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Randomly Supported Variations of Deterministic
Models and Their Application to One-Dimensional
Shallow Water Flows

E. G. Birgin, Ph.D."; M. R. Correa, Ph.D.2; V. A. Gonzalez-Lépez, Ph.D.3;
J. M. Martinez, Ph.D.% and D. S. Rodrigues, Ph.D.®

Abstract: This paper deals with the prediction of flows in open channels. For this purpose, models based on partial differential equations
are used. Such models require the estimation of constitutive parameters based on available data. After this estimation, the solution of the
equations produces predictions of flux evolution. In this work, we consider that most natural channels may not be well represented by
deterministic models for many reasons. Therefore, we propose to estimate parameters using stochastic variations of the original models.
There are two types of parameters to be estimated: constitutive parameters (such as roughness coefficients) and the parameters that define
the stochastic variations. Both types of estimates will be computed using the maximum likelihood principle, which determines the objective
function to be used. After obtaining the parameter estimates, due to the random nature of the stochastic models, we are able to make prob-
abilistic predictions of the flow at times or places where no observations are available. DOI: 10.1061/JHENDS8.HYENG-13748. © 2024

American Society of Civil Engineers.

Introduction

The Saint-Venant equations are often used to predict river flows
(Ding and Wang 2005; Ayvaz 2013; Ying et al. 2004). To solve
these partial differential equations, one must know the initial state
of the channel at time ¢ = 1, including the depth, fluid velocity,
and/or flow rate at as many points as possible in the one-
dimensional channel (Emmett et al. 1979). Information about boun-
dary conditions, that is, values of the main description variables at
the beginning and/or the end of the channel, may also be required.
Additionally, topographic information such as bed slopes and
shapes of transversal areas, as well as a roughness parameter,
known as Manning’s coefficient (Ding et al. 2004; Ding and Wang
2005; Pappenberger et al. 2005; Agresta et al. 2021), are needed.
With this information, we can solve the Saint-Venant equations
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using numerical methods and we can predict the physical character-
istics of the flow in unknown positions or in the future.

If the channel’s geometry is well determined, the Manning
coefficients can be accurately estimated using available data. In
general, standard least-squares procedures are successful for the min-
imization of differences between real observations and model predic-
tions. Many papers have been devoted to the problem of estimating
Manning’s parameters using this approach. In Pappenberger et al.
(2005) the performance of the HEC-RAS software (Brunner 1994)
for predicting inundation data was analyzed as a function of
Manning’s roughness coefficient and weighting discretization
parameters to produce dynamic probability maps of flooding dur-
ing the event. HEC-RAS was also used in Agresta et al. (2021),
where different heuristic methods were employed for optimizing
the Manning coefficient. Ding and Wang (2005) solved the Saint-
Venant equations to simulate flows in channel networks and
used the resulting deterministic model to compute the optimal
Manning’s coefficient using standard quasi-Newton methods.
Askar and Al-Jumaily (2008) estimated the Manning coefficient
using Saint-Venant equations as predictors and sequential quadratic
programming for optimization purposes. Ebissa and Prasad (2017)
used the gradually varied flow (GVF) equations for simulations and
genetic algorithms for deterministic optimization of the roughness
parameter. In Birgin and Martinez (2022), a secant derivative-free
optimization method was developed for determining the Manning
coefficient in synthetic experiments. In the data assimilation ap-
proach with joint state parameter estimation (Ziliani et al. 2019),
at each time level one has estimations of the state variables, the
constitutive parameters, and the process noise. Using simulation,
forecasts of the state variables for the next time level are computed
and the distribution of noise is updated.

In this paper we propose a modification of the original one-
dimensional shallow water (Saint-Venant) deterministic model by
introducing stochastic variations in order to add variability to, and
in some cases also improve, the already proven successful estima-
tions based on least-squares minimization of errors. Within this
approach, there are two types of parameters to be estimated:
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Manning’s coefficients and parameters that define perturbations
of the (Saint-Venant) deterministic models (essentially, standard
deviations). These parameters are coupled and are computed using
the maximum likelihood principle.

Although stochastic modeling is, of course, not new, the idea
presented in this paper for estimating distribution parameters using
simulations and maximal likelihood has not been attempted in the
past. In many regression problems, it is necessary not only to pre-
dict a value but also to give confidence or uncertainty intervals. For
example, in Gaussian process-based models one looks for the type
of dependence between two successive states with which a good fit
to the available data and, sometimes, an adequate satisfaction of a
physical law is produced. See Rasmussen and Williams (2005). Our
approach is different in the sense that we start from the physical
law and postulate that the observations are the result of a random
perturbation of it. The magnitude of such perturbation, in our case,
is estimated by maximizing the likelihood function.

This methodology can be useful for irregular rivers for which a
one-dimensional simplification roughly corresponds to reality, and
the available data are sparse both in time and space. These cases
are very frequent in Brazil and other Latin American countries.
We illustrate with numerical experiments that the proposed method
works well when the observed data come from laboratory tests and
in tests that involve a real river reach.

Related approaches to the one presented in this paper can be
found in the biostatistics literature in connection to growth proc-
esses (Chao and Huisheng 2016; Delgado-Vences et al. 2023; Jiang
and Shi 2005; Lillacci and Khammash 2010; Roman-Roman et al.
2010). For a comprehensive treatment of stochastic differential
equations, see Panik (2017). Kalman filter and its nonlinear varia-
tions (Kalman 1960) should also be evoked in this context as they
produce stable estimations of a system’s present state as a combi-
nation of observation and prediction. In Gaussian processes, one
models the evolutionary physical phenomenon as a stochastic pro-
cess whose covariance needs to be estimated and where PDE rela-
tions are incorporated to feed the estimation process. In some sense,
our approach is the inverse of the one adopted in the Gaussian pro-
cess. In fact, in our case, we start from the discretized PDE equation
incorporating random variation as an essential part of the evolu-
tion model.

The rest of this paper is organized as follows. The Saint-Venant
equations, selected as the basic model to describe the flux of water
in one-dimensional channels, are described in the next section. The
proposed model considering inadequacies and the parameters esti-
mation strategy based on a likelihood function is introduced in the
following section. In the next section we describe the optimization
procedure. An extensive set of numerical experiments describing
different open channel flow scenarios and comparing the results
obtained from the deterministic and the stochastic models is re-
ported in the penultimate section. This includes the application of
the proposed method to a real irregular river. The last section pres-
ents the conclusions and lines for future research.

Saint-Venant Equations

The Saint-Venant equations (Saint-Venant 1871) are usually em-
ployed for river-flow simulations. These equations are given by

0A 00

E—}—a 0 (1)

and
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for t € [0,7] and x € [x;, x¢], with x; and x; = initial and final
representative points of the analyzed part of the channel. Z(x, ) =
water surface elevation, z,(x) = channel bed elevation, (x,t) =
Z(x, 1) — z;(x) is the depth of the river, A(x, t) = transversal wetted
area, P(x,1) = wetted perimeter, R(x,7) = A(x,1)/P(x,t) is the
hydraulics radius, V(x,1) = Q(x, t)/A(x, ) is the average speed of
the fluid, and g is the acceleration of gravity taken as 9.81 m/s>.
Eq. (1) describes mass conservation and Eq. (2) represents bal-
ance of the linear momentum. The coefficient n,, is known as Yen-
Manning roughness coefficient, introduced in Yen (1992, 1993),
which has units m'/¢ in SI. This parameter relates to the classical
Manning’s coefficient n through the relation n, = ,/gn. Typically,
this roughness coefficient depends on x due to the morphological
aspects of the river along its course. Sediment deposition can also
affect the roughness coefficients over time.

Other forms of the Saint-Venant equations can be considered as
well. For example, in Ding and Wang (2005) and Chaudhry (2022)
it is considered a more general form of Eq. (2) in order to take into
account the non-uniformity of velocity in cross sections. In their
approach, the momentum equation takes the form

d (Q\ 9 (BQ? oz n;0|0|

o <X) *ox (K) o Tagn =0 O
where 3 = momentum correction factor. If we consider that Eq. (3)
represents a more accurate representation of the balance of momen-
tum, the employment of (2) may represent an error in the modeling
that persists throughout the time horizon. Our approach is intended
to deal with all kinds of errors that arise in the description of evolu-
tionary systems. Of course, in general, it is better to use the physical
model of the phenomena that best corresponds to reality. However,
the approach supported in this paper is intended to be applied to
inaccurate models.

The development of accurate, efficient, and robust numerical
schemes for calculating approximate solutions of the hyperbolic
systems (1,2) and (1,3) is still a challenging issue that has al-
ready been extensively investigated (Cockburn 1999; Correa 2017,
Khan and Lai 2014; Kurganov 2018; Ying et al. 2004). In the
present work, we assume that the Saint-Venant system is numeri-
cally solved using a stable and accurate numerical scheme, for
which the discrete in space and time formulation can be written as

-

U™ = Flty tyr U ) (4)

Sl . . .

In (4), U is a vector containing the numerical solution at
t =t,,,, F is a vector function depending on the previous solution
U" and on a vector of parameters (”g)i’ i=1,..., n,,, represent-
ing different values of the Yen-Manning coefficient n, in space and

time. The discrete form given by Eq. (4) is typical of explicit
numerical schemes.

Random Variation of a Model and the Estimation of
Its Parameters

The numerical solution of Saint-Venant equations provides state
variables (transversal areas and flow rates) at a finite number of
time instants 7 = {t,, ..., #7|}. Our proposal is to perturb (or
deviate) the computed states at selected time instants € 7, € T
with random values in the way described as follows. More specifi-
cally, we postulate that, instead of obeying the evolution dictated by
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the numerical solution of Saint-Venant equations, the actual
evolution of channel flows obeys the stochastic process

U™ = Flty tyer, U 7g) + 6(ty )Vt U 0)  (5)

In (5), F(t,.t,41.U" 7,) represents the state variables com-
puted by the chosen numerical Saint-Venant solver at time ¢,

and V(t,,,,U", o) is a vector whose entries are random variables
with zero expectation and standard deviation equal to o times the

modulus of the correspondent component of ‘7-' (tps tpgts Zj[", 719).
Moreover, 6(t,, ) is an indicator function which depends on prob-
abilistic parameters to be determined and that takes the values 1 and
0 according to the decision of perturbating the state at time 7, | or
not. As a result, the state computed by our randomly perturbed evo-

Iution method is defined by ut,

We consider that perturbations are made at time instants in a set
T,={t].1,....tn} S T.Toconstruct 7., for a given parameter
v, we define ] =min{r € T|t—1t, 2~} and, for [ >1, 1] =
min{s € 7|t — 1, > ~}. This means that time instants in the set
T -, have intervals of size around ~, or, in other words, that pertur-
bations occur with frequency 1/~. Accordingly, for ¢ € 7, the in-
dicator function 6(7) in (5) is defined as

1, ifreT,
ot = { '
0, otherwise

This means that 6(¢) in (5) depends on 7, which in turn de-
pends on the set of instants 7 determined by the method used for
the numerical solution of the Saint-Venant equations and on the
(unknown probabilistic) parameter . Moreover, for further refer-
ence, we define the vector 7 € R™ containing the time instants t}’ <
13 <---<f at which the second term in the right-hand side of
Eq. (5) is “activated” (i.e., containing all the elements of 7,) as
o=t fori=1,...,m

In summary, the stochastic model (5) differs from the deter-
ministic discretized model (4) due to the introduction of zero-mean
random perturbations in space, on almost equally-spaced-in-time
states of the solution. It is important to emphasize that the proposed
stochastic model seats upon the determination of three param-
eters that must be estimated using available data, namely, the Yen-
Manning coefficients 7, the vector 7 (that depends by construction
on the parameter y and the set of instants 7 that is built by the
chosen Saint-Venant solver) and the deviation o. (Notice that if
v = +o0 or o = 0, then no deviation is introduced and the stochas-
tic model coincides with the deterministic model.) The remainder
of this section is devoted to the proposal for estimating the param-
eters of the stochastic model.

For the sake of simplicity, hereinafter, the description corre-
sponds to the case in which the Yen-Manning coefficient is spa-
tially homogeneous and does not change in time. However, there
are no complications in extending it to the case in which differ-
ent roughness coefficients are found for different arguments x €
[x;,xr] and t € [0, T]. Moreover, we also assume that the Saint-
Venant solver was already chosen and parameter -y is known. Thus,
the variables that determine the vector 7 are fixed and we focus on
the determination of 7, and o. As well as in the case of a spatially
nonhomogeneous roughness coefficient, considering 7, the vector
that contains the time instants at which perturbations occur, an un-
known array (of unknown dimension) fits within the scope of the
procedure proposed in the present work. In general, an arbitrary
number of parameters could be considered both in the determin-
istic part of the model and in the probabilistic part related to
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perturbations. The trade-off would be to have a more difficult
optimization problem in the parameter adjustment phase.

We assume that N, observations va‘ (v may be either A or Q,
or any other related quantity such as h or V) at spatial-time coor-
dinates (x{, £9%%) € [x;, xz] x [0, T] for k = 1, ..., N, are given.
In additlon, we assume that each observation vibs is associated with
a quantity ¢, > 0, which typically represents the measurement
error of the observation. Roughly speaking, 1, is the absolute value
of the difference between the kth observation and its following sim-
ulation which we consider that the similarity between both is high.
Therefore, ¥, must take into account the intrinsic measurement
error (due to the precision of the instrument) and, possibly, the in-
trinsic error of the simulation. Of course, in many cases we may
consider that the latter is zero, but in other cases it is not. We wish
to determine n, and o from available data using the maximization
of a likelihood function calculated through simulations. To do so,
for a given pair (n,, o), we consider N, simulations calculated
through runs of the process (5). This means that the simulated val-
ues are calculated on a space-time grid. If any (x¢ obs to'“) does not
belong to the grid, the corresponding simulated value may be cal-
culated with interpolation.

Let y“‘m be the simulated value at spatial-time coordinate (x

195 for k =1, Ngps oObtained at simulation j for j =1,
Ngm- The hkehhood associated with a pair (n,, o) is 1ntended to
represent the probability of the given set of observations to be gen-
erated by (5). Roughly speaking, the considered likelihood is the
ratio of the favorable cases to the total number of simulations Ng,,.
For each simulation j, instead of a binary definition of favorability,
we propose the smoothed definition given by

exp(—(d(v9™, .. v‘,‘\,boz 1/}”1“, e v;\‘,:;j))z) (6)

ob%

where

Nop, obs sim)) 2
d(UObs vobs Umm U51m — 1 Y )
1o Nops? “1,j2 v o> Nobs] N, z:

(7)

represents the root mean square deviation of simulation j with re-
spect to observations. Therefore, the favorability of simulation j is
1if o™ coincides with v} for k =1, ..., Nop, and is equal to
1/e &~ 0.37 if the distance between v"b“ and v“m is equal to ¥J; for
k=1, ...,Ngs. Thus, ¥J; can be chosen in practical cases as
a representation (not necessarily a rigorous upper bound) of the
measurement error of observation v$*. Consequently, the likeli-
hood associated with the pair (n,, o ) is given by

Nsim

Ly(ng.o Zexp( (d(of™. .o o3 oR )))
le

(8)

The parameters that are considered optimal for model (5) are the
ones that maximize the likelihood function (8). A sketch represent-
ing at a high level the differences between the usual deterministic
process and the procedure proposed in the present work is shown
in Fig. 1.

Optimization Procedure

Given the observed data v** at spatial-time coordinates (x{, 1)

for k=1, N obs> ﬁndmg optimal ny and o* consists of
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Random variations |
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of unknown data as a su-
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Fig. 1. Sketch representing at a high level the differences between the usual deterministic process and the procedure proposed in the present work.
On the left side, the main stages of the usual deterministic procedure are described. On the right side of the figure, the proposed procedure,

highlighting the main differences in red, is presented.

maximizing function (8). Evaluating (8) requires to consider N,
simulations. The value of N, will be empirically determined for
each experiment. Function (8) is a function of two variables, sto-
chastic, and nonlinear. Considering that we know a priori intervals
[ gmin» Mgmax] @nd [0y, Opmax] Within which the optimal values 7]
and o lie, the simplest way to find these values is to choose steps
An, and Ao and to perform a global search within the given
bounds. According to the desired accuracy of the optimal values,
iterative refinements can be performed. A procedure that already
includes successive refinements for the computation of nj is de-
tailed in Algorithm 1. In the numerical experiments, the algorithmic
parameters Ngmin, Mgmaxs Omin aNd O, were established using
rough estimates of the parameters sought. The number of simula-
tions Ng;,, was decided empirically, starting from a small value and
increasing it until verifying that increasing it does not significantly
modify the results.

Algorithm 1. Estimation of the stochastic model parameters with
successive refinements

Input: The observed data vzbs at spatial-time coordinates (xzbs,
19%) and the measurement errors UJ; for i =1, ..., Ny, the fre-
quency of perturbations 1/+, the number of simulations Ny,
an initial interval [1 gy, ymax] for the Manning coefficient and its
number of subdivisions Ndiy.n,» the precision En, required for the
Manning coefficient, a fixed interval [on, O] for the disper-
sion parameter and the number ng;, , of equidistant trials. In addi-
tion, an algorithm to solve Egs. (1) and (2) is given.

Output: Optimal values n;, and o™ for the Manning parameter and
the dispersion parameter, respectively.
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1 L.x<0

2 A0 = (amax - Umin)/"div.a

3 while (1m0 — Ngmin) > €, do

4 An,(]<_(ngmax - ngmin)‘/ndiv.n_q

5 for p =0.1, ..., ngy,, do

6 nfle—n i 4+ pAn,

7 for g =0,1, ..., ng,, do

8 ol g o+ gAo

9 for j=1,2,...,Ng, do

0 By solving (5), with n, = ngial, using the algo-
rithm chosen to solve (1,2), and perturbing with
dispersion parameter o = ¢ and frequency

1/7, compute v} for k= 1,2, ..., Nops.

1

11 Evaluate the likelihood L, (n§™, o) defined in (8).
12 if £,(niil otl) > £ then

13 ﬁmax <—_£1; (n}/rial’ O.trial)

14 nj<—nijl

15 o< Utrial

16 Ngmin<ny — Ang

17 Rymax <1y + An,

Numerical Experiments

In this section, we present numerical experiments to illustrate the
performance of the proposed approach. Different open channel sce-
narios are considered, namely, the formation of a hydraulic jump in
a horizontal flume, the simulation of a partial dam break, and sim-
ulations of a real river. In all experiments, the stochastic process (5),
based on Egs. (1) and (2), is solved with the upwind conservative
finite volume scheme proposed in Ying et al. (2004). Moreover, the
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frequency 1/~ of the perturbations is assumed to be known and,
thus, parameters to be determined from observed data are the Yen-
Manning coefficient n, € R and the deviation parameter o € R.
It should be noted that the ultimate goal of the numerical experi-
ments is not to determine these parameters but to deliver predic-
tions and approximations of unavailable data. These predictions
will include information related to the lack of fidelity with which
the model represents reality. For the sake of completeness, the esti-
mated values for the parameter n, are compared with the values
obtained using the deterministic model (which corresponds to con-
sidering v = o0 and/or o = 0 in the stochastic model).

It is important to highlight that Manning’s coefficient may
adequately approximate randomness in the geometry of channels.
Our contribution is not in contradiction with this statement and
does not seek a better approximation of the Manning coefficients
than the ones obtained by other methods. What we aim to do is,
given a model, a method of resolution and, perhaps, the result
of a deterministic estimation of constitutive parameters (as the
Manning roughness coefficient), to determine the probabilistic
variation intrinsic either to the model or to the solution method that
makes it possible probabilistic predictions (for example, confidence
intervals) in situations not contemplated in the observation data.
Although we consider the joint estimation of constitutive parame-
ters and probabilistic parameters (dispersion), this is not essential
to our approach. In other words, we may consider that constitu-
tive parameters are well established by other methods. The fact that
the calibrated n, is, in many cases, the same as the one obtained
by other, previously stated, methods is not a surprise. Our method
may be interpreted in terms of the analysis of the error originated in
the optimization of parameters of arbitrary models using arbitrary
methods.

Algorithm 1 was implemented in Fortran. The code was com-
piled by the GFortran compiler of GCC (version 9.3.0) with the -O3
optimization directive enabled. Tests were conducted on a com-
puter with a 4.5 GHz Intel Core i7-9750H processor and 16GB
1600 DDR4 2666 MHz RAM memory, running Ubuntu 20.04.

Hydraulic Jump in a Rectangular Channel

In this first experiment, we study the formation of a hydraulic jump
by taking as reference the experiment reported in Gharangik and
Chaudhry (1991). There, the authors performed experimental in-
vestigations of the steady-state location of the hydraulic jump in
a horizontal 14.0 m long and 0.46 m wide flume, for different
Froude numbers Fr = V//gh, by starting from a supercritical flow
in the entire channel and then controlling the tailwater depth by an
adjustable downstream gate. The bottom of the flume is made up of
metal and the walls are made up of glass for 0 m < x <3.05 m and
of metal for 3.05 m < x < 14 m. The Saint-Venant equations were
then solved in uniform meshes of n, = 50 cells with Courant

number Cr = 0.1 in the CFL-type condition that defines the time
scale parameter 7 (Ying et al. 2004) and v = 0.5 s. Empirically, we
considered N, = 100 in the evaluation of (8) and Fr = 4.23.

The initial condition is a steady-state flow with water height
h(x,0) = 0.043 m and velocity V(x,0) = 2.737 m/s for all x. The
upstream boundary condition is given by these same values, while
the downstream boundary condition for the water depth changes
according to h(14,r) = min{0.222,0.043 + 0.00358¢}. The ob-
served values hibs at the points xibs, k=1, ..., Ny, were selected
from the experimental measurements of Gharangik and Chaudhry
(1991). According to Gharangik and Chaudhry (1991) these values
correspond to the steady state of the system. However, it is not clear
for which value of #9® they are obtained. Therefore, in our experi-
ments we consider two possibilities for t‘,gbs: (1) t?bs =60 s for
k=1, ..., Ny and (2) tibs =180 sfork =1, ..., Ny, The var-
iation of the water depth at the downstream boundary ceases at 50 s.
Thus, we may expect that in case (1) the solution is still transient,
while the simulation for case (2) is more likely to match the ob-
served values.

In this experiment, as in all the others that follow, we considered
that ¥, = o for all k, i.e., that all observations were measured with
the same instrument. Table 1 shows the results for different val-
ues of ¢ € {0.05,0.01,0.005,0.001}. These values were chosen
because they were considered to represent plausible values for the
error of the observation-measuring instrument. (The units of 1 cor-
respond to the observations’ units of measurement.) In the table,
column n; shows the optimal value found for the Yen-Manning
coefficient ny, column o* shows the optimal value found for the de-
viation o of the random effect, and L4(c*, nf,) corresponds to the
optimal likelihood. As a reference, the table also includes (in the
column named 7,|,_o) the optimal value of n, that is obtained
when the condition o = 0 is imposed, as well as the correspond-
ing likelihood L£,(0,n,|,—y). These values correspond to the
least-squares approximation of n,. The smaller likelihood values
obtained for r = 60 s can be explained by the fact that the solu-
tion is still transient at this instant, as expected. In the four sce-
narios on 1, the probability that the observed data was generated
by the distribution defined by ¢ and nj was higher when 1obs =
180 s, compared to the case where °bs = 60 s. So, it is sensible to
conclude that the published data were obtained at °° = 180 s
or later.

Let us concentrate on the case defined by 1°° = 180 s. As we
mentioned previously, we made four assumptions on the precision
with which the observations were obtained. Note that the estimated
o* increases when 1) decreases. This means that, as expected, if the
observations are made with maximal precision (¥ = 0.001 in this
case) their probability in the case of the deterministic model
(0 = 0) is smaller than the probability in the case of the stochas-
tic model with o* = 0.022. Conversely, the probability L,(c*, n})

Table 1. Optimal deviation parameter o*, Yen-Manning’s coefficient n;(ml/ %), and likelihood £, obtained for varying values of the precision-related

parameter o in the hydraulic jump problem

Lobs 9 a* n; ”g‘a:() ‘C'ﬂ(o—** n;) ‘60 (0’ ngla:O)
tops = 60 0.050 0.000 0.04352 0.04352 9414 x 107! —
0.010 0.000 0.04352 0.04352 2211 x 107! —
0.005 0.049 0.04330 0.04352 1.570 x 1072 2.380 x 1073
0.001 0.048 0.04324 0.04352 1.340 x 1071 2.840 x 1079
tops = 180 0.050 0.000 0.03819 0.03819 9.881 x 107! —
0.010 0.000 0.03819 0.03819 7.417 x 107! —
0.005 0.017 0.03975 0.03819 3.139 x 107! 3.026 x 107!
0.001 0.022 0.03959 0.03819 1.553 x 1074 1.053 x 10713
© ASCE 04024026-5 J. Hydraul. Eng.
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Fig. 2. Simulations of the hydraulic jump problem constructed with the optimal parameters that were obtained with (a) ¥ = 0.005; and (b) ¥ = 0.001,
assuming that 1°®* = 180 s. The graphics display the superposition of all the N, = 100 simulations associated with the optimal Yen-Manning’s
roughness coefficient 7 and deviation parameter o*. The pictures also show the least-squares solution, that corresponds to the case o = 0, and the

ensemble mean of the simulations. The Yen-Manning coefficients have units m

1/6.

decreases very quickly with 1J. Again, this is the expected behavior
as far as the assumption of extremely good precision in observa-
tions decreases the probability that observations come from math-
ematical (obviously inexact) models. These results are illustrated
in Fig. 2, for ¥ = 0.005 and ¥ = 0.001, where we compare the
results of the deterministic case (¢ = 0) with the superposition of
all the (N, = 100) simulations obtained for the optimal parameter
o*. As an illustration, in this figure we also plot the ensemble mean
of the N, simulations. The total CPU time required for the deter-
mination of the roughness coefficient n; = 0.03959 and the dis-
persion parameter o* = 0.022 for ¥ = 0.001 with ng, = 100, T =
180 s, nymin = 0.039, ngpa = 0.040, ngyy ,, = 100, oy, = 0.00,
Omax = 0.025, and ngy;, , = 25 was 13,099 s.

Partial Dam Break

In this numerical experiment, we evaluate the performance of the
proposed methodology in a scenario of a partial dam break. In this
case, we take as reference the experimental investigation performed
by the US Army Corps of Engineers in 1960 (USACE 1960), where
it was studied the extent and magnitude of floods induced by the
breaching of a 0.305 m (1 ft) high dam, located in the middle of a
121.92 m (400 ft) long and 1.219m (4 ft) wide model flume with a
bed slope of 0.005 and rectangular cross section. From this inves-
tigation, we took the stage-time measurements of Test Condition
11.1, which is characterized by an initial state with the upstream
side of the channel full of water and the downstream dry, and by
the sudden opening of a 0.732 m (2.4 ft) wide and 0.183 m (0.6 ft)
breach, from the top of the dam, at # = 0. This test was also used in
Ying et al. (2004), in order to verify the robustness of their Upwind
scheme, which is employed in this paper.

From the experimental measurements given in Test Condition
11.1 of USACE (1960), we selected a set of observed values of

v = 0.5 s. In this experiment, we considered N, = 400 in the
evaluation of (8). The treatment of the dry bed was done as de-
scribed in Ying et al. (2004), with Ay, = 10~ m. Also, due to the
sensitivity of the numerical model to the dry bed treatment, in this
numerical experiment we only consider perturbations due to the
parameter o on the flow rate Q (obviously, the water height 4 is
indirectly affected by these perturbations).

The results are shown in Table 2. They indicate that the un-
certainties associated with the data are small. The optimal Yen-
Manning’s coefficient was n; = 0.02931 m'/® with zero deviation
parameter ¢* for 9 > 0.005, indicating a behavior identical to the
deterministic one. For ¢ = 0.001, however, the methodology re-
turned ny = 0.02927 m'/® with ¢* = 0.050. The plots of the solu-
tions obtained for ¥ = 0.001, compared with the observed data, are
shown in Fig. 3. This figure is a nice illustration of a situation in
which the superposition of the simulations provides a better repre-
sentation of the known (and potentially also the unknown) data
when compared to the prediction provided by the deterministic
model or by the average of the simulations. Finally, in Fig. 4, we
show the simulations for # = 30 s and t = 60 s, compared with the
measured data also taken from the Test Condition 11.1 of USACE
(1960). These results show that the simulations performed with the
parameters calculated with the time-stage information obtained at
a single spatial point, for r < 20 s, can provide a good prediction of
the flood induced by the dam break, at future time instants. The
total CPU time required for the determination of the roughness co-
efficient n; = 0.02927 and the dispersion parameter o = 0.050

Table 2. Optimal deviation parameter o*, Yen-Manning’s coefficient
n_ﬁ;(ml/ %), and likelihood £, obtained for varying values of the precision-
related parameter 9 in the partial dam break problem

the water height that represents a stage-time hydrograph placed at v 7 "y Pl Lolo" 1) £0(0 1l
x = 68.58 m, consisting of N,, = 10 observations for ¢ <20 s. 0.050  0.000  0.02931  0.02931  9.941 x 107" —

As a reference, the center of the dam is located at x = 60.96 m. 0010 0.000  0.02931  0.02931  8.627 x 10:1 -

In all the simulations, we adopted a uniform mesh of n, = 400 888? 88(5)8 8833; ; gg;gg} gg‘;gi }8_5 3 872_>< 107
cells, Courant number Cr = 0.1 in the CFL-type condition and : : : . : :
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Fig. 3. Simulations of the partial dam break constructed with the
optimal parameters that were obtained with ¥ = 0.001. The graphic
displays the superposition of all the N, = 400 simulations associated
with the optimal Yen-Manning’s roughness coefficient n; and deviation
parameter o*. The pictures also show the deterministic solution, that
corresponds to the case 0 = 0 and the ensemble mean of the simula-
tions. In this case the graphic represents an hydrograph at x = 68.58 m
for #°* <20 s. The Yen-Manning coefficients have units m'/®.

for ¥ = 0.001 with ngy, = 400, T = 20 s, ngp, = 0.0290, ngp,, =
0.0295, ngiy n, = 50, Oin = 0.040, oyex = 0.050, and ngyy , = 10
was 11,536 s.

It must be emphasized that in this experiment the estimates of
Yen-Manning’s coefficient and variance were obtained using data
from a single hydrograph at x = 68.58 m. Despite this, the fore-
casts (including uncertainty) shown in Fig. 4 were very good at
predicting actual data that, in the estimation process, were consid-
ered unknown.

East Fork River

In this experiment, we simulate the flood in the 3.3 km flow reach
of East Fork River, Wyoming, US during a part of the high-flow
season in late May of 1979, by using the randomly supported one-
dimensional shallow water model and several data from the tech-
nical reports Emmett et al. (1979) and Meade et al. (1979). A total
of 41 sections, ranging from section 0000 to section 3295, were
considered. These numbers indicate their center-line distance up-
stream from x = 0.0 m. For more details, see Emmett et al. (1979,
Fig. 1 therein). Thus, in our numerical model, we considered a non-
uniform mesh in which each section represents the center of a cell.
The simulation period was from 1 a.m. on May 20 to 1 p.m. on
May 31, and we considered the mean bed elevations and the mean
cross-sections (assumed to be rectangular) measured at 1 a.m. on
May 20, taken from Meade et al. (1979, Tables 41 and 42 therein).
The discharge values at section 3,295, measured at 1 a.m. and
1 p.m. of each day, were used as inflow boundary condition
Emmett et al. (1979, Table 7 therein). As outflow boundary con-
dition, we considered the water surface values at section 0000 taken
from Emmett et al. (1979, Table 1 therein), also measured at 1 a.m.
and 1 p.m. of each day. The water surface measured at 1 a.m. on
May 20 was used to set the initial wetted area and the initial flow
was assumed to be 8.76 m? /s throughout the entire river. In all sim-
ulations (N, = 100), the Courant number was set to Cr = 0.1 and
v =256 s. In what follows, we consider that the Yen-Manning
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Fig. 4. Simulations of the partial dam break at (a) t =30 s; and
(b) t =60 s, constructed with the optimal parameters that were ob-
tained with ¥ = 0.001. The graphics display the superposition of
the water level Z = h + z,, of all the N;,, = 400 simulations associated
with the optimal Yen-Manning’s roughness coefficient n; and deviation
parameter o*. The pictures also show the deterministic solution, that
corresponds to the case o = 0. In this case, simulations represent pre-
dictions, since observed data correspond to # <20 s and simulations
correspond to (a) = 30 s; and (b) r = 60 s. The Yen-Manning coeffi-
cients have units m'/°,

coefficient n, is homogeneous in space, even though the geometric
characteristics of the river (width and bed elevation, for example)
are heterogeneous.

From Emmett et al. (1979, Table 2 therein) we collected ny,, =
22 values of the water surface at section 2505 measured at 1 a.m.
and 1 p.m., from May 21 to May 31. These data, illustrated in Fig. 5,
represent a stage-time hydrograph at section 2505 and are used as
the set of observations in the experiments. We considered two main
cases of study: Case A, with one value of n, for the whole simu-
lation period and Case B, with time-varying n,. These two cases are
described as follows:

Case A: In this simulation, we proceeded as in the previous
experiments and used the set of 22 observations to find the opti-
mal Yen-Manning’s coefficient 7}, = 0.07749 m'/® with o* = 0.05
for 9 = 0.01.

Case B: As reported in Emmett et al. (1979), the width and the
bed elevation of the river change in time. Taking this observation
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Hydrograph: Observed water surface at section 2505
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Fig. 5. Water surface at section 2505 measured at 1 a.m. and 1 p.m.,
from May 21 to May 31. These n,,; = 22 values were used as the set of
observations in the experiments.
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Fig. 6. Yen-Manning’s coefficients for the Cases A and B.

into account, in this simulation we subdivide the set of observa-
tions in four subsets and we found the optimal Yen-Manning’s co-
efficient for each one of these subsets. The optimal values obtained
are: ny; = 0.09258 m!/¢ for observations from 1 a.m. on May 21
to 1 p.m. on May 23; n, = 0.07895 m'/® for 1 a.m./May 24 to
1 p.m./May 26; n, = 0.06971 m'/% for 1 am./May 27 to 1 p.m./
May 29; ny = 0.07916 m'/% for 1 a.m./May 30 to 1 p.m./May 31.
With these values, we compose a time-varying Yen-Manning’ co-
efficient, as illustrated in Fig. 6. In this case, the optimal deviation
parameter so far obtained was o* = 0.033 for ¥ = 0.01. Notice
that, in this case, we assume an abrupt change in the values of ny
on May 23, 26, and 29. The consequences of such an assumption
can be appreciated in terms of the random variations estimated by
our method in this case. An adequate interpolation in time of the
data may be used to describe the sedimentation process’s time-
varying physics accurately.

Fig. 7 displays the results of these experiments. Recall that the
elevation data at x = 2505 m were used to estimate the parameters
ny and 0. Therefore these data represent the training set of our
study. Alternatively, the surface elevation data at x = 3295 m were
not employed at all in the process of parameter estimation. So, us-
ing the machine learning terminology, these data play the role of a
test set or validation set.

It is remarkable that in cases A and B the data from the valida-
tion set are recovered with an accuracy similar to that of the training
sets. This indicates that training our model using a single hydro-
graph is enough for obtaining good predictions over all the domain
of interest. Moreover, the simulation clouds around deterministic
solutions of the Saint-Venant equations seem to provide ade-
quate uncertainty regions for the purpose of taking decisions.
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As expected, data were better recovered in Case B than in Case A,
although the difference between both cases is not very impressive.
Finally, the symmetric distribution of random variations involving
observations probably indicates that systematic errors in the model
are not meaningful in these two cases. The results for the water
surface are shown in Fig. 8. Once determined the Yen-Manning’s
coefficients, the total CPU time required for the evaluation of the
dispersion parameter o, with T = 11.5 days, ng, = 100, o, =
0.00, 0 = 0.06, and ng;, , = 60 was 23,426 s for Case A and
13,887 s for Case B.

The proposed stochastic model has the potential to deliver
better results than the underlying deterministic model in situations
where there are no constitutive parameters with which the ob-
served data can be accurately produced by the deterministic
model. This may occur because the deterministic model does not
adequately describe the real problem or because the observed data
contain measurement errors. The non-occurrence of either of these
situations would correspond to obtaining an optimal dispersion o
equal to zero. When the optimal o is strictly positive, the stochas-
tic model is saying that an overlap of simulations better represents
the observed data than the deterministic model solution. And the
higher the value of the optimal dispersion, the less reliability
should be attributed to the deterministic model solution. Graphi-
cally, in situations like that, for each x, the deterministic model
predicts a value while the stochastic model predicts an interval
within which the predicted value may lie. The fact that, as shown
in Fig. 7, the known observations (both in the training and the
test set) are within the predicted interval gives credibility to the
prediction. To summarize, the advantage of the stochastic model
is to deliver an interval within which the unknown value lies,
instead of returning a single prediction without any information
about its plausibility.

Spatially Heterogeneous Roughness

In this last experiment, we proceed as in Ding et al. (2004) and
identify the distribution of the Manning coefficient according
to a partition of the computation domain of the Fork River into
five stretches. The Manning coefficients are assumed to be homo-
geneous inside each stretch. Thus the roughness parameter struc-
ture of the study reach is known, and we aim to identify the
roughness values within each partition. A similar study was done
in Ayvaz (2013), using Eqgs. (1) and (2).

Unlike the previous example, here we assume steady-state flow
and use the cross sections, stream-bed elevations, and water surface
elevations on June 28 (discharge at inlet equals to 2.37 m?/s and
water level at the downstream section equals to 5.41 m) obtained
from the reports Emmett et al. (1979) and Meade et al. (1979). The
set of observations was subdivided into sections, and the respec-
tive optimal Yen-Manning coefficients were calculated using each
one of these subsets. The sections and the optimal coefficients
are: Sections 3168 to 3256, n, = 0.07560 m'/®; Sections 2961
to 3108, n, = 0.08755 m'/%; Sections 0898 to 2874, n,; =
0.10698 m'/; Sections 0220 to 0808, n,4 = 0.08965 m'/®; Sec-
tions 0075 to 0137, n,s = 0.16700 m'/°. The total CPU time re-
quired for the evaluation of the dispersion parameter o, with 7 =
1 day, ng, = 100, o, = 0.00, 0. = 0.05, and ng, , = 50 was
727 s. The results for the water surface, shown in Fig. 9, are in good
agreement with the observed data. The comparison with the equiv-
alent Yen-Manning coefficients n, = /gn from Ding et al. (2004)
and Ayvaz (2013) (n are their original values of the Manning co-
efficients) is presented in Table 3. The results are plausible, and two
possible reasons for the differences are the collected data and
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Hydrograph: solution at z = 2505m

Hydrograph: solution at z = 3295m

8-8 T T T T T
8.6 + E
84 + i
82 + i
g
N 8T ]
78 L i
' Case A, o* = 0.05 -
7.6 i
Case A, 0 =0
74 + Observations . b
0 2 4 6 8 10 12
(a) Elapsed time in days from 1AM of May 20th
. Hydrograph: solution at z = 2505 m
8.6 + il
84 | A i
82 | AAANY Y 1
E . !
ST g ]
7.8 g
Case B, o* = 0.033 ¢
7.6 i
Case B, o =0
74 F Observations . b

0 2 4 6 8 10 12
(c) Elapsed time in days from 1AM of May 20th

9.2 + ;‘l . 4
9 |
88 + il
E 86 | i
N
84 + i
82 Case A, o™ = 0.05 1
] I Case A, 0 =0 i
Measured D
78 I I I I I
0 2 4 6 8 10 12
(b) Elapsed time in days from 1AM of May 20th
Hydrograph: solution at z = 3295m
9.2 + B
9 |
88 PNt % E
L]
O %5 y LS .
5 86 | . i
N & k
84 . -
821 Case B, o* = 0.033 7
] I Case B, o =0 i
Measured o
78 I I I I I

0 2 4 6 8 10 12
(d) Elapsed time in days from 1AM of May 20th

Fig. 7. Simulations of stage-time hydrographs for the Fork river for J = 0.01. The left column contains the computed water surfaces at station 2505
for (a and b) Cases A; and (c and d) B and the observed data. The right column contains predictions at station 3,295 for the two cases, compared with

measured data (not used for estimating n, and o).

the simplified cross-sectional geometry (rectangular) used in our
modeling.

Conclusions

One of the most common reasons for using mathematical models is
to extract information not directly contained in the data. Except in
very rare circumstances, mathematical models, cannot provide such
knowledge with absolute certainty. Putting too much faith in model
predictions, regardless of their flaws, can lead to fatal judgments.
Therefore, models that suggest alternative possibilities for the pre-
dicted variables along with the associated probabilities can be
useful.

In the fundamental fields of physics, deterministic models are
widely known for their accurate predictions. These models often
consist of systems of partial differential equations, the numerical
solution of which has been the subject of extensive research in the
literature. Therefore, it is sensible to rely on these models to gen-
erate stochastic counterparts that allow us to make reasonable pre-
dictions while accounting for fluctuations and uncertainties. The
physical problem under examination in this study was water flux

© ASCE

04024026-9

in channels, and the Saint-Venant equations provided the determin-
istic model on which we built the stochastic counterpart.

Examples from the hydraulic literature were examined to ver-
ify the reliability of our approach. These examples demonstrate
how effective Saint-Venant equations were in defining a trustwor-
thy underlying deterministic model. Moreover, the stochastic ap-
proach’s simulations were able to create reasonable bundles of
possibilities for unknown variables, including useful confidence
intervals and probabilities. In addition, the examples involving
Fork River indicated the availability of reasonable bed elevation
data is crucial for obtaining reliable predictions. Due to nonlinearity
and theoretical intrinsic difficulties, we are not able to determine
theoretical properties of the estimators introduced in this paper.
Concerning the probability density function, further formalization
is necessary which is beyond our present objectives. We plan to
address this issue in future research.

In this paper we considered that the model that deserves random
perturbation is defined by the discretization of the Saint-Venant dif-
ferential equations. A different alternative should be to incorporate
random perturbations directly on the differential equations employ-
ing, perhaps, different methods for their solution. See, for example
Man and Tsai (2007). This alternative will be subject of future
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Fork River, Water surface on May 27 around 3PM
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Fig. 8. Cases A and B: Computed and measured water surface around
3 p.m. on May 27 and 1 p.m. on May 31.

Fork River, Water surface on June 28 around 1PM
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Fig. 9. Heterogeneous case: Computed steady-state solution and mea-
sured water surface with the data from June 28. The graphic in blue is
the superposition of the water surface of all the N, = 100 simulations
associated with deviation parameter * = 0.04 and v = 200 s.

research. The extension of our approach to 2-D open channel flow
and, in fact, to every process governed by evolution equations does
not seem to offer specific complications and should be the subject
of future research as well.

In the present work, we illustrated the application of the pro-
posed method with stochastic models that had only one constitutive
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Table 3. Comparison of optimal Yen-Manning’s coefficients n, = /gn
(m'/®) reported in the literature and in the present work

Methodology ng| ng ng Mgy ngs
Ding et al. (2004) 0.18288 0.01532 0.07909 0.12513 0.27923

Ayvaz (2013) 0.12344  0.01854 0.08109 0.13240 0.27882
Present 0.07560 0.08755 0.10698 0.08965 0.16700

parameter (Manning’s coefficient) and one probabilistic parameter
(dispersion). The fact that the adjustment of these parameters
consisted in solving an optimization problem with only two vari-
ables led us to opt for a simple coordinate search algorithm, which
turned out to be somewhat costly in terms of computational time.
Parallelism (which was not used in this research) could be fully
employed with obvious advantage, since simulations could be con-
ducted independently. Its use could decrease the computational
time of the presented experiments by at least two orders of mag-
nitude. Besides that, for problems with more than two parameters to
be adjusted, the use of more sophisticated optimization algorithms
would be recommended. This will be a line of future work.
Finally, it is important to remark that, in the proposed model, the
errors due to the numerical solution of the Saint-Venant equations
are treated as part of the overall error, with the grid size acting as a
constitutive parameter of the model. Thus, the estimated parameters
and uncertainty of predictions are related to the discretization and
may change with mesh refinement. Numerical results (not pre-
sented in the paper) indicate that the likelihood increases with mesh
refinement due to the reduction of the approximation error.
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