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Abstract. The critical behavior of the stochastic susceptible-infected—
recovered model on a square lattice is obtained by numerical simulations and
finite-size scaling. The order parameter as well as the distribution in the number
of recovered individuals is determined as a function of the infection rate for several
values of the system size. The analysis around criticality is obtained by exploring
the close relationship between the present model and standard percolation theory.
The quantity UP, equal to the ratio U between the second moment and the
squared first moment of the size distribution multiplied by the order parameter
P, is shown to have, for a square system, a universal value 1.0167(1) that is the
same for site and bond percolation, confirming further that the SIR model is also
in the percolation class.
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1. Introduction

The spread of an epidemic among a community of individuals has been described by
several types of models, either deterministic or stochastic [1]-[7]. Among the latter we
find models in which the space structure is explicitly taken into account [8]-[20]. These
models are defined on a lattice which represents the space where the community lives, and
in which each site is occupied by just one individual. In the susceptible-infected—recovered
(SIR) stochastic lattice model [8,9, 12]—-[20], each individual can be either susceptible (S),
infected (I) or recovered (R). A susceptible individual becomes infected (S — I) through an
autocatalytic reaction, and an infected individual recovers (I — R) spontancously. This
model describes an epidemic in which the immunization is permanent; in other words,
once an individual recovers, it becomes immune forever.

The main features of the SIR model are as follows. When the rate of infection of a
susceptible individual by an infected individual is small compared to the immunization
rate, there is no spreading of the disease. Increasing the infection rate, one reaches a
critical value above which the infection spreads over the whole lattice. The transition from
one regime to the other is regarded as a continuous phase transition whose critical behavior
places the model into the dynamic percolation universality class, which corresponds to the
standard percolation class with the addition of dynamical growth exponents [8,9]. The
SIR model can be described by just one parameter, either the reduced infection rate b
or the reduced immunization rate ¢ = 1 — b. The phase transition occurs at a critical
value ¢ = c., which has been estimated as 0.1765(5) on a square lattice by means of
time-dependent numerical simulations [18]. A more accurate result ¢, = 0.176 5005(10)
was later determined by extensive numerical simulation through the use of a technique
borrowed from standard percolation theory [19].

A close relationship exists between the SIR model and dynamic (isotropic)
percolation [4,8], [19]-[23]. Starting from a single infected individual in a lattice full
of susceptibles, a cluster composed of infected and recovered individuals grows, the
infected individuals staying at the border of the cluster and the recovered individuals
inside it. Eventually the cluster becomes composed of recovered individuals only due to
the spontaneous immunization. For ¢ < ¢. (the spreading regime), an infinite cluster
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of recovered individuals percolates the whole lattice. For ¢ > ¢, (the non-spreading
regime), only finite clusters are present. It has been shown [19] that the cluster probability
distribution obeys the same scaling laws as apply to standard percolation models.

Here we report numerical simulations and finite-size scaling analysis to obtain the
critical behavior of the stochastic SIR model on a square lattice. To this end we determine
the order parameter P (defined below), the mean number of recovered sites S and the
mean value of the squared number of recovered sites M. These quantities are determined
as a function of ¢ and the linear system size L. We show that the ratio U = M/S? between
the second moment and the square of the first moment is not independent of the system
size L at criticality, as occurs, for example, in the contact model [24, 25]. Instead, we show
here that the quantity that is independent of the system size at criticality, and therefore
universal, is the product UP between this ratio and the order parameter, consistent with
the dynamical percolation universality class.

This paper is organized as follows. The stochastic SIR model on a regular lattice is
defined in section 2, together with numerical simulations. In section 3 we explain how the
model is related to percolation around criticality. The finite-size analysis is introduced in
section 4. A conclusion is drawn in section 5.

2. Definition and simulations

The stochastic SIR model is defined on a regular lattice of N sites as follows. At each
time step a site is chosen at random and the time is incremented by an amount equal to
1/N. If the chosen site is in state S then it becomes I with probability b multiplied by the
fraction of nearest-neighbor sites in state I. If the chosen site is in state I then it becomes
R with probability ¢ = 1 — b. If it is in state R it remains in this state. The number
of individuals of type S, I and R are denoted by Ng, N; and Ng. The total number of
individuals equals the total number of sites of the lattice, Ng + Ny + Ngr = N.

The quantities that we have measured in the Monte Carlo simulation are the following:
the mean number of recovered individuals:

S = (Ng), (1)
the mean value of the square of the number of recovered individuals:
M = (Ng), (2)

and the order parameter P, defined below. We also considered the ratio U between the
second moment M and the square of the first moment S of the probability distribution
of recovered individuals, that is

M

U= =k (3)

The simulations were performed on a square lattice of N = L? sites and periodic
boundary conditions. We begin with an infected individual placed at the center of the
lattice full of susceptible individuals. To speed up the simulations we keep a list of the
I sites. At each step of the simulation we choose randomly an I site among the list of
the Np I sites. (If we were interested in the time, which is not the case here, we would
increment it by an amount equal to 1/N;.) With probability ¢ the chosen I site becomes
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Figure 1. Density of recovered individuals p = S/N versus ¢ for several values of
the linear system size L.

an R site. Otherwise (with the complementary probability b = 1 —c¢), we choose one of its
four nearest-neighbor sites; if the nearest-neighbor site is an S site, it becomes an I site,
otherwise it remains unchanged. These rules are equivalent to the definition of the model
given at the beginning of this section.

Here we are interested only in the stationary states, which are characterized by the
absence of infected sites. Starting from a single infected site, the number of infected
sites may increase but eventually decreases and vanishes. Without infected sites there
is no activity and the dynamics stops. The stationary state is then an absorbing state
constituted of S and R sites only. For each value of the parameter ¢ and linear size L we
performed a set of independent runs, ranging from 107 to 108, and measured the quantities
S, M and P related to the final clusters of R sites. In figure 1 we show the density of
recovered individuals p = S/N as a function of ¢ for several values of the system size L.
In figure 2 we show the ratio U = M/S? as a function of ¢ for several values of the system
size L.

To find the order parameter P, we checked whether the growing cluster of infected
individuals reached the border of the lattice, and the fraction of runs for which this
happens is defined as P. In the thermodynamic limit, it becomes the probability that
the central site belongs to the infinite cluster in accordance with the definition of order
parameter in standard percolation theory. In figure 3 we show P versus c for several values
of the linear size L.

We note that in percolation one often uses the fraction of sites belonging to the
largest cluster in a lattice fully occupied with clusters as the order parameter. However,
this method cannot be used here because, by definition, there is only one cluster in each
epidemic sample. Note also that in our definition of P, one can think of the system as
having open boundary conditions and we are finding if the cluster hits that boundary;
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Figure 2. Ratio U = M/S? versus c for several values of the linear system size
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Figure 3. Order parameter P (the fraction of epidemics that hit the lattice
boundary) versus ¢ for several values of the linear system size L.

this is related of the idea of midpoint percolation considered recently [26]. An equivalent
interpretation is that we have an infinite lattice, and we are seeing if the epidemic starting
from the origin reaches the L x L boundary.
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http://dx.doi.org/10.1088/1742-5468/2011/03/P03006

Scale-invariant ratio for the stochastic SIR model

3. Relation to percolation

Here we summarize some results of percolation theory [27]-[31] that will be useful for
showing the relation to the SIR model. In standard percolation theory the probability
that an occupied site belongs to a cluster of size s is

P, = sng, (4)
where n is the mean number of clusters of size s per lattice site. (For site percolation,

one should also technically divide this by p, the probability that the site is occupied, but
we will suppress this factor.) From this quantity one obtains the mean epidemic size S:

S = Z sP, = Z sn, (5)
and the mean-square epidemic cluster size M:

M=) sP,=> sn. (6)

The order parameter P is the probability that a site belongs to the infinite percolating
cluster.
Around the critical point p = p. for an infinite system, these quantities behave as

P~ e >0, (7)

S~ le] ™, (8)
and

M ~ [e| =772, (9)

where € = p — p., and [ and v are critical exponents associated with the order parameter
and with the mean cluster size, respectively. The quantity p is the parameter associated
with the percolation problem and p. is its critical value. In site (bond) percolation, p is
the probability that a site (bond) is occupied.

It has been argued that the clusters of recovered individuals generated by the
dynamics of the stochastic SIR model follow the statistics of the cluster size distribution of
the standard percolation theory summarized here [8]. The mean cluster size in percolation
theory is then identified as the mean number of recovered individuals. This leads us to
identify the quantities P, S and M defined in section 2 for the SIR model with the
quantities P, S and M defined in this section. As a consequence, their critical behavior
is given by equations (7)—(9) with

€=cC—C (10)

An implication of the critical behavior (8) and (9) of S and M is that the ratio U = M/S?
should behave as

U~ g7 (11)

doi:10.1088,/1742-5468,/2011/03/P03006 6
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4. Finite-size scaling

We start from the assumption that a standard finite-size scaling analysis [27,32] can
be performed to obtain the critical behavior of this model. We assume that the phase
transition in the SIR model is characterized by a correlation length ¢ which diverges in
the limit where the system is infinite as

§n~ fel ™ (12)

Here we use v, rather than the usual v of standard percolation because we consider the
SIR cluster growth as a dynamical process. The linear size of the system L scales as
and a finite-system quantity Ay will behave according to the finite-size scaling as

Ap = LV A(LYve), (13)

where A(X ) is a universal function. The exponent 6 describes the behavior of Ay, in the
limit of the infinite system, that is

Ao ~ |77 (14)

Using the finite-size scaling, we may write the following relations for the quantities P, S,
M and U [27,32]:

P =LA p(Llree), (15)
S = D/ S(LMvre), (16)
M = [B+20)/ve ]\}[(Ll/ng)’ (17)
U= LU (LY e), (18)
and at the critical point € = 0 we have
P~ LAV (19)
S~ LV (20)
U~ L/ (21)

The quantities P and S are plotted as a function of L in figures 4 and 5. Each curve
was obtained by performing a number of runs, of the order of 107. From the log-log
plots we may estimate the critical exponents. From the slope of a straight line fitted
to the data points of figure 4 we get the value §/v; = 0.1048 and from figure 5 we get
the exponent v/v;, = 1.7923. These results should be compared with the exact results
B/vy, =5/48 = 0.1042 and v/v, = 43/24 = 1.792 coming from the exact values 5 = 5/36,
v =43/18 and v, = 4/3 of percolation in two dimensions.

doi:10.1088,/1742-5468,/2011/03/P03006 7
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Figure 4. Log—log plot of the order parameter P versus L for ¢ = 0.1765. The
slope of the data points gives the value /v, = 0.1048.
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Figure 5. Log-log plot of the mean number of recovered S versus L for ¢ = 0.1765.
The slope of the data points gives the value v/v, = 1.7923.

If we multiply equations (15) and (21) for the order parameter P and the ratio U we
get

UP = F(LY"¢). (22)

At the critical point € = 0 the product UP is then a quantity independent of L and may
thus be used to locate the critical point. Figure 6 shows a plot of the quantity U P versus

doi:10.1088,/1742-5468,/2011/03/P03006 8
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Figure 6. Product UP as a function of ¢ for several values of the size L.
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Figure 7. Data collapse of the order parameter P versus ¢ and L. The quantities
y and z are defined by y = PLP/YL and 2 = eL'/"%, where ¢ = ¢ — ¢.. The
critical values used are 3/v; = 0.1048, v; = 1.333 and ¢ = 0.1765. Values of L
are given in the legend.

c for several values of the system size L. We see that the curves indeed cross each other,
for sufficiently large values of L, at a point identified as the critical point. From the plot
we get the value ¢. = 0.17650(2) in agreement with the result ¢, = 0.176 5005(10) [19],
and the value ~1.016 for UP at the critical point.

Using the critical points and the critical exponents we have done a data collapse for
the quantities P, S and U P, shown in figures 7, 8 and 9, respectively. These plots confirm

doi:10.1088,/1742-5468,/2011/03/P03006 9
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Figure 8. Data collapse of the mean number of recovered S versus ¢ and L. The
quantities y and z are defined by y = SL™7/"+ and 2 = eL'/¥L, where e = ¢ — c..
The critical values used are /v, = 1.792, v, = 1.333 and ¢ = 0.1765. Values of
L are given in the legend.
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Figure 9. Data collapse of the ratio U P versus ¢ and L. The quantity x is defined
by z = eLYVL where ¢ = ¢ — ¢.. The critical values used are v, = 1.333 and
cc = 0.1765.

that the critical behavior of the stochastic SIR model obeys the finite-size scaling defined
above.

In figure 10 we plot UP at the critical point c. = 0.1765 for systems of sizes L = 32,
64, 128, 256 and 1024. Here we did at least 10® samples for each size. As seen in that

doi:10.1088/1742-5468/2011/03 /P03006 10
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Figure 10. This plots critical values of y = UP for bond percolation (top), site
percolation counting only occupied sites (second to top), the SIR model (second
to bottom) and site percolation counting both occupied and surrounding vacant
sites (bottom), as a function of # = L™1. The equations represent a linear fit to
the simulation data; the error bars are smaller than the size of the symbols.

figure, we find a very good fit assuming the finite-size corrections are proportional to 1/L.
The data extrapolate to a value of UP = 1.0167(1) for an infinite system.

We also ran similar simulations of standard site and bond percolation on a square
lattice at their critical points p. = 0.592 746 and p. = 0.5, respectively, using an epidemic
growth algorithm to generate the percolation clusters, and also show those results in
figure 10. We defined the order parameter for percolation in exactly the same way as
in the SIR model: whether the cluster growing from the center of the lattice reaches the
boundaries (ignoring the periodic boundary conditions). The definition of the cluster mass
depended upon the model. For bond percolation, we characterized the cluster mass by
the number of sites that are visited or ‘wetted’. For site percolation, we considered two
definitions of the cluster mass: the first is the number of occupied sites of the cluster, which
conforms to the standard definition in percolation, while for the second we used the number
of both occupied and vacant sites surrounding the clusters (the so-called perimeter sites)
to characterize the cluster size. The latter definition corresponds to the site percolation
limit of the SIR model, in which an I site simultaneously infects all its S neighbors with
probability p, and then recovers, so that the R sites correspond to both occupied and
vacant sites of the percolation cluster. These systems show similar correction-to-scaling
~L~ !, but with different coefficients—positive for bond and regular site percolation,
negative for the SIR model and the occupied + vacant form of site percolation. The
extrapolation of all three systems for L — oo is to a common value 1.0167(1), showing
that the SIR model is equivalent to percolation not just for the critical exponents but for
this amplitude ratio as well.

Note that a correction-to-scaling behavior of L= is often seen in percolation problems
when there are boundaries or lattice effects present [33,34]; however, the precise source

doi:10.1088/1742-5468/2011/03 /P03006 11
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of the corrections is not clear here. It is not certain that the exponent is exactly —1;
the data in figure 10 is well fitted for exponents in the range of —1 to —1.1 (ignoring
higher-order corrections), depending somewhat upon the system. Nevertheless, the value
of the extrapolation for L. — oo is not changed substantially by such small changes in the
scaling exponent.

While the universality of amplitude ratios in percolation has been studied for many
combinations of quantities (e.g. [35]-[40]), it seems that the quantity UP has not been
examined previously for percolation, either away from, or exactly at, the critical point as
done here. For scaling away from p., UP corresponds to the critical amplitude R3 or vs,
which has been studied for the Ising model [41]-[43] but evidently not for percolation. For
percolation at the critical point, some studies have been carried out on other universal
amplitude ratios [39,40], but not for UP.

The value of UP is very close to 1. This behavior can be understood easily for
standard percolation as follows: at the critical point, the largest cluster s, is of the order
of the size of the system and much bigger than the other clusters, implying S ~ s _/L?
M =~ s, /L? and (by definition) P = sy../L?, thus yielding UP ~ 1. By universality,
this should also apply to the SIR model. As can be seen in figure 9, for ¢ < c¢. (which
corresponds to p > p, for regular percolation), U P goes to the value of exactly 1, as would
be expected by these arguments.

5. Conclusion

We have used numerical simulations to investigate the critical behavior of the stochastic
SIR model on finite square lattices. We have determined the order parameter P, the mean
number of recovered individuals S and the mean squared number of recovered individuals
M. These quantities obey the same scaling laws used in percolation theory. The cluster
size distribution of percolation theory is identified with the cluster distribution of recovered
individuals generated by the SIR dynamics. By studying lattices of different sizes we
obtain the critical behavior by means of a finite-size scaling borrowed from standard
percolation theory. The values of the critical exponents are in agreement with those of
the isotropic percolation as one would expect. We have shown that the ratio U = M/S?
is not universal at the critical point, as is the case of the models belonging to the directed
percolation universality class, and diverges as L%/¥. Instead, we have shown that the
quantity that is universal is the product UP. The value of the critical point c¢., found
from the fact that UP is independent of the system size, is found to be in excellent
agreement with previous calculations. The value of UP at the critical point, 1.0167(1) is
shown to be consistent with measurements of standard site and bond percolation, thus
confirming that the corresponding amplitude ratios of the two models are the same, and
showing a deeper level of agreement between the SIR and percolation models than just
having common critical exponents.
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