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ABSTRACT ARTICLE HISTORY
Electrostatic or capacitive accelerometers are among the highest volume Received 11 February 2015
microelectromechanical systems (MEMS) products nowadays. The design Accepted 28 April 2016
of such devices is a complex task, since they depend on many perfor- KEYWORDS

mance requirements, which are often conflicting. Therefore, optimization Bulk-type capacitive
techniques are often used in the design stage of these MEMS devices. accelerometers; MEMS;
Because of problems with reliability, the technology of MEMS is not yet optimization; robust design;
well established. Thus, in this work, size optimization is combined with the reliability
reliability-based design optimization (RBDO) method to improve the per-

formance of accelerometers. To account for uncertainties in the dimensions

and material properties of these devices, the first order reliability method

is applied to calculate the probabilities involved in the RBDO formulation.

Practical examples of bulk-type capacitive accelerometer designs are pre-

sented and discussed to evaluate the potential of the implemented RBDO

solver.

1. Introduction

An accelerometer is a kind of microelectromechanical system (MEMS) device capable of measuring
acceleration. MEMS accelerometers for high-performance applications were reviewed by Krishnan
et al. (2007), who conducted a comparative study of the characteristics of several commercial devices.

This work focuses on the design of capacitive accelerometers. The main advantages of such trans-
duction mechanisms are that they have high sensitivity, good direct current (DC) response and noise
performance, low temperature sensitivity and low power consumption.

The two most commonly adopted designs for capacitive accelerometers are those with sensitivity
to accelerations parallel (Coultate et al. 2008) and perpendicular (Alvarez et al. 2009) to the silicon
surface of the device. They are usually implemented by surface and bulk micromachining technol-
ogy (Madou 2002), respectively. In bulk micromachined devices, owing to the presence of a large
proof mass, higher resolution and greater sensitivity are achieved. Yazdi and Najafi (2000) proposed
a combined approach to further improve the sensor performance. In this work, bulk micromachined
devices are considered (see Figure 2).

The main feature that distinguishes one bulk-type design from another is the configuration of
the beams that support the movable electrode. The flexibility of the beams allows the proof mass to
move proportionally to the external acceleration and its displacement is estimated by the change in
capacitance of the set. The proof mass can be supported by one or more straight cantilever beams
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(Roylance and Angell 1979), by a torsion beam (Selvakumar, Ayazi, and Najafi 1996) or by folded
beams (Qiao et al. 2009). Currently, full-bridge and highly symmetrical designs using four or more
beams (Seidel et al. 1990) are the most popular since they lead to very low cross-axis acceleration
sensitivity, which is undesirable for unidirectional sensors.

The operation of MEMS sensors depends on many performance requirements (sensitivity, band-
width, footprint area, and so on), which are often conflicting. In the case of accelerometers, to achieve
high sensitivity it is necessary to reduce the air gap between the sensory electrodes and increase the
active area. However, reducing the air gap reduces the dynamic range of the sensor and increases the
squeeze film damping (Bao and Yang 2007) and, consequently, reduces the response time of the sen-
sor. Moreover, a very small gap, combined with a large moving mass and low spring constants, can
reduce the pull-in voltage considerably (Kaajakari 2009), resulting in the collapse of the electrodes at
low applied voltages.

In addition, owing to the complex manufacturing processes of MEMS sensors, each iteration in
the prototype development is very expensive and, thus, trial-and-error methods are often prohibitive.
For these reasons, optimization techniques are often applied to the design stage of MEMS sensors,
aiming to reduce development time and costs, and simultaneously helping the designer to explore
design trade-offs efficiently.

Most of the research on the optimization of capacitive microaccelerometers so far has been pri-
marily focused on parametric analysis. Liu, Jiang, and Wang (2009) performed a robust optimization
considering both bandwidth and sensitivity of a similar device, and Desrochers, Pasini, and Angeles
(2010) first optimized the shape of the hinges used in their bulk design and then performed a multi-
objective size optimization aiming to maximize the sensitivity and minimize the ratio between the
first and the second natural frequencies to reduce oft-axis sensitivity.

Mukherjee, Zhou, and Fedder (1999), Coultate et al. (2008) and Engesser et al. (2010) presented
analytical models for a surface-micromachined accelerometer, by proposing optimized designs con-
sidering different requirements. Mukherjee, Zhou, and Fedder (1999) considered the minimization
of the footprint area and noise and maximization of the sensitivity. Coultate et al. (2008) presented a
robust design by considering the maximization of the full-scale range and minimization of the thresh-
old acceleration. Finally, Engesser et al. (2010) aimed at minimizing the footprint area of the device,
and proposed several techniques to more easily find the global minimum of optimization problems
involving MEMS sensors.

Although the potential of MEMS to enable the development of new applications is widely recog-
nized, this technology is not yet well established owing to reliability problems; that is, the devices can
fail before the end of the required lifetime or their performance can degrade rapidly, falling below
acceptable levels.

Uncertainties associated with the dimensions and the material properties of the microdevices
(MEMSY) are inevitable owing to several factors such as manufacturing imperfections, residual ther-
mal stress, irregular surfaces and chemical contamination (Kovacs 1998). These uncertainties may
produce tolerances higher than 10% (Madou 2002) of nominal values and, thus, they represent sig-
nificant challenges for realistic prediction of the performance of microdevices. It is not always possible
to restrict the manufacturing tolerances for more precise dimensions. In addition, the load to which
the device is subjected may vary depending on environmental and operating conditions.

The difference between the expected and real performance of a device is even greater when it is
optimized, because any excess of structural material should be removed, making the optimized device
more susceptible to great uncertainty. Conventional design methodologies deal with the uncertainties
through the use of safety factors. However, safety factors are calibrated for average design conditions
and, therefore, cannot guarantee suitable reliability levels for specific design conditions.

Currently, two main methods of optimization are proposed to overcome this problem, considering
the uncertainty effects more consistently: robust design optimization (RDO), which aims to minimize
the dispersion of structural responses, measured by low-order statistical moments; and reliability-
based design optimization (RBDO), which aims to maximize the performance with probabilistic
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constraints, enabling the design of structures with specified failure probabilities. In other words, the
concept of reliability (or the probability of failure) of the RBDO refers to the occurrence of extreme
events, while the RDO refers to the low dispersion of structural responses even with a wide variation
in the input parameters. A more detailed review of these two approaches is presented in Schuéller
and Jensen (2008).

Two approaches can be adopted to formulate an RBDO problem. One is based on system
reliability-based design optimization (SRBDO), in which a single constraint includes all failure events
(Nguyen, Song, and Paulino 2010; Silva et al. 2010; Chun, Song, and Paulino 2015). The other is based
on component reliability-based design optimization (CRBDO), in which each probabilistic constraint
is related to a unique failure event (Maute and Frangopol 2003; Allen et al. 2004; Kharmanda et al.
2004). Here, the latter is adopted, since it can be implemented with less computational cost.

In this work, the RBDO is applied to optimize the structure of a MEMS capacitive accelerometer.
A parametric optimization algorithm has been developed, in which the uncertainties involved in the
optimization problem, such as variations in geometric and material properties, are considered. To
the authors” knowledge, the MEMS capacitive accelerometer structural design (as presented here)
using RBDO has not been presented in any previous work in the literature. Therefore, the application
of the RBDO algorithm is highlighted because it allows additional control over the reliability of the
microsystem (MEMS capacitive accelerometer), by considering uncertainties in the geometric and
material properties of the accelerometer design.

This article is organized as follows. In Section 2, a typical RBDO problem and the methodologies
employed to evaluate efficiently the probabilistic constraints are briefly presented. In Section 3, the
numerical implementation is addressed. In Section 4, the results are presented. Finally, Section 5 pro-
vides the concluding remarks and points to future developments. The Appendix shows the sensitivity
analysis required for an RBDO problem.

2. Reliability-based design optimization: typical formulation

The optimization problem with uncertainties may include deterministic and probabilistic design cri-
teria, which are mostly incorporated in the constraints of the problem. Probabilistic design criteria
restrain a specific probability of failure, and it may also be present in the objective function. A typical
RBDO formulation is given by:

Minimize Prob(c(s,r) > ¢)
I,s

Subjectto  P; — Prob(fi(s,1) <0) >0, i=1,...,n 1)

gi(s) > 0, j=1...,m
Slow = 8 = Supp

where r are the random variables, n is the number of probabilistic constraints, and m is the number
of deterministic constraints. The goal is to minimize the probability of the cost function c(s,r) to be
greater than c. One set of constraints (1, ..., n) restrains the probability of failure associated with
the limit state functions f;(s,r), where f; < 0 means a failure situation. P; is the maximum acceptable
probability of failure. Another set of constraints, gj (j = 1, ..., m), contains all deterministic con-
straints. In this generic formulation, the design variables s can be deterministic or non-deterministic;
that is, these variables should be a characteristic parameter of a statistical distribution, such as the
mean or the standard deviation.

In the solution of problem (1), a major difficulty is finding the probability density function (PDF),
associated with ¢ — ¢ (objective function) or f; (constraints of the problem), explicitly in the random
variables r. In this case, two approximation methods are often applied: stochastic simulations, such
as Monte Carlo (Kroese, Taimre, and Botev 2011), or the method of moments (Hasofer and Lind
1974). The calculation of the probability by simulations is very time consuming, so it is not useful for
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optimization algorithms (Aoues and Chateauneuf 2010). Thus, in this work, the first order reliability
method (FORM) and the concept of reliability index f are applied for the calculation of probabilities.

In addition, Liu and Kiureghian (1991) proved the robustness and efficiency of the
Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithm (Hasofer and Lind 1974) for solving a nonlinear
optimization problem in the most probable failure point (MPFP; the region that gives the largest con-
tribution to the probability of failure) with an equality constraint. This algorithm has been adopted
in the present work. The formula for updating this algorithm is given by:

GE(k) u® — Q(u(k))

ak D — -
Gy Gutb

Gy (2)

where Gy = {0Q/0u1,0Q/dus,...,9Q/duy} is the gradient of the limit state function Q with
respect to u at iteration k.

Several iterations using Equation (2) are required to find the failure surface, and consequently to
determine the location of the MPFP along this failure surface.

An overview of the FORM procedure is illustrated in Allen et al. (2004), which sums up what has
been discussed so far, as follows. First, the random variables (r) must be mapped to the normalized
space (u) through a transformation, which makes the middle point in r-space correspond to the origin
in u-space. For general cases, the principle of a normal tail (Madsen and Krenk 2006) can be applied
to perform this transformation. Thus, the probability of failure is found by integrating the first order
approximation of the limit state function on the MPFP.

Now, by adopting the same procedure for calculation of probabilities of the optimization prob-
lem given by Equation (1), one MPFP and one reliability index § are obtained for each probability
constraint, as well as for the objective function. In the RBDO theory, this approach is known as the
reliability index approach (RIA) (Enevoldsen and Serensen 1994). In this approach, the optimization
problem (1) is usually rewritten as follows:

Minimize f(c(s,r) > ¢)
r,s

Subjectto  B(fi(s,¥) >0) —B; >0, i=1,...,n 3)

gi(s) = 0, ji=1,...,m

Slow = 8 = Supp

where f; is the minimum reliability index required.

For cases in which the failure surface is far from the origin of the normalized space, the RIA is
often affected by convergence problems (Maute and Frangopol 2003). Thus, the performance measure
approach (PMA) has also been proposed for RBDO in the literature (Tu, Choi, and Park 1999). The
PMA is based on the following principle: minimizing a complex function under simple constraints is
more efficient than minimizing a simple function under complex constraints (Aoues and Chateauneuf
2010). Thus, in this approach an optimization problem is solved in the normalized space, for a given
required reliability index f.

The value of the limit state function at the optimum solution of this optimization problem repre-
sents the worst performance for the required reliability index 8. This result is known as the minimum
performance target point (MPTP). The robustness of the PMA is established, and it is consistent with
the conventional RIA (Lee, Yang, and Ruy 2002). An inverse reliability analysis is carried out for
calculating the MPTP.
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As the reliability requirements have been assured in the inverse reliability analysis, the optimiza-
tion problem with the PMA is usually set as follows:

Minimize f.(s, r)
r,S
Subjectto  fi(s,r) >0, i=1,...,n

(4)
gi(s) >0, j=1,...,m

Slow = 8 = Supp

where the performances of the objective function (f.) and of the probabilistic constraints are mea-
sured with respect to distinct required reliability indices. Since a poor performance indicates the
occurrence of failure, its signal at the MPTP can be used to determine whether the probability
constraint is satisfied or not.

3. Numerical implementation

The algorithm of the reliability-based optimization solver, implemented in this work using
MATLAB® code, is illustrated in Figure 1.

First, all known structural geometric data of the accelerometer should be provided to the RBDO
solver. These input data are used as the initial value of the design variables. After that, all information
about the statistical distributions governing the uncertainties of the problem should also be pro-
vided, such as the type of distribution and statistical parameters (mean and standard deviation for
the normal distribution, for instance).

As depicted in the flowchart of Figure 1, the algorithm of the implemented solver is structured
in two nested loops. The reliability analyses are carried out in the inner loop, and are employed as
input data to the optimization process of the outer loop. In the inner loop, which occurs in normalized
space, structural analyses are done to carry out several iterations of Equation (2) until the probabilistic
constraint values can be estimated in terms of the reliability index for the RIA or the performance
target for the PMA.

The parametric optimization algorithm based on RBDO, implemented in this work, requires the
calculation of the derivatives (or gradients) of the objective function and constraints, which are known
as sensitivity analyses. Since the FORM approach has been adopted, the sensitivity of probabilistic
criteria can be calculated analytically (Allen and Maute 2004).

The objective function and any deterministic constraints, as well as their sensitivity analyses,
are provided to the optimizer of the outer loop. In this work, the method of moving asymptotes
(MMA) (Svanberg 1987) is used as the optimizer for updating the values of the design variables.
The implemented solver of this work is validated by comparison with the work of Lee, Yang, and Ruy
(2002).

4, Results

The geometry shown in Figure 2 is used as a reference (initial guess) in the optimization problem
presented in this section. This suggested geometry (Figure 2), the dimensions of which are presented
in Table 1, has been employed as a spring for a high-performance accelerometer (Rodrigues et al.
2011).

The design of the accelerometer has three thick silicon wafers, bonded one on top of another. The
intermediate layer consists of a proof mass suspended by flexible beams. It is separated from the top
and bottom wafers by a small gap, resulting in two sets of parallel plate capacitors. The three silicon
wafers have orientation (100) and a thin layer of silicon oxide (Figure 2b) is used as the electrical
insulation between them. Some specifications have been employed for the accelerometer, focusing on
unmanned aerial vehicles, such as sensitivity (500 mV/g), operating temperature (45-125°C), width



370 A.C.TEVESETAL.

| Starting design variables |

T
\ 4
>{ Starting random variables | Deterministic structural
v analyses
Calculation of limit state functions and |
> their gradients

v

Calculation of MPFP (RIA) or MPTP (PMA)

Standard
normalized space

Reliability index or performance target obtained

(probabilistic constraints) Objective function and
|

v deterministic constraints

| Sensitivity analysis }: I
v

| Solution of the optimization problem (MMA)

No

Plot results

Figure 1. Flowchart of the optimization algorithm. MPFP = most probable failure point; RIA = reliability index approach;
MPTP = minimum performance target point; PMA = performance measure approach; MMA = method of moving asymptotes.
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Figure 2. Original spring structure designed for a high-performance accelerometer: (a) top view; (b) cross-section view.
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Table 1. Dimensions of the suggested geometry (Figure 1) adopted as reference.

Parameter Description Value (um)
Wm Proof mass width 2000
tm Proof mass thickness 380
Wy Flexible beam width 200
tp Flexible beam thickness 55
Ly Flexible beam length 2820
gap Void space 2
Wagap Distance between proof mass and outline 1040
Weim Outline width 150
Wy Width of the device 4380

band (400 Hz) and footprint area that allows it be encapsulated in a 20-pin low-temperature cofired
ceramic (LTCC) (Rodrigues et al. 2011).

In this work, only the geometry of the mechanical system is optimized, without considering any
aspects of the electronic or control systems of the accelerometer. The effects of temperature change,
such as thermal expansion, are also not considered here. Initially, a study of deterministic paramet-
ric optimization is carried out; that is, without any random variable in the problem. Then, different
uncertainties and reliability levels are specified and the results of the RBDO are compared with the
initial design and the deterministic optimum solution. The structural analyses required for these stud-
ies are based on analytical formulae found in Rodrigues et al. (2011), which evaluate the resonance
frequency (f,) and sensitivity (S,) of high-performance accelerometers.

4.1. Deterministic solution

As mentioned previously, having a small footprint area is an important requirement for the accelerom-
eter, to allow it be encapsulated in a 20-pin LTCC (Rodrigues et al. 2011). Therefore, to achieve a large
reduction in the width of accelerometer device, the deterministic optimization problem is stated as:

Minimize Wq= Wy + 2Wgp +2Wiin
Subjectto  f, > 2500Hz

(5)
Se > 0.6pF/g

Slow = 8 = Supp

where the width (Wg) of the suggested structure (Figure 2) is adopted as the objective function. In
addition, lower limits for the first resonance frequency (f, = 2500 Hz) and for the sensitivity (S, =
0.6 pF/g) of the accelerometer have been considered as constraints. The dimensions shown in Table 1
have been adopted as initial values for the optimization process. Table 2 shows all the design variables
(s) adopted in the deterministic optimization, as well as the lower (sjyy) and upper (sypp) limits,
and the optimized values obtained by the deterministic problem (5). A comparison of the original
design (Figure 2) proposed for the accelerometer (Rodrigues et al. 2011) and the optimized geometric
configuration obtained by the deterministic problem can be seen in Figure 3.

Thus, a decrease of approximately 26% in the width of the device is concluded by the deterministic
optimization problem. Despite this significant reduction in the width of the device, it is observed that
a reliability of 56.10% has been found for the original design of the accelerometer (Rodrigues et al.
2011), while the reliability of the optimized result by deterministic problem can be considered to be
only 50%. This result reinforces the warning made previously about the deterministic optimization;
that is, when a structure is optimized, any excess of material is generally removed, making it even
more susceptible to the uncertainties present in the manufacturing processes or the final application.
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Table 2. Upper and lower limits of the dimensions adopted as design variables.

Design variable (s) Lower limit (Sjow) (tem) Upper limit (sypp) (1m) Optimized solution (s*)

Wm 500 2500 1847
tm 250 500 405
Wy 100 300 179
th 10 100 46
Ly 2000 3000 2447
Gap 2 10 2
Wgap 600 1200 600
Wiim 100 200 100
(@
(b)
d
©) (d)

Figure 3. Optimized geometric configurations and comparison among results: (a) original design (Figure 2); (b) result obtained
with a deterministic problem; (c) result obtained with a reliability-based design optimization (RBDO) problem for g = 1; (d) result
obtained with an RBDO problem for 8 = 2.

Table 3. Statistical distribution associated with the silicon properties of the accelerometer (original
design adopted as reference).

Statistical parameter Statistical distribution Mean (u) CoV
E: Young's modulus (GPa) Normal 170 0.10
p: Density (kg/m?) Normal 2330 0.10

Note: CoV = coefficient of variation.

4.2. Reliability-based design optimization with material uncertainties

Now, the RBDO problem is carried out, considering the material properties of the accelerometer as
uncertainties (r). The uncertainties are considered as Gaussian variables with the adopted statistical
parameters presented in Table 3. All other parameters are kept identical to the previous optimization
problem (deterministic case).
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Figure 4. Optimized cross-section configurations and comparison among results: (a) original design of the accelerometer
(B = 0.15); (b) result obtained with a deterministic problem (8 = 0); (c) result obtained with a reliability-based design optimization
(RBDO) problem for 8 = 1; (d) result obtained with an RBDO problem for g = 2.

Thus, using the RIA, the new optimization problem is set as follows:
Minimize Wy
Subjectto  B(fu(s, r) > 2500) — ﬁ >0

. (6)
B(Se(s, 1) = 0.6) — =0

Slow = 8 = Supp

where two different 8 (minimum reliability index required) are evaluated: 8 = 1 and g = 2, which
represent reliabilities of 84.13% and 97.72%, respectively.

It is observed that convergence of the RBDO algorithm has failed for reliability levels higher than
the value corresponding to 8 = 2, owing to the limit values applied to the constraints. Statistical
properties of the random variables, shown in Table 3, have been chosen arbitrarily. Thus, if these
parameters could be more accurately estimated, higher reliability indices should be achieved. The
results obtained for the two values of the reliability index are shown in Figures 3 and 4. For com-
parison, Table 4 summarizes the results obtained for the deterministic optimization and the RBDO
approach, including the results of the original design proposed for the accelerometer.

The values of f, and S, presented in Table 4 are calculated using the average value of the Young’s
modulus and density of the silicon and, for this reason, they are larger than the specified minimum
value when higher levels of reliability are employed. In other words, the probabilistic constraints are
far from boundary of the feasible domain for higher levels of reliability.

In Table 4, the width value of the device (W) is explicitly given only for the original geometry
(Figure 2), and for all other cases it is given as the percentage reduction from the original geometry.
As expected, larger values of the reliability index () produce a smaller reduction in the size of the
device. However, this result is increasingly robust to the inherent variations in material properties.

It is noticed that, with the constraints employed here, the geometry of the optimized result is
approximately 12% lower than the original design, while the reliability has increased to 97.72%; that
is, for every 100 manufactured devices, at most three cannot achieve the resonance frequency and
sensitivity requirements.

To validate the results presented in Figures 3 and 4, the Monte Carlo method is applied to cal-
culate the probability of failure of the optimized configuration obtained by the implemented RBDO
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Table 4. Results of the parametric optimization with and without reliability.

Original design Deterministic solution RBDO solution for 8 = 1 RBDO solution for = 2

Wm 2000 1847 2129 2464

tm 380 405 380 361

Wy 200 179 200 215

th 55 46 55 61

Ly 2820 2447 2706 2733

Gap 2 2 2 2
Wyap 1040 600 600 600

Wrim 150 100 100 100

fn (Hz) 2678 2500 2684 2886

Se (pF/g) 0.60 0.60 0.69 0.80
Wy 4380 —25.8% —19.4% —11.8%
Reliability 56.1% 50% 84.13% 97.72%

Note: RBDO = reliability-based design optimization.
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Figure 5. Result obtained from probability calculation of the sensitivity constraint using the Monte Carlo method. RIA = reliability
index approach.

algorithm, when 8 = 2. Figures 5 and 6 and Table 5 summarize the results of this analysis, in which
225,000 samples were used and a total computational time of approximately 35 min was required,
using a computer (Intel Core i7-16, with GB RAM) running the Windows operating system.

In Figures 5 and 6, the two perpendicular central lines represent the average value of the ran-
dom variables E and p, and the lighter lines indicate two standard deviations (20') of the mean (u).
Figures 5 and 6 also illustrate the history of iterations by the RIA and the location of the MPFP.

By evaluating the obtained results, it can be stated that despite the FORM using the RIA being a
rough and simple method for the calculation of probabilities, it is extremely effective for the problem
considered here. The probability values obtained by this methodology are almost coincident with
those obtained by the Monte Carlo method, but with much lower computational cost. As can be seen
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Figure 6. Result obtained from probability calculation of the resonance frequency constraint using the Monte Carlo method.
RIA = reliability index approach.

Table 5. Comparison between reliability values obtained by the reliability
index approach (RIA) and Monte Carlo method.

Constraint RIA (%) Monte Carlo method (%)
Sensitivity 97.72 97.72
Resonance frequency 97.72 97.70

in Figures 5 and 6, both limit state functions are practically linear, especially in the neighbourhood
of the MPFP, which justifies the use of the FORM.

It is observed that despite the influence of the parameters E and p being not linear for the cal-
culation of sensitivity and resonance frequency, this does not necessarily imply that the limit state
function is nonlinear in the space of random variables.

4.3. Reliability-based design optimization with material and geometry uncertainties

Finally, a case study closer to a real-world scenario is presented here. In addition to uncertainties
associated with the material properties, in this study one of the design variables is considered as a
random variable.

The thickness of the flexible beam (f,) connected to the proof mass (Figure 2) was chosen as a ran-
dom design variable, because both the resonance frequency and sensitivity of the device are strongly
influenced by this parameter, as verified experimentally. In this example, this variable is represented
by the mean of the statistical distribution (tty,). The other dimensions of the device showed very little
variation between the design value and the value obtained experimentally and, therefore, they will be
treated as deterministic variables in this example.
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Table 6. Statistical distribution and design variables of the problem.

Statistical parameter Statistical distribution Mean (1) CoV
E: Young's modulus (GPa) Normal 170 0.02
p: Density (kg/m?3) Normal 2330 0.02
tp: Beam thickness (um) Normal b (design variable) 0.05

Note: CoV = coefficient of variation.

Table 7. Upper and lower limits of the adopted design variables.

Design variable Lower limit (o) (tm) Upper limit (sypp) (tm)
Wm 500 3000
tm 250 500
Lp 2000 3000
Gap 2 10
Wgap 600 1200
Wiim 100 200
E(ty) 10 100

Table 8. Results of the parametric optimization with uncertainties in geometric and material

properties.

Original design RBDO solution for = 1 RBDO solution for f = 2
Wm 2000 2261 2771
tm 380 364 343
Wy 200 182 204
ty 55 61 68
Ly, 2820 2748 2663
Gap 2 2 2
Wagap 1040 600 600
Wiim 150 100 100
fa (H2) 2678 2775 3092
Se (pF/g) 0.60 0.73 0.88
Wy 4380 —16.4% —4.8%
Reliability 56.1% 84.13% 97.72%

Note: RBDO = reliability-based design optimization.

For simplicity, and based on the fabrication process and some experimental results, Wy, = 31, is
considered in this example. Although there are additional fabrication constraints for the device, only
this one (W}, = 3tp) will be considered here. Table 6 shows the statistical parameters adopted in this
example, and Table 7 presents the design variables and their respective upper and lower limits. All
other specifications are kept identical to the examples previously evaluated.

Table 8 presents the optimized results obtained for = 1and 8 = 2, which represent reliabilities of
84.13% and 97.72%, respectively. No convergence was found for reliability levels higher than 97.72%
(B = 2). Thus, the PMA was applied for the calculation of probabilities of the problem. Figures 7 and 8
compare the different optimized solutions obtained so far. In both figures, only results obtained by
the RBDO problem with 8 = 2 are used for this comparison. Thus, Figures 7(c) and 8(c) show again
the results obtained by considering uncertainties in the material properties, presented in Section 4.2,
while Figures 7(d) and 8(d) show the results obtained considering also uncertainties in thickness fp,.

For the highest level of reliability (8 = 2), it is noticed that size of the device (W) is approximately
equal to the initial design, where a 4.8% reduction with respect to the original design can be seen.
However, the dimensions of the geometry are considerably different, which indicates that the simple
reallocation of mass in certain regions of the device seems to be sufficient to significantly increase its
reliability.
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Figure 7. Comparison among optimized solutions: (a) original design (Figure 2); (b) result obtained with deterministic problem; (c)
result obtained with RBDO problem for uncertainties in material properties (case 1; # = 2); (d) result obtained with RBDO problem
for uncertainties in geometric and material properties (case 2; 8 = 2).

Figure 8. Comparison among optimized cross-section configurations: (a) original design of the accelerometer (E = 0.15); (b) result
obtained with a deterministic problem (8 = 0); (c) result obtained with a reliability-based design optimization (RBDO) problem with

uncertainties in material properties (case 1; # = 2); (d) result obtained with an RBDO problem for uncertainties in geometric and
material properties (case 2; 8 = 2).
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5. Conclusions

A methodology for the design of MEMS capacitive accelerometers, based on a parametric RBDO
approach, is presented and evaluated using some examples, including a case study with the original
design of a high-performance capacitive accelerometer device.

Two different approaches, RIA and PMA, are applied to the FORM of the RBDO solver imple-
mented in this work. Nevertheless, despite the FORM using RIA being a rough and simple method
for the calculation of probabilities, it is extremely effective for the problems considered in this work.
RIA has better convergence to search an optimized solution for RBDO problems, except for cases
in which material and geometric uncertainties are considered simultaneously, and higher reliability
levels (more than 97.72%) are required.

Finally, it is important to mention that the statistical properties of the random variables have
been chosen arbitrarily. Thus, a natural and very important extension to this work is the fabrication
of the devices designed here, aiming to validate experimentally these results. However, before the
accelerometer is fabricated, all the random variables involved in the optimization problems should
be properly estimated. Therefore, it is suggested that for future experimental work, a careful study of
this effect on accelerometer design could benefit effectively from this work.

Moreover, the SRBDO approach (Nguyen, Song, and Paulino 2010; Chun, Song, and Paulino
2015), which takes into account the system probability of failures, may be tried as a good alterna-
tive to provide optimized structural designs for the accelerometer studied here and, thus, to improve
the accuracy in satisfying the probabilistic constraints.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The first author acknowledges the scholarship support provided by the Brazilian Agency for Funding of Studies and
Projects (FINEP) [grant no. 01.09.0395.00]. The authors thank the National Council for Research and Development
(CNPq) for financial support [grant nos 559908/2010-5, 310578/2012-4, 305782/2012-6 and 304121/2013-4]. More-
over, the authors are grateful to Krister Svanberg from KTH Royal Institute of Technology for supplying the MMA
code.

References

Allen, M., and K. Maute. 2004. “Reliability-Based Design Optimization of Aeroelastic Structures.” Structural and
Multidisciplinary Optimization 27: 228-242.

Allen, M., M. Raulli, K. Maute, and D. M. Frangopol. 2004. “Reliability-Based Analysis and Design Optimization of
Electrostatically Actuated MEMS.” Computers ¢ Structures 82 (13-14): 1007-1020.

Alvarez, M. ], N. Gil-Negrete, L. Ilzarbe, M. Tanco, E. Viles, and A. Asensio. 2009. “A Computer Experiment Application
to the Design and Optimization of a Capacitive Accelerometer.” Applied Stochastic Models in Business and Industry
25(2): 151-162.

Aoues, Y., and A. Chateauneuf. 2010. “Benchmark Study of Numerical Methods for Reliability-Based Design Optimiza-
tion.” Structural and Multidisciplinary Optimization 41: 277-294.

Bao, M., and H. Yang. 2007. “Squeeze Film Air Damping in MEMS.” Sensors and Actuators A: Physical 136 (1): 3-27.

Chun, J,, J. Song, and G. H. Paulino. 2015. “Parameter Sensitivity of System Reliability Using Sequential Compounding
Method.” Structural Safety 55: 26-36.

Coultate, J. K., C. H. Fox, S. McWilliam, and A. R. Malvern. 2008. “Application of Optimal and Robust Design Methods
to a MEMS Accelerometer.” Sensors and Actuators A: Physical 142 (1): 88-96.

Desrochers, S., D. Pasini, and J. Angeles. 2010. “Optimum Design of a Compliant Uniaxial Accelerometer.” Journal of
Mechanical Design 132 (4): 041011-1-041011-8.

Enevoldsen, I, and J. D. Serensen. 1994. “Reliability-Based Optimization in Structural Engineering.” Structural Safety
15 (3): 169-196.

Engesser, M., A. Franke, M. Maute, D. Meisel, and J. Korvink. 2010. “A Robust and Flexible Optimization Technique
for Efficient Shrinking of MEMS Accelerometers.” Microsystem Technologies 16: 647-654.



ENGINEERING OPTIMIZATION 379

Haftka, R. T., Z. Gurdal, and M. P. Kamat. 1990. Elements of Structural Optimization. Dordrecht: Kluwer Academic
Publishers.

Hasofer, A. M., and N. C. Lind. 1974. “Exact and Invariant Second-Moment Code Format.” Journal of the Engineering
Mechanics Division 100 (1): 111-121.

Kaajakari, V. 2009. Practical MEMS. Las Vegas, NV: Small Gear Publishing.

Kharmanda, G., N. Olhoft, A. Mohamed, and M. Lemaire. 2004. “Reliability-Based Topology Optimization.” Structural
and Multidisciplinary Optimization 26: 295-307.

Kovacs, G. T. 1998. Micromachined Transducers Sourcebook. New York: McGraw-Hill.

Krishnan, G., C. U. Kshirsagar, G. K. Ananthasuresh, and N. Bhat. 2007. “Micromachined High-Resolution Accelerom-
cters.” Journal of Indian Institute of Science 87 (3): 333-361.

Kroese, D. P, T. Taimre, Z. I. Botev. 2011. Handbook of Monte Carlo Methods. Hoboken, NJ: John Wiley & Sons.

Lee, J.-O., Y.-S. Yang, and W.-S. Ruy. 2002. “A Comparative Study on Reliability-Index and Target-Performance-Based
Probabilistic Structural Design Optimization.” Computers & Structures 80 (3-4): 257-269.

Liu, G. ], T. Jiang, and A. L. Wang. 2009. “Robust Optimization of an Accelerometer Considering Fabrication Errors.”
Materials Science Forum 628: 353-356.

Liu, P-L., and A. D. Kiureghian. 1991. “Optimization Algorithms for Structural Reliability.” Structural Safety 9 (3):
161-177.

Madou, M. J. 2002. Fundamentals of Microfabrication: The Science of Miniaturization. Boca Raton, FL: CRC Press.

Madsen, H. O., and S. L. N. Krenk. 2006. Methods of Structural Safety. Mineola, NY: Dover Publications.

Maute, K., and D. M. Frangopol. 2003. “Reliability-Based Design of MEMS Mechanisms by Topology Optimization.”
Computers & Structures 81 (8-11): 813-824.

Mukherjee, T., Y. Zhou, and G. Fedder. 1999. “Automated Optimal Synthesis of Microaccelerometers.” In 12th IEEE
International Conference on Micro Electro Mechanical Systems (MEMS 99) 326-331.

Nguyen, T. H,, . Song, and G. H. Paulino. 2010. “Single-Loop System Reliability-Based Design Optimization Using
Matrix-Based System Reliability Method: Theory and Applications.” Journal of Mechanical Design 132 011005:
1-11.

Qiao, D., G. Pang, M.-K. Mui, and D. Lam. 2009. “A Single-Axis Low-Cost Accelerometer Fabricated Using Printed-
Circuit-Board Techniques.” IEEE Electron Device Letters 30 (12): 1293-1295.

Rodrigues, J., A. Teves, A. Passaro, L. Goes, E. Silva, and C. Mateus. 2011. “Static Mechanical Analysis of a Silicon
Bulk-Micromachined Accelerometer.” In Proceedings of the 21st Brazilian Congress of Mechanical Engineering
(COBEM).

Roylance, L. M., and J. B. Angell. 1979. “A Batch-Fabricated Silicon Accelerometer.” IEEE Transactions on Electron
Devices 26: 1911-1917, December 1979.

Schuéller, G., and H. Jensen. 2008. “Computational Methods in Optimization Considering Uncertainties—An
Overview.” Computer Methods in Applied Mechanics and Engineering 198 (1): 2-13.

Seidel, H., H. Riedel, R. Kolbeck, G. Miick, W. Kupke, and M. Kéniger. 1990. “Capacitive Silicon Accelerometer with
Highly Symmetrical Design.” Sensors and Actuators A: Physical 21 (1-3): 312-315.

Selvakumar, A., F. Ayazi, and K. Najafi. 1996. “A High Sensitivity z- Axis Torsional Silicon Accelerometer.” In: Electron
Devices Meeting, 1996. IEDM ‘96. International. [S.L: s.n.], p. 765-768.

Silva, M., D. A. Tortorelli, J. A. Norato, C. Ha, and H.-R. Bae. 2010. “Component and System Reliability-Based Topology
Optimization Using a Single-Loop Method.” Structural and Multidisciplinary Optimization 41: 87-106.

Svanberg, K. 1987. “The Method of Moving Asymptotes—A New Method for Structural Optimization.” International
Journal for Numerical Methods in Engineering 24 (2): 359-373.

Tu, J., K. K. Choi, and Y. H. Park. 1999. “A New Study on Reliability-Based Design Optimization.” Journal of Mechanical
Design 121 (4): 557-564.

Yazdi, N., and K. Najafi. 2000. “An all-Silicon Single-Wafer Micro-G Accelerometer with a Combined Surface and Bulk
Micromachining Process.” Journal of Microelectromechanical Systems 9 (4): 544-550.

Appendix

The parametric optimization algorithm based on RBDO, implemented in this work, requires the calculation of
the derivatives of the objective function and constraints (sensitivity analysis). Since the FORM approach has
been adopted, the sensitivity of probabilistic criteria can be calculated analytically (Allen and Maute 2004), as
follows.

The derivative of the probability of failure Py with respect to the design variable s; depends on the derivative of #
with respect to the design variable s; which, since reliability is determined from the RIA, is given by:

op (VT g 1 e
— = = —u - (Al)
0s; Ju* as; B Os;
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where u* denotes the MPFP, which can be found by solution of the optimization problem of Equation (2). Thus, from
the Kuhn-Tucker conditions (Haftka, Giirdal, and Kamat 1990), this solution is given as:

dQ
* _ _pg_du
w=—fry o (A2)
du
where Q is the considered limit state function.
Thus, Equation (A1) can be written as:
. aQ .
Ui L (A3)
Js; ’ dQ | ds;
du
The derivatives of dQ/du and du*/ds; can be written in terms of the original random variable r, as follows:
dQ  dQdT, '(w
= _=u A4
du dr du (A4)
ou* dTy(r*) dr
v A5
0s; dr ds; (45)

where Ty is a transformation operator that makes the middle point in r-space corresponding to the origin in u-space.
The continuation of this derivation depends on the type of the design variable s;, which can be deterministic or not.
If a deterministic variable is considered, total variation of the limit state function Q with respect to the design variable
s; is zero (Allen et al. 2004).
Then, the following expression is formulated from Equation (A3):

g 1 dQ

&L e A6

ds; ’ %Q ds; (A6)
u

where the term dQ/ds; is the deterministic sensitivity of the limit state function Q.
Otherwise, for non-deterministic variables the sensitivity of the reliability index $ is derived as:
0B 1 _ou* 1 dTu(r*s
9 _ L _ 1 ndhhe (A7)
Js; g 0si B ds;
The sensitivity analysis in PMA is easier to calculate than in RIA, since the performance target of the PMA is simply
the value of the limit state function in MPTP. Then, the sensitivity of the performance target for PMA is the same as
the sensitivity of the limit state function Q with respect to the design variable s;, i.e. dQ/ds;.




