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Abstract

A tracer sample in a gravitational potential, starting from a generic initial condition, phase-mixes toward a
stationary state. This evolution is accompanied by an entropy increase, and the final state is characterized by a
distribution function (DF) that depends only on integrals of motion (Jeans’ theorem). We present a method to
constrain a gravitational potential assuming a stationary (phase mixed) sample by minimizing the entropy that the
sample would have if it were allowed to phase-mix in trial potentials. This method avoids modeling the DF and is
applicable to any sets of integrals. We provide expressions for the entropy of DFs depending on energy, f (E),
energy and angular momentum, f (E, L), or three actions, f (J), and investigate the bias and statistical uncertainties
in their estimates. We show that the method correctly recovers the parameters for spherical and axisymmetric
potentials. We also present a methodology to characterize the posterior probability distribution of the parameters
with an approximate Bayesian computation, indicating a pathway for application to observational data. Using 104

tracers with 10%(20%) uncertainties in the 6D coordinates, we recover the flattening parameter q of an
axisymmetric potential with σq/q ∼ 5%(10%). The python module for the entropy estimators, tropygal, is
made publicly available.

Unified Astronomy Thesaurus concepts: Dark matter (353); Galaxy dynamics (591); the Milky Way (1054);
Milky Way dark matter halo (1049); Milky Way mass (1058); Milky Way dynamics (1051)

1. Introduction

The gravitational potential is a fundamental aspect of any
galaxy, determining its stellar orbits and, after all, their
observed light distribution. In the Milky Way (MW), we can
measure 6D coordinates for millions of stars with Gaia
(T. Prusti et al. 2016) and spectroscopic surveys such as
APOGEE (S. R. Majewski et al. 2017), LAMOST (X.-Q. Cui
et al. 2012), GALAH (G. M. De Silva et al. 2015), and DESI-
MWS (A. P. Cooper et al. 2023). With theoretical modeling,
these data can be translated into a detailed picture of the
Galaxy’s mass distribution. Of particular interest is the MW’s
dark matter (DM) halo shape, which may constrain different
scenarios for its composition (e.g., M. Valluri et al. 2022).
Since this component is not directly observed, one needs to
infer its mass distribution from stars’ positions and kinematics.

A non-exhaustive list of methods to recover the underlying
potential using a tracer sample includes: the virial theorem and its
variants (F. Zwicky 1933; J. N. Bahcall & S. Tremaine 1981;
L. L. Watkins et al. 2010), Jeans modeling (e.g., N. Rehemtulla
et al. 2022), the “orbital roulette” (A. M. Beloborodov &
Y. Levin 2004), the marginalization over an arbitrary number of
distribution function (DF) components (J. Magorrian 2014), the
generating-function method of S. Tremaine (2018), the mini-
mization of the entropy of tidal streams (J. Peñarrubia et al. 2012;

R. E. Sanderson et al. 2015), the “orbital probability density
function” (pdf) method of J. Han et al. (2016) and Z. Li et al.
(2024), orbital torus imaging (A. M. Price-Whelan et al. 2021),
and the maximum-likelihood DF fitting (e.g., P. J. McMillan &
J. Binney 2012; P. J. McMillan & J. J. Binney 2013; A. J. Deason
et al. 2021).
In all of these methods, further assumptions are required in

addition to the information in the observed data set. For
instance, for tracers described by a DF, one needs to assume
that they constitute a system in dynamical equilibrium.
Otherwise, any potential is consistent with a DF describing a
nonstationary system (P. J. McMillan & J. Binney 2012;
G. M. Green et al. 2023). As another example, when modeling
tidal streams, the equilibrium assumption is replaced by an
equally strong one, that the debris were initially localized in
phase-space.
From Jeans’ theorem, the DF of a system in equilibrium can

be written as a function of integrals of motion only, reducing the
6D phase-space to 3D or less (J. Binney & S. Tremaine 2008).
For instance, isotropic spherical systems can be described by a
DF f = f (E), where E is the star’s energy, while for anisotropic
spherical systems, we can assume f = f (E, L), where L is the
magnitude of the angular momentum. In general, samples in
realistic galactic potentials normally require three integrals of
motion. In practice, this dimension reduction is fundamental for
a more efficient use of data.
Assuming a DF that depends on fewer integrals than

required (a dimension reduction too severe) delivers incorrect
results. In contrast, assuming a DF depending on more
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integrals than required is not the most efficient use of data
since it does not reduce the dimensions as much as possible.
Adopting three integrals is a good compromise between
generality and efficiency.

Among all integrals, actions offer several advantages
(despite the difficulties in estimating them in practice; see,
e.g., J. L. Sanders & J. Binney 2016): the transformation from
phase-space coordinates (r, v) to angle-action ones (θ, J) is
canonical and, thus, drdv = dθdJ; actions are adiabatic
invariants, i.e., they are conserved under slow changes in the
potential; angles are restricted to [0, 2π); and a system in
equilibrium (phase-mixed) is simply described by a pdf9 in
action space F(J) = (2π)3f (J). With angle-action variables, the
Hamiltonian depends only on the momenta, H = H(J), and the
angle-coordinates increase linearly with time θ = Ωt + const,
where Ω = ∂H/∂J. The dynamics is thereby reduced to that of
“free particles.”

In the action-based DF-fitting method developed by
P. J. McMillan & J. Binney (2012) and P. J. McMillan &
J. J. Binney (2013) and further applied and improved by, e.g.,
Y.-S. Ting et al. (2013), W. H. Trick et al. (2016), and
K. Hattori et al. (2021), the tracer population is assumed to be
in equilibrium, and characterized by a DF f (J). The MW
potential is constrained by fitting functional forms for both the
total potential and the tracer DF. If the potential is the only
function of interest, one further marginalizes over the DF
parameters. For instance, K. Hattori et al. (2021) adopted a
model with nine parameters for the potential and seven
parameters for the DF, which are later marginalized over,
similarly to other works employing this technique. A
disadvantage of this method is that it assumes an analytic
expression for the DF, which in reality is unknown.

The main goal of the current paper is to improve on this
aspect, by not assuming any functional form for the DF (for
other methods with this intent, see, e.g., J. Han et al. 2016;
Z. Li et al. 2024 for spherically symmetric potentials). This
avoids the overhead of fitting the DF parameters and possible
biases introduced by the chosen DF. Information on the DF is
obtained through nonparametric entropy estimates.

Consider a tracer sample in equilibrium, and described by an
unknown DF f (r, v). As for any DF, we can define the so-
called differential entropy as

[ ] ( )wS f f f dln , 16

where w = (r, v). This entropy is invariant for changes of
variables, in particular to angle-action variables evaluated in
any potential. In the correct potential where the sample is in
equilibrium and in the absence of geometric cuts or other
selection effects, the DF f (r, v) = f (θ, J) is uniform in θ,
whose phase-space volume is (2π)3. The entropy associated
with the angles is then maximum, and to keep S invariant,
that associated with the actions must be minimum. This can
be easily shown if ( ) ( ) ( )= FJ Jf F, , in which case the
entropy is just the sum of the entropies in action and
angle spaces—in particular, for the fully phase-mixed sample

( ) ( )=F 2 3. In Appendix A, we show that a similar
idea also applies to nonseparable DFs, which can always be

separated in terms of conditional pdfs, ( ) ( ) ( )= FJ J Jf F, .
We then conclude that the correct potential is recovered by
minimizing a quantity involving the entropy of the marginal
pdf F(J) (see J. Magorrian 2014 for a simpler reasoning and an
orbit-averaged interpretation).
This quantity is actually the entropy of the future final 6D

DF describing the sample if it were allowed to phase-mix in
each trial potential. This final DF would be a different (and
unknown) function of actions in each trial potential. Since
actions are conserved, we estimate this final entropy right
away for each potential, with no need to wait for phase-
mixing, and the true potential is the one with minimum
entropy. We also show that the same method is applicable to
any sets of integrals, provided they respect the symmetry
requirements of the problem. While one might try to fit
potentials by instead maximizing an entropy in angle-space, in
Appendix B we discuss why this is not expected to work.
Our approach is related to the minimum-entropy estimates

of semiparametric models (E. Wolsztynski et al. 2005), where
the potential is the parametric part, and the pdf is the
nonparametric one. In Section 2 we describe the general
formalism, starting from the action-based DF-fitting and show
how it is extended by our method. Section 3 presents the
expressions for the entropy estimator in the assumption-free
(6D) case and in cases where the DF is an (unknown) function
of integrals of motion. Section 4 shows the physical basis of
the method, investigates the bias and variance of the entropy
estimates for DFs depending only on integrals, and applies a
bias correction. In Section 5 we use a fixed sample that is
phase-mixed in a given potential to illustrate that the future
entropy of the sample (estimated using integrals in different
potentials) is at minimum at the true potential. In Section 6 we
demonstrate through actual fits that our method recovers the
true parameters of a simple spherical potential, and of a
flattened axisymmetric potential. We discuss our results in
Section 7 and summarize in Section 8. The mathematical basis
of the method is presented in Appendix A.

2. General Formalism

Assume a sample of N stars in dynamical equilibrium in a
gravitational potential f(r). Assume further that this is an
unbiased sample of an unknown underlying DF f0, which, as
allowed by Jeans’ theorem, is a function of integrals of motion
in f(r)—we focus on actions J, but other integrals can be used
too. Our task is to use the 6D coordinates of these stars,
assume a functional form for f(r), and constrain its
parameters.
To motivate the minimum-entropy method proposed in this

work, we start presenting the maximum-likelihood DF-fitting
formalism. In the DF-fitting method, one assumes functional
forms for both the potential f(r) and for the DF f (J|p)
describing the tracer sample, where p encapsulates parameters
of both the potential and the DF. The DF is assumed to
describe the stationary state the given sample would achieve
after phase-mixing in each trial potential. For simplicity, we
assume a full-sky sample in the absence of any selection
function or observational errors—the full treatment is
presented by, e.g., P. J. McMillan & J. J. Binney (2013) and
K. Hattori et al. (2021). In this case, the likelihood for a star to
have coordinates wi ≡ (ri, vi) is fi(Ji|p), where J(w|f) are
actions, which depend on the potential, and f (J|p) is properly
normalized. The sample joint likelihood is ˆ = =L fi

N
i1 , and

9 We reserve the term DF and the notation f () to the probability density
function (pdf) in 6D, and the term pdf and notation F() to pdfs of integrals of
motion.
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the log-likelihood to be maximized is

ˆ ( ) ( ) ( )=
=

L w p J pfln ln , 2
i

N

i i
1

with trial potentials entering the fit through the actions. Note
that Equation (2) can be seen as an estimate10 of the “true” log-
likelihood

( ) ( )=L NH f fln , , 30

where

( ) ( )= wH f f f f d, ln 40 0

is the cross-entropy and f0 = f (J|p0), with p0 being the true
parameters. Note that H( f0, f ) is minimum for f = f0,
illustrating that the likelihood is maximum at the true
parameters (e.g., H. Akaike 1992).

The formalism above concerns the DF-fitting method where
an analytic DF is assumed. It can be connected with the
minimum-entropy method presented here as follows. As
before, we consider the stationary state that the given sample
would achieve after phase-mixing in each trial potential. For
each of these stationary states, from Equation (1), the
differential entropy of its DF can be estimated via Monte
Carlo with a sample of f as

ˆ ˆ ( ) ( )=
=

J pS
N

f
1

ln , 5
i

N

i i
1

where f̂i is an estimate of f (Ji|p), as detailed in Section 3.
Comparing Equations (2) and (5) might suggest writing

ˆ ( ) ˆ ( ) ( )p pNSln 6

for the “log-likelihood.” However, despite appearances,
ˆ ( )pln is not an estimate of the log-likelihood, as can be

seen by comparing Equation (1) with Equations (3)–(4). In
other words, a log-likelihood would involve assuming a
functional form for f (J|p) and estimating the cross-entropy
between the true DF f0 = f (J|p0) and trial DFs f (J|p). In
contrast, ( )pln involves estimating the entropy of the
(unknown) future DFs in trial potentials. Thus, ( )pln only
corresponds to the log-likelihood at the best-fit model, i.e.,

( ) ( )= Lp pln ln0 0 . Additionally, ˆln is not a smooth
function of the parameters as required for a log-likelihood
estimate, but it is noisy, since it is based on estimates of the
DF, rather than evaluating an analytical DF. However, as we
demonstrate in practice in Section 6, and on mathematical
grounds in Appendix A, on average, Ŝ has its minimum at p0,
and it can be minimized to find the best-fit model—see
Figure 1 for an illustration.

The maximum-likelihood principle is then replaced by a
minimum-entropy one, where we minimize the “future
entropy”—the entropy the sample would reach after phase-
mixing in each trial potential. The DF describing these final
states is always assumed to be a function of integrals, in
accordance with Jeans’ theorem. However, we do not need to
assume any functional form for the DF, and in the remainder
of this work, p encapsulates only parameters for the potential.

As illustrated in Figure 1, fluctuations in Ŝ can lead to
misidentifying the best-fit model, and some smoothing is
required to avoid that. In this paper, we estimate the entropy
with the kth-Nearest-Neighbor method (k-NN. N. Leonenko
et al. 2008a, 2008b), and we smooth out Ŝ by taking k > 1
(see Section 4.4). After identifying the best-fit model by
minimizing the entropy of the DF, we perform an approximate
Bayesian computation (ABC) to sample the posterior and
get credible intervals for the parameters (Section 6). We
remark that ln was just introduced above to motivate our
minimum-entropy method with a conceptual link to the
maximum-likelihood principle; but in practice, we simply
minimize the future entropy of the sample, with no further
mention of ln .
Although in this paper we do not consider any selection

effects or a realistic survey footprint with geometric cuts, these
are fundamental aspects for the applicability of the method to
real data. With real data, we do not have a sample of the
DF f (w) assumed in equilibrium. Rather, we have a sample of
the DF

( ) ( ) ( ) ( )=
S

w
w r

f
f

A
, 7S

where ( )S r is the selection function encapsulating the footprint
and spatial dependencies within it, and ( ) ( )= Sw r wA f d6 is
a normalization constant. Substituting in Equation (1), we have

( ) ( )
=

S Sr r
wS

A
f

A
f dln ,S S

6

which is now a weighted differential entropy. This might make
it difficult to estimate the entropy S, since the original
estimators we discuss in Section 3 are intended to use samples
of f. However, if the selection function ( )S r is known, the
estimation method can be adapted to provide S given samples
of fS (see J. Ajgl & M. Šimandl 2011).
In this paper, we consider ideal full-sky samples with no

selection effects and set ( )= =S rA 1. Having presented the
general formalism, we now present expressions to estimate the
entropy in general and in particular cases of DFs only
depending on integrals of motion.

p

p0

lnL
lnλ = −NŜ

Figure 1. Illustrative comparison of the log-likelihood Lln with the quantity
used to find its maximum, ln . Although being different quantities, on average
they both peak at the same value p0 and have the same value at the peak.

10 For any quantity X, we denote its estimate by X̂ .
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3. Entropy Estimators

We start by defining the entropy of a DF f (w). Instead of
Equation (1), we modify the entropy definition as

( )
µ

wS f
f

dln , 86

where μ is such that the argument in ( )/µfln is dimensionless;
e.g., if [f] = length−3 velocity−3, it is convenient to use
coordinates normalized by their dispersions …, ,w w1 6, defining

/ /= … =w w w w, ,w w1 1 6 61 6 and setting μ = |Σ|−1, where
= …w w1 6. With ( ) ( )=w wf f , we have:

( ) ( )= =w wS f f d f f dln ln . 96 6

For estimators with an isotropic kernel such as the k-NN
discussed below, this normalization works as to “isotropize”
the coordinates, whereas the entropy is made invariant by
an appropriate change of variables. From Equation (9),

= +wf f Sln d ln6 . Another advantage of the defini-
tion (8) is that it allows us to accommodate densities of states
when using pdfs of integrals of motion, as shown below.

Equation (9) is the invariant entropy we start from in this
section and from which we transform coordinates for the cases
where the DF is a function of integrals of motion only. For a
sample of N points, it can be estimated as

ˆ ˆ ( )=
=

S
N

f
1

ln , 10
i

N

i
1

where f̂i is an estimate of ( )wf i . In principle, any density

estimator could be employed to estimate ( )wf i —see
B. W. Silverman (1986) for a review on density estimates.
However, for the particular purpose of estimating the entropy
with Equation (10), a few estimators have been shown to be
optimal (see, e.g., H. Joe 1989; P. Hall & S. C. Morton 1993;
J. Beirlant et al. 1997; N. Leonenko et al. 2008a, 2008b)—for
a comparison of different methods in N-body simulations, see
L. Beraldo e Silva et al. (2017). The latter work demonstrated,
in particular, a reasonable agreement of entropy estimates
based on k-NN and kernel density estimates, and the high
accuracy of the Fokker–Planck modeling of the collisional
relaxation, later confirmed on rigorous theoretical grounds by
J.-B. Fouvry et al. (2021). More recently, S. Modak & C. Ham-
ilton (2023) used this estimator to study the eccentricity
distribution of wide binaries.

Among the optimal methods, we use the k-NN estimator, which
is fully nonparametric and fast, since the neighbors’ identification
can be optimized with kd-trees. This entropy estimator was
introduced by L. F. Kozachenko & N. N. Leonenko (1987) for
k= 1 and later generalized for any k. In this method, the plug-in
density estimate is given by (see, e.g., N. Leonenko et al.
2008a, 2008b; G. Biau & L. Devroye 2015; T. B. Berrett et al.
2019, and references therein):

ˆ
( )

( )
( )

=f
e

N V D1
, 11i

k

d ik
d

where

( ) ( )/ //= +V d 2 1 12d
d 2

is the volume of the d-dimensional unit-radius hypersphere,

( ) ( )= +r r v vDik i k i k
2 2 is the Euclidean phase-space

distance of particle i to its kth nearest neighbor, and ψ(x) is the
digamma function.11 For a sketch of a proof of convergence of
this method for k = 1, see Appendix B of A. Charzyńska &
A. Gambin (2015).
Equation (10) with Equation (11) plugged in is a proper

entropy estimator in the sense that its bias and variance tend to
zero for N → ∞. For the bias, the convergence speed strongly
depends on the dimension d and regularity of f (see G. Biau &
L. Devroye 2015). Although the actual bias can depend on
particular features of the pdf, it is typically smaller in lower
dimensions, as we verify in Section 4.1. The expected variance
scales as ∝N−1, irrespective of the dimension (G. Biau &
L. Devroye 2015), as we verify in Section 4.4.
Equation (11) contrasts with naively estimating the density

as the number k of points, other than point i, in the hypersphere
around point i, divided by its volume, which would introduce a
nonvanishing bias for N → ∞. A slightly better reasoning
would provide better estimates, although not yet fully bias-
corrected: since the kth neighbor is at the edge of the
hypersphere, a small volume around it is approximately half
inside and half outside the hypersphere. It should count as
“half a neighbor” of i, estimating the pdf as

ˆ ( )/
=

N

k

V D

1

1

1 2
. 13i

d ik
d

The entropy estimate based on Equation (13) differs from that
based on Equation (11) by

( ) ( ) ( ) ( )/ / /= =S k k k kln 1 2 ln 1 2 ln 1 2 ,eff

where keff = eψ( k) + 1/2 is an “effective number of nearest-
neighbors.” For k = 1, 2, 3, 4, it is, respectively, keff ≈
1.06, 2.03, 3.02, 4.01. For large k, ( )( ) / /+ Oe k k1 2 1k ,
and keff ≈ k.
For two general distributions f0 and f, we also re-define their

cross-entropy as

( ) ( )
µ

wH f f f
f

d, ln . 140 0
6

Note that, in general, it is possible to estimate H( f0, f ) even if
the samples of f0 and f have different sizes N and M,
respectively. Equation (14) is estimated as

ˆ ˆ ( )=
=

H
N

1
ln , 15

i

N

i
1

where

ˆ ( )
( )

=
e

MV D
, 16i

k

d ik
d

and Dik is the distance between point i of the f0-sample to its
k-nearest neighbor in the f-sample (N. Leonenko et al. 2008b).
We can interpret ˆ

i as an estimate of f at the point i of the
f0-sample. In this paper, we restrict to samples of equal sizes,
so M = N, and normalize coordinates by typical dispersions of
the f0-sample. To explore the parameters’ posterior distribution
in Section 6.1, f0(J) will represent the (unknown) underlying

11 In particular, ψ(1) = − γ ≈ − 0.577 (Euler-Mascheroni constant).
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DF describing the sample in the best-fit potential and f (J), the
final (equilibrium) DF of the sample in each trial potential.

Equations (10) and (15), with Equations (11) and (16),
respectively, plugged in, converge in probability to the true
entropies under weak conditions on the underlying DFs
(e.g., N. Leonenko et al. 2008a; G. Biau & L. Devroye
2015; D. Lombardi & S. Pant 2016). The python module
tropygal12 implements these entropy estimators, as well as
a few galactic dynamics models with analytic DFs.

As explained in Section 1, the method developed here
assumes the sample is phase-mixed in the true potential, and
also considers the entropy the sample would have if evolved
until phase-mixed in a trial potential. In the subsequent
subsections, we present expressions for cases where the DF
only depends on integrals of motion, as required by Jeans’
theorem for phase-mixed samples. In the following, we denote
SI = S[f (I)], i.e., the entropy of the DF when f is a function of
integrals I. Note that this differs from the entropy of the
integrals’ pdf [ ( )] =I IS F F Fdln , as we show here and, in
more detail, in Appendix A.

3.1. Isotropic Spherical System, f = f (E)

For isotropic spherical systems in equilibrium, we can write
f (w) = f (E), where E = v2/2 + f(r) and f(r) is the potential.
In this case, Equation (9) reduces to

( ) ( )
( )

( )=S F E
F E

g E
dEln , 17E

where

( ) ( ) ( ) ( )=F E f E g E 18

is the pdf in energy space and

[ ( )] ( ) [ ( )] ( )
( )

=g E r r E r dr4 2 19
r E

2

0

2
m

is the density of states, with rm(E) being the radius where
f = E. If σE is a typical energy dispersion, we define

/=E E E , and estimate SE, Equation (17), as

ˆ ˆ ( )
( )

( )
µ

=
=

S
N

F E

E

1
ln , 20

i

N
i i

i
E

1

where ( ) [ ( )]µ =E g E rE
1 . We estimate ˆ ( )F Ei i , the

energy pdf, with d = 1 and =D E Eik i k in Equation (11).
If it is convenient to write the density of states in terms of
the normalized energy and angular momentum, we can
replace [ ( )] [ ( ) ]/=g E r g E rE E .

3.2. Anisotropic Spherical System, f = f (E,L)

For anisotropic spherical systems with a DF f (w) = f (E, L),
where L = vtr and = +v v vt

2 2 2 in spherical coordinates
(r, θ, j), Equation (9) reduces to

( ) ( )
( )

( )=S F E L
F E L

g E L
dEdL, ln

,

,
, 21EL

where the pdf for energy and angular momentum is

( ) ( ) ( ) ( )=F E L f E L g E L, , , , 22

and the density of states is

[ ( )] [ ( )] ( )=g E L r LT E L r, 8 , . 23r
2

The period of radial motion [ ( )]T E L r,r is given by

[ ( )]
[ ( )]

( )
/

=T E L r
dr

E r L r
, 2

2
, 24r

r

r

2 2per

apo

with rper and rapo being the peri- and apo-center distances.
Defining ( ) ( )/ /=E L E L, ,E L , we estimate

ˆ ˆ ( )
( )

( )
µ

=
=

S
N

F E L

E L

1
ln

,

,
, 25

i

N
i i i

i i
EL

1

where ( ) [ ( )]µ =E L g E L r, ,E L
1 , and for the

pdf, we plug in Equation (11) with d = 2 and

( ) ( )= +D E E L Lik i k i k
2 2 . If desired, we replace

[ ( )] ( ) [ ( ) ( )]/ /=g E L r g E L r, ,L E L E
2 , where =r

( )/ rE L .

3.3. Generic Integrable Potential, f = f (J)

For realistic galactic potentials, assuming that most orbits
are regular or weakly chaotic, we may compute approximate
actions with, e.g., the Stäckel approximation (J. Binney 2012).
In this context, a system in dynamical equilibrium is described
by a pdf in action space

( ) ( ) ( ) ( )=J JF f2 , 263

where J are three actions. Thus, Equation (9) reduces to

( ) ( )
( )

( )= J
J

JS F
F

dln
2

. 27J 3

The simplicity of Equation (27), in comparison to
Equations (17)–(19) or Equations (21)–(24), illustrates the
advantages of using action-based DFs instead of other integrals
of motion. Defining new actions J normalized by their
dispersions ( ), ,J J J1 2 3 , we have

ˆ ˆ ( ) ( )
µ

=
=

J
S

N

F1
ln , 28J

i

N
i i

1

where ( )µ = 2 J J J
3 1

1 2 3 , and for the pdf, we plug in

Equation (11) with d = 3 and = J JDik i k
2 .

The same expressions apply to the cross-entropy estimates,
Equations (15)–(16), mutatis mutandis.
Having presented the expressions in general and for DFs

depending only on integrals of motion, in the next section we
illustrate the physical basis of the method, as well as
investigate the bias and fluctuation in these estimates. For
that, we use a model with explicit expressions for f (E), g(E)
and for the actions.

4. The Isochrone Model

To illustrate the accuracy of these entropy estimators and
the physical basis of our method, we consider the isochrone

12 The documentation and installation instructions can be accessed at https://
tropygal.readthedocs.io/en/latest/.
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model (M. Henon 1959), whose potential is

( )
( )

( )
/

=
+ +

r
GM

b r b

1

1 1
, 29

2

where M is the total mass, and b is the scale length. The DF of
a self-consistent sample is (see J. Binney & S. Tremaine 2008;
J. Binney & M. Petrou 1985)

( )
( ) ( ) [ ( )]

[

( )
( )

( )

/
=

× + +

+ + ×

f E
GMb

1

2 2 2 1

27 66 320 240 64

3 16 28 9
sin

1
, 30

3 3 2 4

2 3 4

2
1

and the density of states, Equation (19), is

( ) ( ) ( )
( )

( )/
/

=g E GM b2
1 2

2
, 313 5 2

2

5 2

where ε = − bE/(GM). The radial period is

( )
( )

( )
/

=T E L
GM

E
,

2

2
. 32r 3 2

As for any spherical system, the azimuthal and latitudinal
actions are Jj = Lz and Jθ = L − |Lz|, respectively, and the
radial action is

( ) ( )/=J dr E r L r
1

2 2 . 33r
r

r
2 2

per

apo

For the isochrone potential,

( ) ( )= + +J
GM

E
L L GMb

2

1

2
4 . 34r

2

4.1. Entropy Bias

We start evaluating the integral in Equation (17) numeri-
cally with Equations (30)–(31), from =E 0.5min to

=E 10max
8, with G = M = b = 1. We take this as the

true entropy value, SE,true (thick solid gray line in the top panel
of Figure 2). To compare with the entropy estimates, we
generate self-consistent samples with different sizes N of this
model with AGAMA (E. Vasiliev 2019), and integrate orbits
for these samples for 50 × 〈Tcirc〉, where Tcirc is the period of
circular motion. Figure 2 (top panel) shows the entropy
estimates Ŝ6D (thin solid lines) at different times and for
different N (colors), taking the nearest neighbor (k = 1). We
recalculate = …w w1 6, renormalizing the coordinates at
each time with the appropriate change of variables in
Equation (9). This provides better estimates than a fixed
initial normalization, but the difference is small.

Since the initial sample is self-consistent with the potential,
it is stationary, and Ŝ6D should be conserved. We see that this is
the case for all sample sizes, with larger fluctuations for
smaller N. Furthermore, Ŝ6D is significantly biased with respect
to the true value, and this bias is time-independent, except for
minor fluctuations. In the bottom panel, the hexagons show the
relative bias ( ˆ )/=S S S St6D 6D E,true E,true as a function of
N, where Ŝ t6D is a time-average. Even for N = 108, Ŝ6D has a
relative bias of ≈1%.

Figure 2 (top panel) shows the entropy estimates ŜJ,
Equation (28), i.e., assuming the DF is an unknown function
of the actions (dashed lines). Since these are conserved, we
only estimate SJ at t = 0. We see that ŜJ produces a much
smaller bias, due to the dimension reduction from 6D to 3D in
the practical estimates—but SJ is still the entropy of the 6D
DF. The triangles in the bottom panel show that the bias stays
below ≈1% even for N = 104. Crosses and dots show the
relative bias for ŜEL and ŜE , respectively. These are estimated
with Equation (20) for SE, i.e., assuming the DF is an unknown
function f = f (E), and Equation (25) for SEL. We see that the
bias is also significantly smaller than that of Ŝ6D, and it is
generally smaller for lower dimensions, as expected.
Thus, we have shown that: Ŝ6D is appropriately conserved in the

self-consistent model, but it is biased with respect to the true value
by δS/SE,true ≈ 5% for N = 104, whereas in the space of integrals
δS/SE,true < 1% for N = 104, and δS/SE,true ≲ 0.01% for N = 108.
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Figure 2. Top panel: entropy estimates in 6D (solid) and assuming the DF is
an unknown function f (J) (dashed) for self-consistent samples of the isochrone
model, with different sample sizes (colors). The thick solid gray line shows the
true value—numerical integral in Equation (17). Bottom panel: relative error
(bias) of Ŝ6D, ŜJ , ŜEL and ŜE. For a fixed sample size, estimates in lower
dimensions are more accurate.
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4.2. Phase-mixing and Entropy Increase

Here we use the same initial sample and consider two new
isochrone potentials with (M, b) = (3, 1) and (M, b) = (1, 0.1),
in addition to the self-consistent one. Figure 3 (top panel)
shows histograms of the radial actions Jr evaluated in these
three potentials. We do not show histograms of Jj or Jθ, since
they do not depend on the potential and are identical in the
three cases. The histogram is narrow in the original (self-
consistent) potential and broader in the new ones. The middle
panels comprise histograms of the angle variables evaluated in
the three potentials—all panels in this figure have 50 equally
spaced bins. As the sample is not phase-mixed in the new
potentials, θr is not uniformly distributed in these cases.

We then integrate orbits for this initial sample for
50 × 〈Tcirc〉 in the two new isochrone potentials, which is
long enough for the samples to relax. The bottom panels of
Figure 3 show histograms of the final angles, as well as the
initial ones in the self-consistent potential. As expected for
phase-mixed samples, these are all equally uniform. In fact,
Kolmogorov–Smirnov tests comparing the θr distribution in
the self-consistent potential with the final ones in the new
potentials result in statistic values ∼0.01, with p-values≳ 0.6,
largely failing to reject the equally uniform hypothesis.

Just as for the self-consistent sample, this uniformity does
not require any coarse-graining, but is rather an objective fact.
We now show, before estimating the entropy, that the

evolution of the original sample in new potentials, as
illustrated in Figure 3, is necessarily accompanied by an
entropy increase. We define the sample’s initial entropy as

[ ] = =w JS f f f d f f d dln ln0 0 0 0 0 , where f0(w) is the
initial DF and w = (r, v). S[f0] is invariant for angle-actions
evaluated in any potential. For the self-consistent potential,
f0(θ, J) = (2π)−3F0(J), and thus,

[ ] ( ) [ ] ( )= +S f S Fln 2 , 35J 0
3

0

where [ ] ( )= J JS F F F dln0 0 0 . Similarly, after phase-mixing
in the new potential, the final DF is ffinal(θ, J) =
(2π)−3Ffinal(J), and its entropy is

[ ] ( ) [ ] ( )= +S f S Fln 2 . 36J final
3

final

Since the three samples have the same actions’ distribution,
except for Jr being broader in the new potentials (Figure 3), we
see that S[Ffinal] > S[F0], for broader pdfs have larger
entropies. Thus, from Equations (35)–(36), SJ[ffinal] > SJ[f0],
i.e., the phase-mixing of a nonrelaxed sample is necessarily
accompanied by an entropy increase. This is confirmed by our
estimates (legend). We emphasize that the practical entropy
calculation only uses actions, while assuming that the final
angle distribution will be uniform, as required by Jeans’
theorem. For a given sample in any trial potential, we can
estimate the final entropy right away, since actions are
conserved.
To study the sample evolution in more detail, Figure 4 (top

panel) shows entropy estimates using 6D coordinates at several
time steps (Ŝ6D, solid lines) as well as ŜJ (dashed lines) for the
same initial sample evolved in the potential (M, b) = (3, 1).
Since the initial sample is not in dynamical equilibrium in the
new potential, it responds to the higher mass developing a
radially biased velocity anisotropy. The final DF is unknown,
but it should respect Jeans’ theorem, being a function f (E, L),
or f (J). The thick solid gray line shows ŜEL for N = 108 in the
new potential, which is the lower dimension allowed by the
phase-mixed sample. Here we proceed exactly as previously to
get ŜEL for the self-consistent sample (Figure 2), the only
difference being that energies are evaluated in a new potential.
Since we have shown that ŜEL has a negligible bias for
N = 108, we take this as the true final entropy, ŜEL,true.
In addition to the biases with respect to the initial true

entropy SE,true (Figure 2), Figure 4 shows that the asymptotic
values of Ŝ6D (t → ∞) in the new potential are also biased with
respect to ŜEL,true. On the other hand, ŜJ is again much less
biased, since it is estimated in a lower dimension space, while
the angles’ contribution to ŜJ is ( )ln 2 3 (see Equation (36)). In
both cases, the bias decreases for larger N (see the inset plot).
Figure 4 (bottom) shows ˆ ˆ ( ) ˆ ( )=S S t S 06D 6D 6D (colors)

and ˆ=S S Strue EL,true E,true, the true entropy increase (thick
gray). The final Ŝ6D is similar for all sample sizes, approximately
converging to ΔStrue. This confirms that the bias is nearly
independent of time and is thus nearly eliminated by calculating
entropy variations, as done by L. Beraldo e Silva et al. (2017,
2019a, 2019b).
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Figure 3. Top panel: histograms of the radial action Jr for a self-consistent
sample of an isochrone model with (M, b) = (1, 1), with Jr evaluated in this
model (“self-cons.”) and for (M, b) = (3, 1) and (M, b) = (1, 0.1). The
distribution is broader in the new potentials. Middle panels: histograms of
angle variables for the original sample in the self-consistent potential and in
the other ones (where the original sample is not stationary). Bottom panels: the
same as the middle panels, but after orbit integration in each of the new
potentials. The final angle distributions are all uniform, as expected for phase-
mixed samples. The legend shows final entropy values in each potential. All
panels have 50 equally spaced bins.
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4.3. Bias Correction

If the bias of Ŝ does not depend on the model parameters, it
poses no problem for the minimum-entropy fits, since it only
introduces an additive constant in Ŝ . For a possibly model-
dependent bias, we investigate it in more detail and test a
prescription to suppress it.

It is known that taking the kth neighbor for larger k increases the
bias in the entropy estimate, but decreases its variance, a
manifestation of the bias-variance trade-off (e.g., L. Wasserman
2010). To investigate this, we generate 103 realizations of size-N
self-consistent isochrone samples with M = b = 1 and calculate
actions and ŜJ, Equation (28), for each realization, normalizing the
actions in each one. Here we do not compare with Ŝ6D; thus, we do
not normalize by = …w w1 6, which would introduce
unnecessary extra noise.

Figure 5 (top panel) shows the bias, i.e., the difference
between the mean of the realizations and the true value, as a
function of k for different sample sizes (full triangles). We
confirm the increase in the bias for larger k, with k = 10
producing a ∼2× larger bias than k = 1.
We investigate the correction of A. Charzyńska & A. Gambin

(2015), who suggested that the bias is essentially due to points
near the edges of the distribution support. For these points, the
hypersphere around the point (defined by the distance Dik to
the kth neighbor) can have a fraction of its volume outside
the support. This results in overestimating the volume, and
Equation (11) underestimating the DF for these points. When
plugged into Equation (10), this produces a positive bias, in
accordance with our results (see Figures 2, 4, and 5). To
compensate for this, A. Charzyńska & A. Gambin (2015)
proposed to add the following correction to the entropy estimate:

( ) ( )
( )

( )=
=

w
w

C
N

v D

v D

1
ln

, supp W

,
, 37

i

N
i ik

i ik1

where v(wi, Dik) is the volume around point wi, which is drawn
from W, in d-dimensions.
In general, the support’s shape and the intersections in

Equation (37) are unknown, and A. Charzyńska & A. Gambin
(2015) proposed assuming a hyper-rectangular box for the
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Figure 4. Top panel: entropy estimates in 6D (solid) and assuming f = f (J)
(dashed) for initial self-consistent samples of the isochrone model withM = 1,
but integrated in (and J evaluated at) an isochrone potential with M = 3. The
thick solid gray line shows the entropy for a phase-mixed system with
f = f (E, L) and N = 108, considered as the true final entropy. Bottom panel:
entropy variation ˆ ˆ ( ) ˆ ( )=S S t S 06D 6D for different sample sizes, which
approximately converges to ˆ=S S Strue EL,true E,true for all samples.
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fluctuation ŜJ decreases with k, saturating at ˆ / N1SJ for k ≈ 10.
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support and a hyper-cubic box for the volume v(wi, Dik),
although their analysis restricted to k = 1. For cubic boxes of
side li, we correct for points such that />w w l 2j i j i, ,max , or

/< +w w l 2j i j i, ,min , where j = 1, …, d, and calculate the
volume fractions of the cube inside the rectangular box.
Concisely, it results in

( )

= +
= =

C
N

w

l

w

l

w

l

w

l

1
ln min ,

1

2

max ,
1

2
. 38

i

N

j

d
j

i

j i

i

j

i

j i

i

1 1

,max ,

,min ,

After a few experiments, we settled on a cube inscribed within
the sphere of radius Dik, i.e., ( )/=l d D2i ik. Figure 5 (top
panel) shows the corrected biases (empty triangles), which are
smaller than the original ones by factors 5–15 (note that the
empty blue and red triangles nearly overlap). The improve-
ment is even better for larger k, where the bias is not larger
than that of k = 1 (up to some k, beyond which the bias is over-
corrected).

4.4. Entropy Fluctuation

The noise in the entropy estimate is theoretically expected
to have amplitude ˆ /NS

1 2 (G. Biau & L. Devroye 2015).
Figure 5 (bottom) shows the fluctuations ŜJ

, estimated as half
the 16th–84th interpercentile range of the realizations, and
multiplied by N1/2. We confirm that ˆ /NS

1 2
J

, and we see
that Ŝ decreases with k, but it saturates at k ≈ 10, reducing ŜJ

by a factor ≈2 in comparison to k = 1. Empty triangles show
ŜJ
for the bias-corrected estimates, which are nearly identical

to those of the uncorrected estimates.
In summary, we conclude that taking k= 10 suppresses the

noise by a factor 2, and the correction proposed by A. Charzyńska
& A. Gambin (2015) suppresses the bias without increasing the
noise.

5. Minimum Entropy Illustrated

In Appendix A, we rigorously demonstrate why the entropy
of a fixed sample is minimum in the correct potential, i.e., in
the one where the sample is phase-mixed. In this section, we
illustrate this with phase-mixed samples in a self-consistent
isochrone model and in potentials of the hypervirial family
(N. W. Evans & J. An 2005).

5.1. Isochrone Potential

We generate an initial sample of the isochrone model with
M = b = 1, and sample size N/0.7, selecting the 70% most
bound particles in the self-consistent potential, with a final
sample of N ≈ 104. This allows us to explore a larger set of
models, since we restrict to models where all particles are
bound. Note that this cut does not affect the method because
the DF is still a function of integrals of motion only, and self-
consistency is not required as we explicitly demonstrate below.

We calculate ŜJ, i.e., the entropy that the sample would have
after phase-mixing, on a grid of potentials (M, b), but in this
exercise, we do not correct the bias discussed in Section 4.3.
Figure 6 shows ŜJ values in the grid (M, b), using the nearest
neighbor, k = 1 (top panel), and k = 10 (bottom panel). The
magenta dots show the true parameters, and the white X’s

show the location of the minimum entropy. The minimum
entropy is indeed very near the true values. We note, however,
that its exact location depends on the sample realization. The
white curves are illustrative contours of the 1st, 5th, and 10th
percentiles of ŜJ (not credible contours). The wrinkles in the
colors and contours in the top panel reveal the noise in ŜJ for
k = 1, while for k = 10, the surface is much smoother, in
agreement with Figure 5 (bottom panel).

5.2. Hypervirial Potentials

At this point, the reader might think that the identification of the
potential with the minimum entropy depends on something special
about the isochrone potential, or on having a self-consistent
sample, as opposed to a generic stationary sample. To dispel this
concern, we now use the same sample used before as initial
conditions and integrate orbits in four different potentials of the
hypervirial family (N. W. Evans & J. An 2005) characterized by
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Figure 6. ŜJ values of a self-consistent sample of the isochrone model
(M, b) = (1, 1) (magenta dots) with actions evaluated on a grid of parameters
(M, b) of the isochrone potential. Contours are percentile levels relative to the
minima of ŜJ (white X’s). ŜJ is estimated with the nearest neighbor, k = 1 (top
panel), and k = 10 (bottom panel). As expected, a larger k smooths out the
ŜJ-surface (Section 4.4). ŜJ is minimum near the true potential where the
sample is phase-mixed.
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where 0 < p� 2 for the most physically interesting cases.
These models have ρ ∼ r p−2 near the center and ρ ∼ r−( p+3) in
the outskirts, and have finite mass M. Their most interesting
property is that they respect the virial theorem locally, in
addition to the usual global one. We use these models for their
simplicity and because they reduce to well-known models for
p = 1 (L. Hernquist 1990), and p = 2 (H. C. Plummer 1911).
We also explore the cases p = 1/2 (strong cusp) and p = 3/2
(weak cusp). We set G = a = 1, but M = 2 in order to have
only bound orbits in all models. We integrate orbits for
100 × 〈Tcirc〉, which is enough for the samples to phase-mix in
each of these four potentials. This creates, for each potential, a
different equilibrium (phase-mixed) DF, with no explicit
expression. Then, for each of these four phase-mixed samples,

we calculate actions and ŜJ in trial potentials (M, a), with the
corresponding parameter p fixed.
Figure 7 shows the entropy for these potentials. The minima

(white crosses) lie near the true values (magenta dots), but
once more, their exact locations depend on the particular data
realization. This shows that the only requirement of the
minimum-entropy method is that the sample is phase-mixed in
the true potential, with self-consistency playing no special role.
Let us emphasize that this procedure does not require knowing
the sample’s density or anisotropy profile, or its DF, but only
assumes that the DF is an unknown function satisfying the
Jeans’ theorem, i.e., f = f (J).
Figure 8 shows a similar picture, but with the entropy

calculated in the space of energy and angular momentum
(Equations (23)–(25)), with Tr = 2π/Ωr, where Ωr is the radial
frequency calculated with AGAMA. Once more, the entropy
minima are close to the true values for all models. This ŜEL is
slightly noisier than ŜJ, even though the former is defined in
2D and thus expected to have smaller noise. We suspect
that this extra noise in ŜEL may be due to the numerical
calculation of the radial period in the density of states
(Equations (23)–(24)), further illustrating the advantages of
actions.
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10

The Astrophysical Journal, 990:109 (21pp), 2025 September 10 Beraldo e Silva et al.



6. Model Fitting

While Figures 6–8 may be seen as approximate fits,
evaluating models in a grid can quickly become inefficient
for models with larger numbers of parameters. Moreover,
Figures 6–8 do not provide the odds ratios of different trial
potentials. In this section, we perform the actual fits in two
steps. We first use the downhill simplex (“Nelder-Mead”), as
implemented in scipy, to minimize the entropy of the final DFs
considered as unknown functions f (J), with actions evaluated
in trial potentials.

Having found the best-fit potential where the final
(equilibrium) DF is an unknown function f0(J), we explore
the posterior of the parameters of the potential. For that, one
might want to use the Kullback–Leibler divergence (KLD)
between f0(J) and a trial potential with final DF f (J). We do
not use the KLD as a direct estimate of posterior ratios, as
done by R. E. Sanderson et al. (2015), but we present the main
expressions in that approach for completeness. The KLD is
defined as

( ) ( ) ( )=JD f f f
f

f
d d H f f Sln , , 41KL 0 0

0
0 0

where S0 = SJ[f0]. For two distributions f and g in general,
DKL( f||g) can be seen as a directed distance from f to g. In fact,
DKL( f||f ) = 0, and it can be shown that DKL( f||g) � 0
(S. Kullback 1968). As for the entropy, the KLD can be
estimated via a Monte Carlo using samples of f and f0, with no
explicit expressions for these DFs.
From Equation (3), we get (e.g., T. M. Cover & J. A. Thomas

2006)

( ) ( ) ( )= L LD f f
N

1
ln ln , 42KL 0 0

where =L NSln 0 0 is the expectation value of the log-
likelihood of the best model. From Bayes’ theorem:

( ) ( ) ( )
( )

( )=
L

p w
w p p

w
P

P

P
, 43

where P(p|w) is the parameters’ posterior probability, P(p) is
their prior probability, and P(w) is a normalization factor. For
the best-fit model p0:

( ) ( ) ( )
( )
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L
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w p p

w
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Taking the logarithm of Equations (43)–(44) and replacing in
Equation (42), one can translate the KLD into ratios of
posterior probabilities of different models. In particular, for flat
priors, we have P(p) = P(p0).

However, this would make a point-wise comparison using a
fixed sample evaluated in different models, which does not
take into account the intrinsic uncertainties in the data-
generation process. In other words, to get meaningful poster-
iors, one needs to recognize that the data set is just a particular
realization of underlying unknown DFs f0 and f. Not
considering this and using KLD with a single sample would
produce unrealistically tiny credible contours. On the other
hand, neglecting the factor 1/N in Equation (42), as done by
R. E. Sanderson et al. (2015), significantly overestimates the
uncertainties.

We emphasize that we do not use the KLD as a direct
translation of the posterior probability ratios, but we use it as a
distance metric to explore the posterior probabilities in an
ABC, as described below. In this way, each model is
accompanied by a different data realization and uncertainties
in the data-generation process are appropriately incorporated.

6.1. Fitting the Isochrone Potential

We generate a self-consistent sample of the isochrone model
with M = b = 1, and sample size N/0.7, selecting the 70%
most bound particles, with a final sample of N ≈ 104. We
assume that the final DF describing the sample in each trial
isochrone potential, if orbits were integrated until phase-
mixed, is an unknown function f (J). We estimate SJ
(Equation (28)), taking the kth neighbor with k = 10 and
correcting for the bias as discussed in Section 4.4. We then
minimize ŜJ.

To prevent trapping at local minima, we fit the data starting
with initial parameters in a regular grid of 4 × 4 points, with
0.1 < M < 10, and 0.1 < b < 5. We only fit potentials with no
unbound particle, setting ˆ =SJ otherwise. The best-fit
potential, i.e., the one with smallest ŜJ among all fits, is
shown as a red dot in Figure 9.

Having found the best-fit potential, we generate 100 new
data sets via bootstraps (randomly selecting N points with
replacement), fitting the potential for each one. In principle,
bootstrap samples might put a problem in the entropy estimate,
since duplicated points would have zero-distance to the nearest
neighbor. The solution, already implemented in tropygal, is
treating repeated points as copies of the same point and
neglecting copies in the search for neighbors.
In Figure 9, black points show results obtained for the

bootstrap samples, and the green triangle is the median of
the best-fit parameters. The parameters recovered with both the
original sample and with the median of the samples are very
near the true values, but we remark that they vary for different
data realizations.
In Figure 10, the red dots show again the minimum-entropy

best-fit potential for the original sample. Panel (a) shows the
results for 104 bootstraps, with red contours representing
percentiles 39.3 and 86.4 (1σ and 2σ equivalent contours in
2D). Panel (b) shows results for fits of 104 data sets generated
assuming 10% Gaussian uncertainties in each of the 6D
coordinates, i.e., by sampling from Gaussian error distributions
centered on the original values (as one might do with
observational data, and correlated uncertainties could be
introduced through a covariance matrix). These results are
biased toward higher masses due to particles in the high-
energy tail of the Gaussians, which are unbound in lower-mass
models that are thus rejected, an issue not present in the
bootstrap samples.
Panels (a) and (b) represent the frequentist confidence

contours on the parameters, i.e., without explicitly introducing
their prior probabilities. For a Bayesian analysis, after finding
a first estimate of the best-fit potential whose DF is f0(J), we
characterize the potential’s posterior probabilities. Without a
bona fide likelihood, we cannot use traditional Markov Chain
Monte Carlo sampling, but we resort to a simulation-based
inference (see K. Cranmer et al. 2020, for a review). In
particular, we perform an ABC (see M. A. Beaumont et al.
2002; S. Sisson et al. 2018; O. Martin et al. 2021), a sampling-
rejection method that allows one to sample the posterior in
problems where the likelihood is unknown or intractable (see,
e.g., E. E. O. Ishida et al. 2015; C. Hahn et al. 2017, for
applications in cosmology).
We use the Python package pyABC (Y. Schälte et al. 2022),

which implements a sequential Monte Carlo ABC
(S. A. Sisson et al. 2007). We start drawing η trial potentials
from flat priors, with 0.1�M� 5 and 0.1� b� 5. For each
trial potential, we generate a new data set, i.e., 6D coordinates
wi = (ri, vi) for i = 1, …, N. These new coordinates are
generated either by bootstrapping the original sample or by
sampling from Gaussian error distributions as explained
above. For each trial potential, we calculate actions for the
associated N coordinates. These actions are then compared
with the previously obtained actions of the original sample in
the best-fit minimum-entropy potential. For this comparison,
we estimate the KLD, Equation (41) (see, e.g., B. Jiang 2018,
for its use in ABC). In practice, we calculate Ŝ0 once for the
best-fit potential, and ˆ ( )D f fKL 0 from the cross-entropy
ˆ ( )H f f,0 , Equations (14)–(16), between actions in the best-fit
potential and those at each trial potential. We take the median
of all ˆ ( )D f fKL 0 to set a distance threshold ε to be used in a
next iteration. In each new iteration, we draw new trial
potentials from a probability distribution built from weighted
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1.4

b
Isochrone potential: N ≈ 104; k = 10

original data: (M0, b0) = (1.002, 0.994)

100 bootstraps

(〈M〉, 〈b〉) = (1.018, 1.008)± (0.065, 0.065)

Figure 9. Fit results obtained with a sample of N ≈ 104 in equilibrium (red
dot) and bootstrap samples (black points). The green triangle shows the
median of the best-fit parameters. In both cases, the true values (lines) are well
recovered.
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kernel density estimates of the previously accepted potentials
(see S. A. Sisson et al. 2007, for details). Potentials are
accepted if ˆ ( )D f fKL 0 , and each iteration finishes when η
trial potentials are accepted.

The evolution of the sampling probability distribution
toward the parameters’ posterior is driven by an adaptive
decrease in the distance threshold ε (calculated as the median
of ˆ ( )D f fKL 0 at each iteration), with a consequent decrease in
the samples acceptance rate. It is possible to show that such
sampling probability distribution iteratively converges to the
parameters’ posterior (see, e.g., M. A. Beaumont et al. 2002;
S. A. Sisson et al. 2007; B. Jiang 2018). In practice,
convergence is assumed after the distance threshold ε or the
acceptance rate fall below a certain value, or the changes in the
posterior become negligible.

We iterate pyABC until the acceptance rate or the distance
threshold ε falls below 10−3, requiring η = 104 accepted
potentials in each iteration. Thus, the final iterations are slower
due to the high number of rejected potentials. The KLD is
strictly nonnegative, and in order to avoid negative KLD
estimates due to noise for potentials near the best fit, we
actually take ( ˆ ( ) )D f fmax , 10KL 0

6 as the distance metric.
Figure 10 shows the ABC results with data generated via

bootstraps (panel (c)) and by sampling from Gaussian error
distributions with relative errors of 10% for each coordinate
(panel (d)). Note that the first estimate of the best-fit potential (red
dots) was obtained with the single original sample. For the ABC
with bootstraps, pyABC runs up to iteration 9, when the distance
threshold quickly drops to ε = 10−6. This is due to our strategy to
avoid the negative KLD estimates mentioned above. The larger
contours in comparison to panel (a) are due to this premature
truncation of the procedure, indicating that in this case, the KLD
estimates are not precise enough to guarantee positive values for
more iterations and better convergence. The true parameters are
recovered with ∼3% errors and ∼10%–12% statistical uncer-
tainties. Thus, these contours are conservative estimates of the
true ones, and they encapsulate modeling uncertainties due to
lack of better precision in the KLD estimates.

For the ABC with 10% Gaussian errors, pyABC runs up to
iteration 19, with the acceptance rate steadily declining to
≈10−3. In this case, we have ∼5%–7% errors and ∼6%
statistical uncertainties. This ∼5%–7% bias is still a
manifestation of the Gaussian error distribution producing
high-energy particles that exclude low-mass potentials, as seen
in panel (b). However, since now the distance metric is
anchored in the best-fit potential with DF f0(J) (not affected by

the Gaussian re-sampling), this problem is alleviated and the
bias is reduced with respect to panel (b).

6.2. Fitting an Axisymmetric Potential

We now use a halo-like sample to fit an axisymmetric
modified version of the DM halo potential of P. J. McMillan
(2017), where we introduce a flattening parameter q, i.e., the
ratio between the minor and major axes. The potential is that
associated with the density profile

( ˜) ˜ ˜ ˜

( )

= +
r r

r

r

r

r
1 exp

400 kpc
,

45

s s

DM

0

3 6

where ρ0 = 8.53702 × 106M⊙ kpc−3, rs = 19.5725 kpc, γ = 1,
˜ ( )/= + +r x y z q2 2 2 , and q = 0.7. The exponential term is
just a cutoff to assure a finite mass and to avoid numerical
problems. In principle, this DM halo potential could be added
to all of the other components of the P. J. McMillan (2017)
potential (such as the thin and thick disks), even if we only fit
the parameters of the former. However, in this case, the inner
potential would be dominated by the baryonic components,
and the number of star particles of our tracer sample (described
below) in the outer regions would not be large enough to
constrain the DM halo parameters. Therefore, in what follows,
we use the DM halo potential only.
We use AGAMA to generate a spherical stellar halo sample

of N = 104 particles (the tracers), with a broken power-law
density profile given by

( )

( )

+r
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r
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,
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h
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where rh = 25 kpc, and the exponential term is again a cutoff
at large radii to avoid numerical problems. We set the
velocities such that this sample is stationary in our axisym-
metric potential. Specifically, we first create a sphericalized
version of the potential and initialize the isotropic DF using the
Eddington inversion formula, then express this DF as a
function of actions, embed it in the flattened potential, and
sample positions and velocities of stars from the resulting
system. This procedure is equivalent to adiabatically
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Figure 10. Fit results obtained for 104 data sets generated as perturbations of an equilibrium sample with N = 104 particles. The minimum-entropy fit obtained with
the original sample is shown as a red dot. Red lines are 1σ and 2σ equivalent contours. Panel (a) shows fits for bootstrap samples; panel (b) shows fits re-sampling
from Gaussian error distributions with relative uncertainties of 10% in each coordinate; panel (c) [(d)] shows the ABC posteriors assuming flat priors, with data sets
generated as in panel (a) [(b)].
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deforming the potential from the initial (spherical) to the final
(nonspherical) shape.

With this sample, assumed to be described by an unknown
DF f (J), we fit the potential parameters ρ0, q, γ, and rs. We
estimate the actions J = (Jr, Jj, Jz) in each trial potential
through the Stackel fudge (J. Binney 2012) using AGAMA. As
in Section 6.1, we first identify the best-fit potential
minimizing ŜJ, Equation (28), starting in a grid of parameter
values. We then use the actions in the globally best-fit potential
as the “observed data” described by an unknown DF f0(J) to
characterize the parameters’ posterior in the ABC.

Once more, we run pyABC accepting η = 104 models in each
iteration, generating a new size-N data sample for each potential.
New data sets are generated by sampling from Gaussian error
distributions of width / =w 10%w ii for i = 1, …, 6. Figure 11
shows the resulting corner plot. Once more, we run pyABC until
the acceptance rate or the distance threshold falls below 10−3, by
which time the true parameters are well recovered. This suggests
that this is a reasonable choice when dealing with observed data,
where the true answer is unknown. In particular, the flattening
parameter is recovered with relative uncertainty ∼5%.

Figure 12 shows a similar plot, obtained with Gaussian error
distributions with / =w 20%w ii

for each coordinate. We
clearly see the worsening of the fit compared to Figure 11, but
the true parameters are still recovered reasonably well. In
this case, the flattening parameter is recovered with uncer-
tainty ∼10%.

7. Discussion

7.1. Future Improvements

An ideal method to constrain a gravitational potential using
the kinematics of a stellar sample should:

1. allow constraints on general mass distributions, includ-
ing general axisymmetric and triaxial systems;

2. properly incorporate uncertainties and covariances in the
data, providing not only best-fit values, but full
probability distributions of the fit parameters;

3. avoid making any assumptions regarding the DF besides
the requirements of Jeans’ theorem;

4. be computationally efficient in order to handle samples
with ∼104–106 stars, typical of stellar halo samples, or
stars within a globular cluster;

5. properly consider the survey’s footprint and selection
function;

6. handle incomplete information, e.g., samples missing
line-of-sight velocities and/or distances.

We demonstrated that our method already satisfies items
1–4. Although we have not tested it for triaxial potentials, the
only difficulty is to efficiently estimate actions in such
potentials. With these actions at hand, one can also investigate
triaxial systems with this method.
In Section 4, we discussed the bias and noise of the k-NN

entropy estimator used in this paper. Although this estimator is
good enough for most applications, our method would benefit
from more precise and accurate estimates (see, e.g., D. Lombardi
& S. Pant 2016; T. B. Berrett et al. 2019; Z. Ao & J. Li 2023 for
recent works with this aim).
In Section 4.3, we showed that the bias correction proposed

by A. Charzyńska & A. Gambin (2015) effectively suppressed
the bias in the entropy estimates for self-consistent samples of
the isochrone model. This correction assumes the sample’s
support is a parallelepiped defined by the extreme values of
each coordinate. The typical action space of a self-consistent
sample of an axisymmetric potential has a shape close to a
tetrahedron with two perpendicular faces (see J. Binney &
S. Tremaine 2008). The reason why this simple correction
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Figure 11. ABC results for N = 104 particles that phase-mixed in a flattened
axisymmetric potential (q = 0.7). Note that 6D coordinates are assumed to
have Gaussian error distributions with relative uncertainties / =w 10%w ii ,
for i = 1…6. In red are shown the 1σ and 2σ equivalent contours. Vertical
dashed lines show the 16th, 50th, and 84th percentiles. The true parameters
(blue lines/dots) are well recovered. In particular, for the flattening parameter,
σq/q ∼ 5%.
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Figure 12. Similar to Figure 11, but now assuming each coordinate to have
Gaussian uncertainties / =w 20%w ii . We see the worsening of the fit, but
the true parameters are still overall well recovered. In particular, σq/q ∼ 10%.
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worked so well in the self-consistent isochrone sample is
probably that this tetrahedron support is not so different from
the assumed parallelepiped support for most stars. For non
self-consistent samples, and particularly for samples with
sharp geometric cuts, the actual support in action space can be
more complicated. For these cases, it will be important to
implement bias corrections for samples with a general support.

In the DF-fitting method, where one assumes an analytical
expression for the DF, selection effects due to geometric
cuts are taken into account by the normalization factor

( ) ( )= S
V

w p w wA f d6 , where V is the survey volume. This
integral can be very complicated and time consuming, and its
limited numerical accuracy is the main source of noise in these
methods (P. J. McMillan & J. J. Binney 2013; K. Hattori et al.
2021). In the minimum-entropy method developed in this
paper, we do not have an analytic DF, but the survey footprint
can be accounted for by the fractional time each orbit spends in
it (see Equation (A8)). This can be done either by generating a
number of angle variables uniformly distributed in [0, 2π) for
each star and checking how many pairs (θ, J) end up inside the
footprint, or simply integrating orbits and directly counting
the fractional time inside the footprint for each orbit. Other
important improvements involve handling samples with
missing data and unbound stars, such as hyper-velocity stars.
In particular, we currently do not fit potentials with even a
single unbound star, which tends to bias the estimates to higher
masses if the original sample has high-energy stars in the
correct potential (see Figure 10). An improved version of the
method should handle (and penalize for) unbound stars to
eliminate this bias.

7.2. Comparison with Other Methods

In the DF-fitting method (P. J. McMillan & J. J. Binney
2013; K. Hattori et al. 2021), as the traditional likelihood-
based approach in general, the inference process is facilitated
by having a smooth function to be maximized/minimized and
by optimizing model evaluations. However, this relies on the
assumed DF correctly describing the data, which is hard to
guarantee in general, especially if deviations from equilibrium
are expected. The minimum-entropy method, in conjunction
with the ABC analysis, avoids that assumption while taking
into account the uncertainties in the data-generation process. In
other words, the possible bias introduced by assuming a DF in
the DF-fitting method is, in the minimum-entropy method,
traded off for statistical uncertainties that reflect our ignorance
of the true DF.

J. Peñarrubia et al. (2012) proposed to constrain the Galactic
potential by minimizing the entropy of the energy distribution
of cold tidal streams. Their method assumes a narrow energy
distribution (in the right potential), and that the probabilities
for a star to be in a certain position and to have a certain
energy are independent. Under a few approximations, they
show that the entropy of the energy distribution should be
minimum at the true potential and, assuming a Gaussian
energy distribution, demonstrate that their method works for
spherical potentials. Analogously, R. E. Sanderson et al.
(2015) proposed to maximize the KLD between the action
distribution and the product of its marginal distributions of
stellar streams. In other words, they proposed to recover the
true potential as the one maximizing the correlations between
the three actions. Their estimate of the KLD does not require
assuming a specific DF, but is performed on a fixed grid in

action space. When used to evaluate the odds of different
models, this requires rejecting points outside the grid of
actions in the best-fit model. R. E. Sanderson et al. (2015)
applied their method to spherical models, approximately
recovering the true potential. S. Reino et al. (2021) later
constrained an axisymmetric Stackel potential using data on a
few streams, improving some aspects of this method. In
particular, they used EnLink (S. Sharma & K. V. Johnston
2009), a metric-free density estimator, to estimate the KLD
(but see also S. Reino et al. 2022 for an erratum).
While these methods use stellar streams, assume the

samples are clustered in the space of integrals, and minimize
the entropy of the integrals’ pdf, our method instead targets
smooth stellar populations, assumes they are phase-mixed, and
minimizes the entropy of the full (6D) DF.
The orbital pdf method developed by J. Han et al. (2016)

and its successor emPDF (Z. Li et al. 2024) propose recovering
the underlying potential exploring Jeans’ theorem but without
specifying a DF, in a similar vein as the minimum-entropy
method developed here. Their methods are currently restricted
to spherical systems, but can be extended into action space in a
more general geometry. Their underlying general principles
and final expressions are similar to those we derive for the
spherical case, although based on different physical arguments
and developed independently. While Z. Li et al. (2024)
focused on estimating the DF using kernel density estimates,
our approach uses well-established recipes to estimate the
differential entropy of a sample via k-NN (but a few other
estimators can be used too).
Thus, in some sense, emPDF and the minimum-entropy

method represent two different views of the same general
principles. Nonetheless, we believe the general formalism
developed in the current work illuminates not only funda-
mental aspects of any method to constrain mass distributions
exploring Jeans’ theorem, but also our picture of the evolution
of collisionless systems toward stationary states.

7.3. Disequilibrium in the MW

Complicating the application of the minimum-entropy
method to the MW is the kinematic perturbation from the
Large Magellanic Cloud (LMC), currently near a pericentric
passage (at a distance of ≈50 kpc; G. Besla et al. 2007). This
perturbation is significant enough to produce a reflex motion of
the MW disk and its inner halo (≲30 kpc) toward the LMC
past trajectory (D. Erkal et al. 2021; N. Garavito-Camargo
et al. 2021; M. S. Petersen & J. Peñarrubia 2021; A. Byström
et al. 2025). Thus, dynamical equilibrium cannot be assumed
for the outer halo (≳30 kpc). However, if one wants to probe
the outer halo still assuming dynamical equilibrium, a
promising avenue is to try to “undo” or correct for the
kinematical perturbation from the LMC (A. J. Deason et al.
2021; L. Correa Magnus & E. Vasiliev 2022). On the other
hand, for the inner halo (≲30 kpc), the assumption of
equilibrium still seems reasonable.

7.4. Time Evolution versus Fixed Sample

In Section 3, we introduced expressions for the entropy of
DFs that are functions of integrals of motion. On the one hand,
one can think of Equations (17), (21), and (27) as the entropy
the system would achieve if the same sample is allowed to
evolve in each trial potential until it phase-mixes, with the
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original DF evolving to another DF that depends only on
integrals evaluated in that trial potential. In this case,
minimizing Equations (17), (21), or (27) corresponds to
minimizing the future entropy, for the sample will phase-mix if
put in an incorrect potential, increasing the entropy—this
generalizes the simpler reasoning of J. Magorrian (2014) for
minimizing the entropy of an “orbit-averaged” DF. Interest-
ingly, we do not need to wait for the time evolution, since
integrals are conserved and can therefore be evaluated at the
onset in each potential. The DF evolution is purely driven by
the remaining variables (e.g., angles), which evolve to a
uniform distribution in their respective supports.

On the other hand, in Appendix A we demonstrate that, for a
fixed equilibrium sample of a DF f (r, v),

( ) ( )S S f , 47I

where S( f ) is the sample’s invariant entropy and

( ) ( )
( )

( )= I
I
I

IS F
F

g
dln 48I

is the general form of Equations (17), (21), and (27), with I being
integrals, g(I) being the density of states, and F(I) = f (I)g(I). In
this case, with no time evolution implied, the marginalization
defining the integrals’ pdf F(I), Equation (A3), is considered even
when the remaining variables are not uniformly distributed, i.e.,
considering the fixed sample as nonstationary in each of the trial
potentials. Furthermore, in Appendix A we show that in the
correct potential, where the remaining variables are uniformly
distributed on their supports, SI = S( f ).

The two interpretations (future entropy and fixed sample)
require minimizing the same quantity SI, showing that they are
equivalent. Thus, for potentials where stationary states are
synonymous with uniform distributions in the remaining
variables (not true in exceptional cases such as the harmonic
oscillator), the derivation of Equation (47)—see Appendix A
—represents a demonstration of the second law of thermo-
dynamics for collisionless gravitational systems in these
potentials, i.e., of the inevitable entropy increase for a sample
starting out of equilibrium, as illustrated in Figures 3 and 4.

In contrast, it is traditionally assumed that the macroscopic
evolution of a collisionless system, i.e., in a smooth potential
f, is described by the Vlasov (or collisionless Boltzmann)
equation

· · ( )+ =v
r r v

df

dt

f

t

f f
0, 49

which implies entropy conservation. According to this view,
the aforementioned entropy increase would result from coarse-
graining, i.e., from losing information in fine-scale phase-
space structures (e.g., D. Lynden-Bell 1967; S. Tremaine et al.
1986; W. Dehnen 2005; Y. Levin et al. 2014; U. Banik et al.
2022; L. Barbieri et al. 2022). Although the work of
W. Dehnen (2005) is the closest to our interpretation, it still
assumes that the underlying evolution is described by
Equation (49) (while acknowledging that the extra-fine
phase-space structures introduced by it are artificial), and that
the evolution to a stationary state requires coarse-graining.

Since coarse-graining is subjective, as it depends on the
scale one chooses to coarse-grain, the recovery of the
gravitational potential by minimizing the entropy of a sample

in equilibrium would be surprising if based on coarse-graining.
Also surprising would be the agreement of entropy estimates
when using different sets of integrals, since they involve
distances and neighbors in very different spaces. Additionally,
the equivalence of Equation (48) with the expected future
entropy after phase-mixing in each trial potential might appear
coincidental: what would be special about this coarse-grain
scheme?
In line with L. Beraldo e Silva et al. (2019a, 2019b), here we

argue that these entropy estimates recover all information that
is available from a finite-N sample and thus do not operate a
coarse-grain (see Section 4.2). In contrast, Equation (49)
assumes the limit N → ∞ (R. L. Dobrushin 1979) and implies
the development of indefinitely fine phase-space structures,
i.e., indefinitely large wavenumbers k in Fourier space.
According to the Nyquist–Shannon theorem (H. Nyquist
1928; C. Shannon 1949), to a given size-N sample in
d-dimensions, one can only associate unique functions with
maximum wavenumber k ≲ N1/ d. Functions with higher
wavenumbers (sharper features) introduce information that is
not contained in the sample. This constrains the finest
structures allowed for a DF describing a real, i.e., finite-N,
system (L. Beraldo e Silva et al. 2019a). Starting out of
equilibrium, the system starts developing fine structures, i.e.,
the maximum wavenumber increases, until hitting the
Nyquist–Shannon upper limit. After that, the system
approaches a steady state described by a DF that is a function
of integrals only, with the remaining variables uniformly
distributed in their domains. The timescale for this collision-
less relaxation is τ ≲ 0.1N1/6τcr (L. Beraldo e Silva et al.
2019b), i.e., a few crossing times τcr for typical stellar
samples. Thus, the system does not produce the extra-fine
phase-space structures predicted by Equation (49). For recent
related discussions in plasma physics, see V. Zhdankin
(2022, 2023), R. J. Ewart et al. (2023), and M. L. Nastac
et al. (2024).
In summary, real collisionless gravitational samples are

finite-N and, because of this, phase-mix toward stationary
states described by DFs depending only on integrals. Our
method explores the objective entropy increase associated with
this process.

8. Summary

We have presented a method to constrain the gravitational
potential where a tracer sample is in dynamical equilibrium. It
is based on the idea that, if put in a different potential, this
sample would phase-mix, producing an entropy increase. The
potential is then recovered by minimizing the future entropy of
the sample with respect to the parameters of the potential. This
entropy is estimated using integrals of motion, and the
parameters of the potential enter the fit through these integrals.
We focused on actions, and demonstrated their advantages,

including possible constraints on the MW’s DM halo shape.
Investigation of this particular problem will benefit from large
spectroscopic surveys such as the DESI-MWS (A. P. Cooper
et al. 2023) in tandem with Gaia. This method can be similarly
applied to other integrals, such as energy and angular
momentum, e.g., in the study of spherical systems like
globular clusters (see Appendix A). Finally, in Appendix B,
we discuss the possibility of recovering a potential by
maximizing the samples’ entropy in angle-space, concluding
that this is not expected to work in general.

16

The Astrophysical Journal, 990:109 (21pp), 2025 September 10 Beraldo e Silva et al.



Acknowledgments

We thank the anonymous referee for providing a careful
reading and constructive comments. L.B.e.S. thanks Wyn Evans,
Josh Speagle, Chirag Modi, David Hogg, Bernardo Modenesi,
Sergey Koposov, Zhaozhou Li, Carrie Filion, and the stellar halos
group at U. of Michigan for useful discussions. M.V. and L.B.e.S.
acknowledge the support of NASA ATP award 80NSSC20K0509
and U.S. National Science Foundation AAG grant AST-2009122,
and M.V. acknowledges support from NASA ATP award
80NSSC24K0938. E.V. thanks Hans-Walter Rix and Kathryn
Johnston for valuable comments, and acknowledges support from
an STFC Ernest Rutherford fellowship (ST/X004066/1). K.H. is
supported by JSPS KAKENHI grant Nos. JP24K07101,
JP21K13965, and JP21H00053. W.d.S.P. is supported by CNPq
(309723/2020-5). L.B.e.S. and K.J.D. acknowledge support from
the Heising Simons Foundation grant No. 2022-3927. We
respectfully acknowledge that the U. of Arizona is on the land
and territories of Indigenous peoples. Today, Arizona is home to
22 federally recognized tribes, with Tucson being home to the
O’odham and the Yaqui. We respect and honor the ancestral
caretakers of the land, from time immemorial until now, and into
the future.

Software: numpy (C. R. Harris et al. 2020), scipy (P. Virtanen
et al. 2020), Agama (E. Vasiliev 2019), pyABC (Y. Schälte et al.
2022), tropygal (this work).

Appendix A
Mathematical Basis of the Minimum-entropy Method

For a DF separable in the space of angles-actions,
( ) ( ) ( )= FJ Jf F, , the entropy, Equation (1), is the

sum of the respective subspaces’ entropies, ( ) =S f
( ( )) ( ( ))+F JS S F . For stationary states, the angle distribu-

tion is uniform, ( ) ( )=F 2 3, and thus ( ( ))FS is
maximum, in the potential where the sample is stationary.
Since S( f ) is invariant for changes of variables, i.e., for angle-
actions evaluated in any potential, S(F(J)) is minimum in that
potential.

Here we generalize this idea to nonseparable DFs. In fact,
one can always separate pdfs in terms of conditional pdfs, e.g.,

( ) ( ) ( )= FJ J Jf F, , where ( )F J is the conditional pdf
of θ, given J. Thus, loosely speaking, we have ( ) =S f

( ( )) ( ( ))+F J JS S F and can recover the potential by
minimizing S(F(J)), since ( ( ))F JS is maximum at any given
action in the right potential. Below, we formalize this idea and
generalize it to other integrals.

Given the DF f (w), where w ≡ (r, v), consider a random
variable X = (X1, …, Xn), with Xi = Xi(w). Let FX be the pdf of
X; i.e., FX is a positive and normalized function on Rn. The
expectation value of X is

[ ] ( ) ( ) ( ) ( )= =E w w w x x xX f X d F d . A1X
n6

Let I = (I1, …, Im), with m < 6, be a second random variable,
with Ii = Ii(w)—we will later make I be the integrals of
motion, e.g., for spherical and isotropic systems, we set I1 = E;
for spherical and anisotropic ones, we set (I1, I2) = (E, L); for
angle-action variables, (I1, I2, I3) = J. In general, we require I
to have the following property:

1. There is a smooth function R R: 6 6,
whose Jacobian matrix

( ) = …J
w

i j, , 1, ,6ij
i

j

is nondegenerate (i.e., its determinant is nonvanishing), such
that Ik(w) = Ψ6−m+k(w), k = 1, …, m. In other words, I
corresponds to the last m < 6 coordinates of some change of
variables Ψ in 6D.

For random variables I with this property, we consider the
conditional expectation in the sense of a “disintegration” of f
with respect to I, (· ) RF I I m (for a friendly, yet thorough,
introduction to this topic, see J. T. Chang & D. Pollard 1997).
This is a family of pdfs such that for each I, it gives the pdf

( )F z I of the remaining variables Rz m6 . This pdf is
properly normalized and is different from marginalizing over
I, or from simply taking f at fixed I values. Given that the pdf
of the new variables (z, I) is ( ( )) · ( )z I z If J, ,1 1 , and not

( ( ))z If ,1 alone, the conditional probability with respect to
I is explicitly given by:

( ) ( ( )) ( )
( )

( )=F z I
z I z I

I

f J

F

, ,
, A2

1 1

where

( ) ( ( )) ( ) ( )=I z I z I zF f J d, , A3m1 61

is the pdf of the random variable I, i.e., the marginalization
over the remaining variables z. Moreover, as expected, F only
depends on I, and not on the particular choice of the
transformation R R: 6 6 for the remaining variables z,
since Equation (A3) marginalizes over them. This elementary
remark is important later on in this appendix. Note that if
f = f (I), i.e., if it is uniform in z, Equation (A3) reduces to
Equations (18), (22), or (26) as particular cases.
With the change of variables w → (z, I) in Equation (A1),

we get:

[ ] ( ) ( ) ( ( ))

( ( )) ( )

= =

×

E w w w z I

z I I z z I

X f X d X

f J d d

,

, , ,m m

6 1

1 6

and from Equation (A2), it results that

( )
[ ] ( ( )) ( ) ( )

( ) ( ) ( ( ))

=

=

E F

F

z I z I I z I

I z I z I z I

X X F d d

F X d d

,

, .

m m

m m

1 6

1 6

In fact, the last equality is the formal definition of (· ) RF I I m

being the disintegration of the DF with respect to the random
variable I. Making =X fln and using Equation (A2), we get

{

{

( ) [ ] ( ) ( )·

[ ( ( ))] }

( ) ( )·

( )
( )

( )

= =

=

E F

F

F

I z I

z I z I

I z I

I
I z

z I z I

S f f F

f d d

F

F

J
d d

ln

ln ,

ln
,

.

m m

m m

1 6

6

1
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Writing the logarithm of the product as the sum of logarithms,
we get

{ }

{ }

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

=

×

F

F F

I z I I z z

I I I I

I z I z I z I

S f F J d

d F F d

F d d

ln ,

ln

ln ,

m

m m

m m

6

6

1

where for the second term on the right-hand side, we used the
fact that ( )F z I zd m6 = 1. Hence,

( ) [ ] ( ( )) [ ( (· ))] ( )= + +E E FI IS f J S F Sln , A4I1

where [ ( (· ))]E F ISI denotes the expectation of the entropy

( (· )) ( ) [ ( )] ( )F F FI z I z I zS dln A5m6

of the conditional pdfs. Note that these entropies define a random
variable that only depends on I. In particular, if Ψ is a canonical
transformation ( ( ) =I zJ , 11 ), from Equation (A4), we
have ( ) ( ( )) [ ( (· ))]= + E FI IS f S F SI .

Equation (A4) is the main general result of this appendix.
We show below that it justifies our minimum-entropy method
for fitting galactic potentials. With this aim, it is convenient to
make the following additional assumption on the variable
transformation Ψ, and afterward, we show how it can be
removed:

2. The Jacobian determinant ( )I zJ ,1 only depends on I.
In fact, given a partial transformation ˜ : R Rm m6 6 , it

is common to find a point transformation for the remaining
variables such that the total new transformation R R: 6 6 is
even canonical, i.e., ( ) =I zJ , 11 .

Suppose that, for all RI m, the maximum allowed support
of the pdfs (· )F I is some bounded region Ωz(I) of R m6 . The
region Ωz(I) encodes the set of coordinates Rz m6

corresponding to particles that, at fixed I, are not forbidden
to appear in the sample, e.g., for being unbound or for its
coordinates lying outside the survey footprint.

If the coordinates RI m are constants of motion, one
expects that the original DF f (w) is stationary (phase-mixed),
or, more generally, a cut of some stationary DF if, and only if,
f (Ψ−1(z, I)) is constant for z within the maximum allowed
support Ωz(I), at any fixed I ∈ Rm. Thus, here we tacitly use
this property of the DF as equivalent to its stationarity. If
condition 2 above is fulfilled, then from Equation (A2), for any
fixed RI m, as a function of z, the conditional pdf ( )F z I is
proportional to f (Ψ−1(z, I)). Thus, one can detect that the DF
f (w) is stationary, or a cut of a stationary DF, by showing that
the conditional pdf ( )F z I is constant for z in Ωz(I), at any
fixed I ∈ Rm. We show now that this is equivalent to our
minimum-entropy principle.

A pdf supported on a fixed bounded region of R m6 is
uniform if, and only if, it has maximal entropy. In this case,

( ) ( )/=F z I IV1 z , where Vz(I) is the volume of the maximum
allowed support Ωz(I) of ( )F z I , and from Equation (A5),

( (· )) [ ( )] ( )/= =F I I IS V Vln 1 ln .z z

Thus, given a fixed DF f on R6, the expected value
[ ( (· ))]E F ISI in Equation (A4) is bounded from above by

[ ( )] ( ) ( )=E I I I IV F V dln lnI z z
m

and [ ( (· ))]E F ISI reaches this value when the (· )F I are
uniform in their maximum allowed supports. Thus,

[ ( )] [ ( (· ))]E E FI IV Sln 0.I Iz

Using Equation (A4),

[ ( )] ( ) [ ] ( ( ))
[ ˜ ] ( ( )) ( )

+ +

+

E E
E

I I

I

V S f J S F

V S F S f

ln ln 0

ln ,
I z 1

where ˜ ( ) ( ) ( )z I z I IV J V, , z1 .
Therefore, by construction, the quantity [ ˜ ] ( ( ))+E IV S Fln

is bounded from below by S( f ) and reaches this value if, and
only if, all (· )F I are uniform in their maximum allowed
supports. By assumption 2, we have:

[ ˜ ] [ ( )]=E E IV gln ln ,I

where ( ) ( ) ( )=I I Ig J Vz1 is the “density of states” at
RI m. Similar to F(I), the density of states g(I) is

independent of the particular transformation Ψ in respect to
the remaining variables z. In fact, we can assume that there is a
partial transformation ˜ over the z-coordinates such that the
total transformation has ( ) ( )=z I IJ J,1 1 ,

( ) ( ) ( ) ( )

( )
( )
( )

( )

( )

˜ ( )

˜

˜ ( )
˜

= =

=

=

I I I I z

I
z I

I
z

z I z

g J V J d

J
J

J
d

J d

,

, ,

I

I

I

z
m

m

m

6

6

6

z

z

z

1 1

1

1

1

1

where ˜ ( )Iz is the maximum allowed support of the remaining
variables under the second transformation. Thus, the density of
states can be generalized for a transformation of coordinates
that does not satisfy assumption 2 as

( ) ( ) ( )
( )

I z I zg J d, . A6
I

m6

z

1

With this, we can finally relax condition 2. Hence, we proved,
under the assumption 1 only, that the quantity

[ ( )] ( ( ))+E I Ig S FlnI

is bounded from below by S( f ) and reaches this value if, and
only if, f (Ψ−1(z, I)) is constant for z in Ωz(I).
Consider now a family Ψp, p ∈ P, of transformations of

coordinates in R6 satisfying assumption 1, where p stands for
generic parameters of the potential. We think of Ψp as the set
of transformations leading to integrals of motion evaluated in
all trial potentials. For some fixed m < 6, define Ip by the last
m components of Ψp, as above. Suppose, as before, that, for all
p ∈ P and RI m, the maximum allowed support of the pdfs

(· )F Ip is some bounded region Ωz(p, I) of R m6 , which now
can also depend on p. If, for some p0 ∈ P, the DF f is stationary
(phase-mixed), or a cut of a stationary DF, we can find this
particular p0 by minimizing with respect to p the quantity

[ ( )] ( ( ))

( ) ( )
( )

( )

+

=

E I I

I
I
I

I

S g S F

F
F

g
d

ln

ln . A7

I I p

m

p

We emphasize that SI incorporates the density of states ( )Ig
p

and thus differs from S(F(I)). We now show particular cases in
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terms of energy, angular momentum, and actions, making
contact with Section 3.

A.1. Spherical and Isotropic Systems

For spherically symmetric systems with isotropic velocities,
we use spherical coordinates, in terms of solid angles ωr and
ωv, with Jacobian determinant ∂(r, v)/∂(r, v, ωr, ωv) = r2v2.
For a given central potential ( )r

p
, the energy being =E

( )/ +v r22
p

, the Jacobian determinant for (r, E) → (r, v) is

( ) ( ) ( ( ))/ / /= =r v r E E r v, , 1 2 1
p

. Thus,

( )
( )

( )
( )

( )
( )

( ( ))

= =

=

r v r v
J

r E r v

r v

r E

r E r

,

, , ,

,

, , ,

,

,

2 .

r v r v

2

p

p

Let rm(E) be the maximum radius for a particle with energy E.
From Equation (A6), the density of states at fixed E is:

( ) ( ( ))

( ) ( ( ))
( ) ( )

( )

=

=

g E r E r drd d

r E r dr

2

4 2 .

r E r v

r E

, ,
2

2
0

2

p p

p

r v z

m

From Equation (A7), our minimum-entropy principle trans-
lates into minimizing, with respect to the parameters p,

( ) ( )
( )

S F E
F E

g E
dEln ,E

p

where F(E) is the pdf for the energy (see Equation (17)). Note
that not only g

p
, but also F(E) depends on p, via

p
.

A.2. Spherical and Anisotropic Systems

For a spherical system with anisotropic velocity distribution,
we let it depend on vt and vr, the tangential and radial
velocities, respectively. The phase-space coordinate (r, v) is a
function of r, the solid angle ωr, vr, and vt, as well as a planar
angle jv referring to the tangent direction of the velocity; i.e.,
we use cylindrical coordinates for the velocity v, with its
vertical axis along r. For this transformation of coordinates,
we have ∂(r, v)/∂(r, vr, vt, ωr, jv) = r2vt. With the
angular momentum L = rvt, and = +v v vt r

2 2 2, we have
( ( )) /= ±v E r L r2r

2 2
p

. Thus, the Jacobian determi-
nant of the transformation (E, L) → (vr, vt) is

( ) ( ) [ ( ( )) ]/ / /=v v E L r E r L r, , 1 2r t
2 2

p
. Hence,

( )
( )

( )
( )

( )
( )

( ( )) /

=

=

=

r v

r v

J
r E L

r v v

v v

E L

L

E r L r

,

, , , ,

,

, , , ,

,

,

2
.

r v

r t r v

r t

2 2

p

p

From Equation (A6), the density of states in this case is
( ) ( )=g E L LT E L, 8 ,r

2
p

(see Equations (23) and (24)). As
before, from Equation (A7), the minimum-entropy principle

refers to minimizing

( ) ( )
( )

S F E L
F E L

g E L
dEdL, ln

,

,
,EL

p

where F(E, L) is the joint pdf for the energy and angular
momentum (see Equation (21)).

A.3. Generic Integrable Potentials: Action Variables

If Ψp is a canonical transformation, =J 1
p

1 . For instance,
if Ψp refer to action-angle variables, Ip being actions, then, in a
full-sky survey, i.e., in the absence of any geometric cuts, from
Equation (A6):

( ) ˜ ( ) ( )= =I Ig V 2 .p p
3

From Equation (A7), our minimum-entropy principle is
equivalent to minimizing

( ) ( )
( )

J
J

JS F
F

dln
2

,J 3

where F(J) is the joint pdf for the actions (see Equation (27)).
More generally, in the presence of geometrical cuts,

( ) ( ) ( )I I Ig g A ,p p p

where the random variable 0 < Ap � 1 depends only on I
(integrals) and refers to the portion of the remaining variables
corresponding to stars lying within the survey footprint, at
fixed integral. Hence, in the presence of geometric cuts and
when using actions, our minimum-entropy principle is
equivalent to minimizing

( ) ( )
( ) ( )

( )= J
J

J
JS F

F

A
dln

2
. A8J

p
3

Appendix B
Could We Maximize the Entropy in Angle-space?

Since the angle distribution is uniform for a phase-mixed
sample, one might try to recover the potential by maximizing
an entropy using angles. In Section 2, we motivated our
method by connecting the maximum-likelihood principle with
a minimum-entropy one. This already suggests minimizing an
entropy using integrals, as opposed to maximizing one using
the remaining variables. Since these live in higher dimensions
for the cases f (E) and f (E, L), it would not be helpful to use
those variables, so for this discussion, we focus on angles and
actions, both of which live in d = 3. We show why we do not
expect a maximum entropy in angle-space to work.
As we demonstrate in Appendix A, writing the DF

as ( ) ( ) ( )= FJ J Jf F, , we get ( ) ( ( ))= +JS f S F
[ ( (· ))]E F JSJ , where we have set =J 11 in Equation (A4),

F(J) is the action’s pdf, and ( (· ))F JS is the entropy of the
conditional pdfs (Equation (A5)). The maximum value of this last
term, achieved in the potential where the sample is phase-mixed, is

[ ]E Vln , where Vθ(J) = (2π)3A(J) is the volume of the angles’
support (density of states). In a full-sky survey, A(J) = 1, and
0 < A(J) < 1 in the presence of geometric cuts. This maximum
value depends on the potential and needs to join the optimization.
Since we can calculate Vθ(J) for each model, and S( f ) is invariant,
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the correct potential is recovered if, and only if, SJ is minimum
(see Equation (A8)).

On the other hand, in trying to constrain the potential by
maximizing the entropy in angle-space, we would separate the
DF as ( ) ( ) ( )= FJ Jf F, , which implies

( ) ( ( )) [ ( (· ))]= + E FS f S F S ,

where now F(θ) is the angles’ pdf, and ( (· ))FS is the entropy
of the conditional pdfs. Although not easily justified, we could
conjecture that this last term is minimized in the potential
where the sample is phase-mixed, and that, as before, this
depends on the potential and should thus join the optimization.
However, in this case, we do not know what this value should
be and do not know which exact quantity to maximize.

In principle, one might try simply maximizing the entropy
of the marginal pdf, ( ( ))S F , but we show two examples
suggesting that this would fail. Let us consider an admittedly
artificial (1+1)D toy model with DF

( ) [ ( ) ( ) ( ) ( )]= + > >f J J J,
1

0 0 ,

where ( ) =P 1 when P is true, and ( ) =P 0 otherwise, and
−1/2� J� 1/2. In words, for negative actions, half of the
angle maximum allowed support Ωz(J) = [0, 2π] is uniformly
distributed, and for positive actions, the other half is. At fixed
J, this DF is not constant as a function of θ in Ωz(J).
Nevertheless, the marginal F(θ) = ∫f (θ, J) dJ is uniform, and
F(θ) has maximum entropy. Thus, maximizing ( ( ))S F
generally fails to reject nonstationary DFs.

As a second example, let Ωz(J) = [0, 4π|J|] for −1/2� J� 1/2
and Ωz(J) = [0, 2π] when |J| > 1/2. This choice is to be
understood as a “toy model” in the presence of a geometric cut.
Define the DF by

( ) ( ( )) ( )/=f J J J,
1

1 2 .z

This DF f (θ, J) is now uniform in angles. However, the
marginal pdf in this case is not uniform:

( ) ( )= =F f J dJ,
1

1
2

,

and thus, its entropy is not maximum, and maximizing ( ( ))S F
also generally fails to detect stationary DFs.
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