O OO

Our work

4. Methodology

The analysis focuses on three central aspects: the risk of generating vulnerable contracts,
the cost of the generated contracts, and the ability of the models to produce contracts with
a greater number of correct functions.

4.1. Language Models for Comparison

The selection of LLMs was based on criteria of performance, accessibility, and recogni-
tion in the field of natural language processing. ChatGPT®, from OpenAl, was chosen for
its pioneering role and widespread adoption, standing out for its versatility and ability to
understand various linguistic tasks.

In addition, Llama3 was chosen, recognized for technical advancements and opti-
mization for intensive workloads, along with Gemma, which integrates with the Groq’, a
platform that facilitates the use of APIs for practical implementation of models.

Finally, Gemini® was included for its broad applicability, reliability, and ease of

access via API. This selection reflects a balance between efficiency, ease of implementa-
tion, and robustness, aligning with the goals of effective and scalable results.

4.2. Prompt Formulation

The chosen approach for formulating the prompt was the CO-STAR framework, which
stood out as the champion in the inaugural prompt engineering competition with GPT-4

®https://chatgpt.com
https://grog.com/
8https://gemini.google.com

organized by the Government Technology Agency of Singapore (GovTech) [Science and
Division 2023], thereby distinguishing itself from others due to its ability to provide more
comprehensive information to the language model.

The choice of CO-STAR is based on its effectiveness in establishing a robust struc-
tural context, which fosters the production of more precise and informative responses.
This advantage makes CO-STAR a preferred framework for projects that require clarity,
adaptability, and depth in prompt construction.

Table 2. Prompt Formulation - CO-STAR Framework

Element Description

Context Imagine a company that uses textual contracts but wants to migrate to a
transparent and automated solution using smart contracts.

Objective Develop a smart contract based on the provided textual contract.

Style Clean code, gas-efficient execution, and security against vulnerabilities.

Tone Not applicable

Audience Companies that execute commercial agreements through contracts and
wish to automate this process.

Response The generated smart contract should include only the Solidity code,
without any introductions or additional explanations.

The Table 2 presents the prompt used based on the CO-STAR model, detailing the
key elements for formulating a structured request for the generation of smart contracts.
Each element of the framework has been adapted to the context of a company that wishes
to automate its contractual processes, ensuring that the generated contract is efficient,
secure, and tailored to the specific needs of the target audience.

In this case, the Tone element will not be used, as the goal is to generate a smart
contract directly, focusing only on the code. This eliminates the need for a specific tone,
as the expected result is technical and objective, without the presence of introductory or
explanatory texts.

4.3. Evaluation Metrics for LLM’s Comparison

To measure susceptibility to vulnerabilities in generated contracts, we have formulated
metrics that calculate, for each contract, the average number of vulnerabilities and the av-
erage percentage of vulnerabilities at each impact level (high, medium, and low) based on
the total number of analyzed contracts. These metrics provide a detailed and comparative
assessment of contracts generated by different LLMs.

The average number of vulnerabilities detected by tool X in the contracts gener-
ated by LLM y is given by:

| quantity,
M — iz quantity; U, (1)

where: M is the overall average of detected vulnerabilities, quantity, is the number of
vulnerabilities in the i-th contract, and n is the overall count of analyzed contracts.

In addition, the average percentage of impact vulnerabilities « (high, medium,
low) is calculated as follows:

D percentage, ; quantity,, ; x 100
P, = “ where, percentage, ;= t
n ’ totalQuantity,

(2)

in which: P, is the average percentage of vulnerabilities of impact z, quantity,, ; is the
number of impact vulnerabilities x in the i-th contract, and totalQuantity, is the total
vulnerabilities detected in the i-th contract.

Figure 1 illustrates the flow executed for the comparative analysis, which begins
at Step 1 with the selection of a sample of real contracts, including lease agreements,
purchase and sale of real estate, among others, written in Portuguese. These contracts can
be found on Jusbrasil®.

1. Select text contracts

L 4. Detect N @
l Vulnerabilities =

Security
- Results

2. Formulate prompt

L O

l 4. Simulate deploy on dh
s . — |- —
3. Submit the prompt Remix and get the gas =

and the contracts to Gas
the LLM Results

Figure 1. Flow chart of the adopted methodology.

In Stage 2, the prompt follows a predefined framework to ensure consistency and
clarity in the input provided to the LLM. In the next stage, both the prompt and the
contract text are submitted to the LLM, which then generates the corresponding smart
contract. Subsequently, the generated contract is analyzed by the selected vulnerability
detection tools, and mathematical formulas are applied to calculate the security score of
the contract. At the same time, a deployment simulation is performed using a web IDE,
which provides a detailed estimate of the gas cost.

The Table 3 provides a summarized view of the tools applied in the analysis, high-
lighting each category and its related tools. The following sections will provide a detailed
analysis and justification for selecting each of these tools.

S. Results

Figure 2 shows the percentage of compiled contracts by LLM and tool. The Gemini model
achieved a compilation rate of 34% in Slither and 30% in Mythril, while the LLama3
model exhibited rates of 10% in Slither and 4% in Mythril. The Gemma model had no
compiled contracts, consequently, it does not appear in the figure.

“https://www.jusbrasil.com.br/

Table 3. Summary of the evaluation tools utilized in this work.

Category Related Tools
LLM ChatGPT, LLama, Gemini, Gemma
Vulnerability Detection Tools Slither, Mythril
Blockchain Remix IDE, Solidity, EVM
Prompt Formulation CO-STAR
601 60% mm Slither
;5 Mythril
2 504
S
€
8 40
el
2
g 04 30%
S
G
QL 204
(o)}
S
o
S ol 10%
(O]
a 4%
. ChatGPT Gemini LLama3

LLM
Figure 2. Percentage of compiled contracts by LLM and tool.
The Table 4 displays the average number of vulnerabilities per contract (M) for
each LLM. The Gemini model had 2.5 vulnerabilities in Slither and 0.22 in Mythril. The

LLama3 had one vulnerability in Slither and O in Mythril. The Gemma model showed no
vulnerabilities, as no contracts were compiled.

Table 4. Average vulnerabilities per contract (1/) for the analyzed LLMs.

LLM Slither Mythril

ChatGPT 4.16 0
Gemini 2.5 0.22
LLama3 1 0

Tables 5 and 6 present the impact of vulnerabilities by level (high, medium, low),
and The Gemma model had no impact due to a compilation failure. In Slither (Table
5), the Gemini model had an average impact of 18.5% and a low impact of 71.5%. The
LLama3 had a low impact of 33.3%.

Without Mythril (Table 6), the Gemini model showed 11.1% high impact, 11.1%
medium impact, and 22.2% low impact. The LLama3 did not show a significant impact.

Table 5. Percentage of impact by vulnerability level (Slither) for each LLM.

LLM High (%) Medium (%) Low (%)

ChatGPT 4.47 11.48 84.04
Gemini 0 18.5 71.5
LLama3 0 0 33.3

Table 6. Percentage of impact by vulnerability level (Mythril) for each LLM.

LILM High (%) Medium (%) Low (%)

ChatGPT 0 0 0
Gemini 11.1 11.1 22.2
LLama3 0 0 0

Figure 3 presents the average deployment gas cost, the equivalent value in Ether,
and the corresponding value in USD for the compiled contracts generated by each LLM.

The gas price is denominated in Gwei, and its conversion to Ether follows by ETH =
Gas Units x Gas Price
1,000,000,000

Contracts generated by ChatGPT consumed an average of 1,652,282.3 gas units.
For Gemini, the consumption was 1,340,313.7 gas units, while for Llama, it was
1,324,725 gas units. Gemma did not show cost since none of the contracts generated
by it were compiled. Table 7 presents the average gas consumption of each LLM in gas
units, Ether, and U.S. dollars. All calculations related to the currency conversion were
made on January 16, 2025. On this date, the price of gas was 2.228 Gwei, and the value
of one Ether was US$3,373.80 USD.

Table 7. Average gas consumption values in gas units, Ether, and U.S. dollars.

LLM Gas Units ETH US$

ChatGPT 1,652,282.3 0.003681284915 US$12.42
Gemini 1,340,313.7 0.002986218924 US$10.07
LLama3 1,324,725 0.0029514873 US$9.96

6. Discussion

A response can be given to the Research Questions on the basis of results shown in Section
5.

RQ1: Are there vulnerabilities present in smart contracts that are generated by language
models?

Yes, the generated contracts exhibit vulnerabilities. The ChatGPT model achieved the
highest average number of vulnerabilities, with a value of 4.16 in Slither and 0 in Mythril.
The Gemini model, in turn, showed an average of 2.5 vulnerabilities in Slither and 0.22 in
Mythril. In contrast, the LLama3 model recorded an average of 1 vulnerability in Slither
and 0 in Mythril, while the Gemma model did not generate compilable contracts, resulting

le6
1,652,282

EE Gas Units (in millions)

1,340,314 1,324,725

Gas Units (in millions)

ChatGPT Gemini LLaMa3
LLM

Figure 3. Average gas consumption of each LLM.

in a 100% failure rate. However, the high failure rate observed in most models limits the
comparative analysis. As a result, it is not possible to accurately conclude that ChatGPT
is the most prone to generate vulnerable contracts. The discrepancy in the number of
samples considered between ChatGPT and the other models makes the analysis biased.

RQ2: Which language model generates smart contracts with the lowest deployment gas
cost?

Among the models that presented compiled contracts, excluding Gemma, the LLama3
model demonstrated, on average, the lowest deployment gas cost. This was followed by
Gemini, which recorded a Gas cost 15,589 units higher. ChatGPT, in turn, showed the
highest average deployment gas cost. However, it is important to note that the number of
samples considered for the first two models (LLama3 and Gemini) was significantly low,
which may introduce bias into the results. In contrast, ChatGPT had a larger number of
samples, allowing for greater reliability in the analysis of its performance.

RQ3: Which language model is most effective and reliable for generating secure and
efficient smart contracts?

ChatGPT is the most suitable for generating smart contracts. The central metric chosen
for this evaluation was the rate of compilable contracts, as it represents a more robust
and consistent estimate of each LLM’s practical ability to meet the primary objective
of generating functional smart contracts. The results indicated that ChatGPT achieved
significantly superior performance, with 60% of the contracts generated being compilable.
In contrast, Gemini presented only 34% compilable contracts, LLama3 achieved 10%, and
Gemma did not produce any compilable contracts.

Although vulnerability analysis and deployment gas cost are relevant for assessing
the quality and security of the generated contracts, these metrics were calculated based
on limited samples for models with lower compilation rates. This factor compromises
the reliability of these analyses. In the case of ChatGPT, however, the higher rate of

compilable contracts allowed for a broader sample base, granting greater credibility to
the metrics obtained.

7. Conclusion

This study examined the generation of smart contracts by LLMs, assessing the compi-
lation failure rate, average vulnerabilities, and deployment gas cost. The findings high-
lighted that while vulnerabilities persist, ChatGPT proved the most effective model for
generating smart contracts, due to its higher compilation rate and, consequently, a larger
sample despite having more detected vulnerabilities.

However, no LLM can yet independently generate a smart contract from a real-
world scenario suitable for production, as even the best-performing model failed to com-
pile all requested contracts.

Future work could expand the sample size, explore diverse contract types, and in-
corporate additional LLMs to provide a broader perspective on their potential. Addition-
ally, investigating the causes of compilation failures could help address model limitations
and support the creation of more robust and secure smart contracts.

Acknowledgements

This study was financed in part by the Coordenagdo de Aperfeicoamento de Pessoal de
Nivel Superior - Brasil (CAPES) - Finance Code 001 and Funda¢ao de Amparo a Pesquisa
do Estado de Sao Paulo - Brasil (FAPESP) - Process Number 2024/07478-8.

References

Ahmed, S. U., Danish, A., Ahmad, N., and Ahmad, T. (2024). Smart contract genera-
tion through NLP and blockchain for legal documents. Procedia Computer Science,
235:2529-2537.

Bashir, 1. (2020). Mastering Blockchain: A Deep Dive Into Distributed Ledgers, Con-
sensus Protocols, Smart Contracts, DApps, Cryptocurrencies, Ethereum, and More.
Expert insight. Packt Publishing.

Boiko, D. A., MacKnight, R., and Gomes, G. (2023). Emergent autonomous scientific
research capabilities of large language models.

Buterin, V. (2014). Ethereum white paper: A next-generation smart contract and decen-
tralized application platform. Accessed: 2024-11-02.

Chen, B., Zhang, Z., Langrené, N., and Zhu, S. (2024). Unleashing the potential of prompt
engineering in large language models: a comprehensive review.

Fadi, B., Napoli, E. A., Gatteschi, V., Schifanella, C., et al. (2024). Automatic smart
contract generation through Ilms: When the stochastic parrot fails. In Proceedings of
DLT 2024. CEUR.

Fan, Y., Chen, E., Zhu, Y., He, X., Yau, S. S., and Pandya, K. (2023). Automatic gener-
ation of smart contracts from real-world contracts in natural language. In 2023 IEEE
Smart World Congress (SWC), pages 1-8. DOI: 10.1109/SWC57546.2023.10448870.

Farokhnia, S. and Goharshady, A. K. (2023). Reducing the gas usage of ethereum smart
contracts without a sidechain. In 2023 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pages 1-3.

Feist, J., Grieco, G., and Groce, A. (2019). Slither: A static analysis framework for smart
contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), pages 8—15.

Islam, S., Islam, M. J., Hossain, M., Noor, S., Kwak, K.-S., and Islam, S. M. R. (2023). A
survey on consensus algorithms in blockchain-based applications: Architecture, tax-
onomy, and operational issues. IEEE Access, 11:39066-39082.

Jayakody, R. and Dias, G. (2024). Performance of recent large language models for a low-
resourced language. In 2024 International Conference on Asian Language Processing
(IALP), pages 162-167. DOI: 10.1109/IALP63756.2024.10661169.

Jurgelaitis, M., Ceponiené, L., and Butkiené, R. (2022). Solidity code generation from
UML state machines in model-driven smart contract development. [EEE Access,
10:33465-33481.

Lewis, D.-M., DeRenzi, B., Misomali, A., Nyirenda, T., Phiri, E., Chifisi, L., Makwenda,
C., and Lesh, N. (2024). Human review for post-training improvement of low-resource
language performance in large language models. In 2024 IEEE 12th International
Conference on Healthcare Informatics (ICHI), pages 592-597.

Li, C. (2021). Gas estimation and optimization for smart contracts on ethereum. In 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1082-1086.

Ma, F, Fu, Y., Ren, M., Wang, M., Jiang, Y., Zhang, K., Li, H., and Shi, X. (2019). EVM:
From offline detection to online reinforcement for ethereum virtual machine. In 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 554-558. IEEE.

Muneeb, M., Raza, Z., Haq, 1. U., and Shafiq, O. (2022). Smartcon: A blockchain-based
framework for smart contracts and transaction management. /EEE Access, 10:23687—
23699. DOI: 10.1109/ACCESS.2021.3135562.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review. Available at: https://bitcoin.org/bitcoin.pdf.

Napoli, E. A., Barbara, F., Gatteschi, V., and Schifanella, C. (2024). Leveraging large
language models for automatic smart contract generation. In 2024 IEEE 48th Annual
Computers, Software, and Applications Conference (COMPSAC), pages 701-710.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes,
N., and Mian, A. (2024). A comprehensive overview of large language models.

Peng, J., Han, Z., Zhang, H., Ye, J., Liu, C., Liu, B., Guo, M., Chen, H., Lin, Z., and
Tang, Y. (2024). A multilingual text detoxification method based on few-shot learning
and co-star framework. Working Notes of CLEF.

Reynolds, L. and McDonell, K. (2021). Prompt programming for large language models:
Beyond the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on
human factors in computing systems, pages 1-7.

Science, G. D. and Division, S. G. A. (2023). Prompt engineering playbook. Online.
Available at: https://www.developer.tech.gov.sg/products/collections/data-science-
and-artificial-intelligence/playbooks/prompt-engineering-playbook-beta-v3.pdf.

Shen, Y. (2024). Enhancing english language education with chatgpt. In Proceedings
of the 2024 International Conference on Artificial Intelligence and Communication
(ICAIC 2024), pages 512-521. Atlantis Press.

Shynkarenko, D. and Kopp, A. (2022). Towards the approach to building smart con-
tracts based on business rules using natural language processing. Grail of Science,
(22):144-150.

Sujeetha, R. and Deiva Preetha, C. A. S. (2021). A literature survey on smart contract test-
ing and analysis for smart contract based blockchain application development. In 2021
2nd International Conference on Smart Electronics and Communication (ICOSEC),
pages 378-385. DOI: 10.1109/ICOSEC51865.2021.9591750.

Szabo, N. (1997). The idea of smart contracts. Accessed: 2024-10-22.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. NIPS’17, page 6000-6010, Red
Hook, NY, USA. Curran Associates Inc.

Wang, D., Shan, M., and Tong, N. (2024). Smart contract vulnerability detection based

on machine learning. In 2024 6th International Conference on Electronic Engineering
and Informatics (EEI), pages 1038—1042. DOI: 10.1109/EE163073.2024.10696331.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,
P., Dean, J., and Fedus, W. (2022a). Emergent abilities of large language models.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D.,
et al. (2022b). Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837.

Wei, Z., Sun, J., Zhang, Z., Zhang, X., Li, M., and Zhu, L. (2023). A comparative
evaluation of automated analysis tools for solidity smart contracts.

Wu, G., Wang, H., Lai, X., Wang, M., He, D., and Chan, S. (2024). A comprehensive
survey of smart contract security: State of the art and research directions. Journal of
Network and Computer Applications, 226:103882.

Yang, H., Zhang, J., Gu, X., and Cui, Z. (2022). Smart contract vulnerabil-
ity detection based on abstract syntax tree. In 2022 8th International Sympo-
sium on System Security, Safety, and Reliability (ISSSR), pages 169—170. DOI:
10.1109/ISSSR56778.2022.00032.

Zhao, B. (2023). Reverse real-time model detection of chain smart contract security based
on association method. In 2023 International Conference on Telecommunications,
Electronics and Informatics (ICTEI), pages 759-762.

Zhao, J., Chen, X., Yang, G., and Shen, Y. (2024). Automatic smart contract comment
generation via large language models and in-context learning. Information and Soft-
ware Technology, 168:107405.

Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., and Imran, M. (2020). An
overview on smart contracts: Challenges, advances and platforms. Future Generation
Computer Systems, 105:475-491.

	Introduction
	Background
	Blockchain and Smart Contracts
	Large Language Models and Prompt Engineering
	Smart Contract Vulnerability Detection Tools

	Related Works
	Methodology
	Language Models for Comparison
	Prompt Formulation
	Evaluation Metrics for LLM's Comparison

	Results
	Discussion
	Conclusion

