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ABSTRACT

We investigate the influence of the finite Larmor radius on the dynamics of guiding-center test particles subjected to an E� B drift in a large
aspect-ratio tokamak. For that, we adopt the drift-wave test particle transport model presented by Horton et al. [Phys. Plasmas 5, 3910
(1998)] and introduce a second-order gyro-averaged extension, which accounts for the finite Larmor radius effect that arises from a spatially
varying electric field. Using this extended model, we numerically examine the influence of the finite Larmor radius on chaotic transport and
the formation of transport barriers. For non-monotonic plasma profiles, we show that the twist condition of the dynamical system, i.e., KAM
theorem’s non-degeneracy condition for the Hamiltonian, is violated along a special curve, which, under non-equilibrium conditions, exhibits
significant resilience to destruction, thereby inhibiting chaotic transport. This curve acts as a robust barrier to transport and is usually called
shearless transport barrier. While varying the amplitude of the electrostatic perturbations, we analyze bifurcation diagrams of the shearless
barriers and escape rates of orbits to explore the impact of the finite Larmor radius on controlling chaotic transport. Our findings show that
increasing the Larmor radius enhances the robustness of transport barriers, as larger electrostatic perturbation amplitudes are required to
disrupt them. Additionally, as the Larmor radius increases, even in the absence of transport barriers, we observe a reduction in the escape
rates, indicating a decrease in chaotic transport.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0230207

I. INTRODUCTION

It is well-known that the transverse transport coefficients of toka-
mak plasmas predicted by the neo-classical theory are much smaller
than the experimental results by one order of magnitude or more. This
discrepancy is commonly referred to as anomalous transport.1

Electrostatic drift turbulence, dominated by the E� B drift and low-
frequency waves, is a plausible candidate for explaining the high levels
of particle and heat loss in tokamaks.2,3

Controlling transport in magnetically confined plasmas is crucial
for advancing toward the goal of achieving controlled thermonuclear
fusion. One area of particular interest is the study of impurity trans-
port. Understanding the transport mechanisms of these particles is
essential since impurities are unavoidable and can significantly impact
plasma performance.4 Specifically, impurity accumulation in the
plasma core can lead to cooling of the hot core through radiation loss.

However, in the divertor, the accumulation can be advantageous, as it
helps to distribute heat over a larger area, thus reducing potential dam-
age to the wall.5–7

In particular, turbulence caused by drift waves plays a major role
in driving the impurity flux.8 Additionally, because the Larmor radii of
impurities can be much larger than those of thermal ions,9 the
response of impurities to drift turbulence is expected to differ.2 In this
regard, theoretical estimations suggest that the quasilinear impurity
flux is reduced for heavier particles,8 i.e., large Larmor radii. However,
this formulation holds only when overlapping resonances occur in the
Hamiltonian motion of test particles.10

In this context, test particle approaches, i.e., valid when impurities
are sufficiently diluted so as not to affect the turbulence, have proven
useful in studying key transport mechanisms.11,12 In particular, passive
tracers of impurities driven by the E� B drift in 2D electrostatic drift
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turbulence exhibit a reduction in transport levels as the Larmor radius
increases. This reduction occurs because the large Larmor radius effect
averages out the smaller-scale components of the electrostatic field,
effectively suppressing their influence.13,14 Thus, considering the finite
Larmor radius (FLR) effect is essential for correctly estimating the
transport properties of particles.15,16

The effect of the FLR on chaotic transport has been studied using
discrete gyro-averaged area-preserving maps. This is possible since
particle advection in a turbulent electrostatic field with a strong mag-
netic field can be associated with Hamiltonian dynamical systems,
based on the guiding-center motion approximation due to the E� B
drift velocity.11,17 These models are particularly valuable as they enable
the integration of particle orbits over long transport timescales. In par-
ticular, it has been shown that the probability of a particle remaining
trapped in a drift-wave resonance increases when the FLR increases,
improving the particle confinement.16,18 The inclusion of the FLR
effect changes the properties of transport since it leads to chaos
suppression.13,16,19

In the presence of internal transport barriers (ITBs), created by a
reversed magnetic shear configuration or external E� B shear flow,20

the movement of impurities toward the plasma core is blocked, reduc-
ing the inward turbulent transport of impurities that are produced on
the wall. Furthermore, ITBs are favorable configurations, as they are
associated with some mechanisms of decontamination of the plasma
core.21 This is particularly significant, as the formation of ITBs not
only limits impurity transport but also strengthens plasma confine-
ment, helping to prevent degradation.22

In this work, we examine the effect that the FLR has on a specific
type of internal transport barrier known as the shearless transport bar-
rier (STB). This barrier can arise in non-monotonic plasma profiles
configurations, such as the safety factor, the radial electric field, or the
toroidal plasma velocity.23 These configurations can lead to non-twist
behavior, for which the twist condition of the dynamical system, i.e.,
KAM theorem’s non-degeneracy condition for the Hamiltonian, is vio-
lated on a special curve (the STB), where the angular frequency of
motion reaches an extremum.24 Specifically, the onset of STBs has
been proposed as a plausible mechanism for transport reduction in
both the Tokamak Chauffage Alfv�en Br�esilien (TCABR)11,25 and the
Texas Helimak,12 in discharges where a biased electrode at the plasma
edge induces a reversed shear configuration of the electric field.

From a dynamical point of view, non-twist systems have an
unusual behavior because standard results, such as KAM theory and
Chirikov stochasticity criterion, may not be valid.26 The degeneracy of
the system allows the formation of twin (dimerized) islands, which, as
a non-linearity parameter is varied, do not overlap and break down as
they usually do in twist systems. Instead, twin islands experience a
kind of reconnection associated with the existence of a shearless curve
that prevents the formation of a large chaotic region.27,28 The shearless
curve acts as a robust barrier to transport since it is resilient under var-
iations of the non-linearity parameter; only strong perturbations can
disrupt it.29,30

Based on this, several studies have examined the effect of the FLR
on chaotic transport using a non-twist dynamical system description.
Specifically, it has been shown that as the FLR varies, STBs become
more resilient to disruption and can undergo bifurcations, highlighting
the FLR influence on phase space topology.15,16 Furthermore, superdif-
fusive behavior in the plane perpendicular to the magnetic field is

associated with the presence of a STB, which emerges as the FLR
increases.31 These studies suggest that the FLR effect inhibits chaotic
transport and that increasing the FLR can lead to the restoration of
STBs.

In this work, we adapt the drift-wave guiding-center test particle
transport model from Ref. 32 by introducing a suitable second-order
gyro-averaged extension, which accounts for the finite Larmor radius
effect that arises from a spatially varying electric field. In particular, the
model from Ref. 32 without this extension has been explored in recent
studies addressing different features of chaotic transport of impurities
when STBs are present.33–35 In most of these works, we assume that
the Larmor radius is too small to play a significant role in the dynam-
ics. However, this assumption is no longer valid when considering fast
particles, e.g., alpha particles, which tend to accumulate in the core of
burning plasmas.4

Hence, with the extended model introduced in this work, we aim
to characterize the influence of the FLR on the appearance of STBs
and the chaotic transport of guiding-center test particles. We consider
a non-monotonic radial equilibrium electric field profile and an elec-
trostatic perturbation regarded as the superposition of coherent har-
monic waves traveling in the poloidal and toroidal directions.
Additionally, monotonic profiles for the safety factor and the toroidal
velocity are assumed. Since the applied model has a Hamiltonian struc-
ture, the phase space flow generated by solving the equations of
motion is area-preserving in an adequate Poincar�e surface of section.

The Larmor radius and the electrostatic perturbation amplitude
of one harmonic mode are taken as control parameters to be varied.
We introduced suitable quantifiers for the chaotic transport like the
transmissivity of the barrier and the transport current, associated with
the probability of a given orbit to escape and the escape rate of orbits,
respectively. Bifurcation diagrams of the STB as a function of the con-
trol parameters are obtained, indicating the relationship between the
FLR and the phase space topology.

This paper is organized as follows: Sec. II describes the drift wave
guiding-center test particle transport model with finite Larmor radius
effect. Section III presents a dynamical analysis of the phase space of
our numerical map, emphasizing the computation of the STB and pre-
senting bifurcation diagrams for the STB as a function of the perturba-
tion amplitude for different Larmor radii. The diagnostics used to
characterize the reduction of chaotic transport are introduced in Sec.
IV, as well as a comprehensive analysis of the corresponding parameter
plane. Our conclusions are left to Sec. V.

II. DRIFT WAVE TEST PARTICLE TRANSPORT MODEL

The model presented in this section builds on the drift wave test
particle transport framework introduced in Ref. 32, with an extension
that accounts for the Larmor radius effect that arises from a non-
uniform electric field. This modification enables us to study some
interesting chaotic transport features in a more realistic situation in
which the transport behavior of test particles varies based on their spe-
cific Larmor radii.

It is considered a test particle that is immersed in a large aspect-
ratio tokamak plasma, i.e., 1=e ¼ R=a � 1, with R and a the major
and minor radii of the plasma column, respectively. The particle’s
guiding center is moving along the lines of the magnetic field, BðxÞ,
with velocity vkðxÞ and drifted by the gyro-averaged velocity vEðt; xÞ,
evaluated at the guiding center, so that
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dx
dt

¼ vk þ vE; (1a)

vE ¼ Eþ 1
4
q2r2

?E
� �

� B
B2

; (1b)

where q is the Larmor radius, Eðt; xÞ is the electric field, andr2
? is the

Laplacian taken on the perpendicular plane to B. It is assumed that
test particles are sufficiently diluted so as not to affect the electric and
magnetic fields.

The gyro-averaged drift velocity results from the averaging method
presented in Ref. 36, taking up to second-order space-varying electric
field contributions, where @E=@t � xgE, withxg the cyclotron angular
frequency, or gyro-frequency, of the particle. This is a usual approxima-
tion that only considers the influence of a non-uniform electric field and
plays a fundamental role in describing transport in the presence of fast
particles, such as alpha particles in burning plasmas.2,37

Although other drift velocities, such as the B�rB drift, could be
considered to evaluate the guiding center orbit due to the finite Larmor
radius (FLR) effect, we limit our analysis for simplicity. As we will show,
this choice is justified by the fact the drift velocity in (1b) does not affect
the Hamiltonian nature of the original dynamical system.

Hence, it is considered a magnetic field such that

BðrÞ ¼ BhðrÞêh þ BuðrÞêu; (2)

with B � Bu � Bh and B � B0, where B0 is constant, and where r, h,
and u are the radial, poloidal, and toroidal coordinates of the toroidal
system, respectively.

Furthermore, the electric field is considered as a rotation-free vec-
tor field, r� E ¼ 0. In equilibrium, it is completely described by the
radial component ErðrÞêr . In non-equilibrium, a simplified model of
drift wave transport is adopted, incorporating electrostatic potential
fluctuations, e/ðt; xÞ, characterized by a single-dominant spatial mode
and harmonics of the lowest dominant angular frequency, x0, in the
drift wave spectrum.32,38,39 The interaction between the components of
the electric field is not considered in this model. Therefore,

Eðt; xÞ ¼ ErðrÞêr �re/ðt; xÞ; (3a)e/ðt; h;uÞ ¼ X
n

/n cosðMh� Lu� nx0t þ aÞ; (3b)

whereM and L are dominant wave numbers in the poloidal and toroi-
dal directions, respectively, /n the wave amplitude of each mode, and
a a constant phase.

Since B is essentially toroidal, we only look at the Laplacian on
the ðr; hÞ plane. Then, by introducing two new variables, namely, the
action, I, and the angle, w, defined as

I ¼ r
a

� �2

; (4a)

w ¼ Mh� Lu; (4b)

and performing an adimensionalization by using the characteristic
scales a, Ea ¼ jErðI ¼ 1Þj and B0, according to relations

E0
r ¼

Er
Ea

; /0
n ¼

/n

aEa
; v0k ¼

B0

Ea
vk; t0 ¼ Ea

aB0
t;

x0
0 ¼

aB0

Ea
x0; q0 ¼ q

a
;

(5)

the equations of motion (1a) simplify into the 1.5-degrees-of-freedom
dynamical system

dI
dt0

¼ �f ðIÞ @
e/0ðt0;wÞ
@w

; (6a)

dw
dt0

¼ gðIÞ þ df ðIÞ
dI

e/0ðt0;wÞ; (6b)

where f and g are functions of I and g is called the twist function of the
system. This function is important in the KAM theorem, as the twist
condition of the system (non-degeneracy condition), dg=dI 6¼ 0 for all
I, ensures the robustness of KAM tori under perturbations.40 Thus, a
challenging dynamics, related to chaotic transport, occurs near the
invariant curve where dg=dI ¼ 0, i.e., where the twist condition is bro-
ken.41 In our model, the functions f and g, dropping the prime notation
henceforth, correspond to

f ðIÞ ¼ 2M 1� q2M2

4I

� �
; (7a)

gðIÞ ¼ evkðIÞM � LqðIÞ
qðIÞ � Mffiffi

I
p 1þ q2D

� �
ErðIÞ; (7b)

where D ¼ d=dIðI d=dIÞ � 1=ð4IÞ is an operator which we introduce
here and qðIÞ ¼ e

ffiffi
I

p
Bu=Bh is the safety factor profile.

Notice that, since @ _I=@I þ @ _w=@w ¼ 0, where the dot notation
is the total time derivative, there is a Hamiltonian function, Hðt;w; IÞ,
such that

_w ¼ @H
@I

; _I ¼ � @H
@w

; (8)

which can be decomposed into an integrable,H0ðIÞ, and a perturbative
part,H1ðt;w; IÞ,

Hðt;w; IÞ ¼ H0ðIÞ þ H1ðt;w; IÞ; (9)

where

H0ðIÞ ¼
ðI
gðI0Þ dI0; (10a)

H1ðt;w; IÞ ¼ f ðIÞe/ðt;wÞ: (10b)

Thus, when H1 ¼ 0, i.e., when /n ¼ 0 for all modes, I remains
constant, and the guiding center orbit traces a helix of constant radius
along a curve on the same equilibrium magnetic surface. On the other
hand, when H1 6¼ 0, the integrability of the system is broken, leading
to chaotic behavior and chaotic transport.

In the limit when q ¼ 0, the dynamical system (6) reduces to the
same equations of the original model introduced in Ref. 32. For these,
it has been shown that non-monotonic profiles of ErðIÞ, qðIÞ, and
vkðIÞ can lead to a non-twist behavior, dg=dI ¼ 0, and the emergence
of a special type of transport barrier that reduces the chaotic transport
of particles, usually called shearless transport barrier (STB).35,39,42,43

However, we must be careful because the massless approximation
is violated for cases when particles are fast, e.g., alpha particles, or even
if we study impurity transport since the impurity temperature can be
equivalent to the plasma’s.9 In those cases, q � 0 is not valid anymore.

We aim to investigate the influence that the FLR effect has on the
onset of such barriers and also on chaotic transport. We consider for
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this a non-monotonic radial equilibrium electric field profile and
monotonic profiles for the safety factor and the parallel velocity.

III. INFLUENCE OF THE FLR ON SHEARLESS
TRANSPORT BARRIERS

Non-twist behavior is found in many physical problems, particu-
larly in plasmas and fluid dynamics.24,44–47 Systems exhibiting that
behavior present resilient barriers that inhibit chaotic transport,26 also
known as shearless transport barriers (STBs), and feature a characteris-
tic dynamics since the KAM theorem is not applicable due to the
degeneracy of the system itself.48

Such barriers and the neighboring KAM curves, composing the
non-twist barrier, are expected to be the latest invariant curves to be
destroyed and also the easiest to restore.49 Moreover, after the breakup,
the remnant of the non-twist barrier, often accompanied by sticky
behavior, acts as a partial barrier to transport.29 So, the control of the
chaotic transport of particles is generally reduced to knowing whether
the STB exists, how robust it is, and even more, how resilient and effec-
tive the partial barriers are. Specifically, in this section, we are inter-
ested in evaluating the influence of the FLR on the onset of STBs as the
control parameters vary.

For that, let us establish the numerical map zjþ1 ¼ FðzjÞ, where
zj ¼ ðwj; IjÞ ¼ ðwðtjÞ; IðtjÞÞ, j 2 N, and FðzjÞ is a numerical integra-
tion of the dynamical system (6) that evolves the orbit, given the initial
condition z0 at time t0 ¼ 0, from tj to tj þ T , with T ¼ 2p=x0. By
doing that, we construct stroboscopic Poincar�e sections of the periodic,
quasiperiodic, or chaotic guiding-center orbits. The results presented
in this work were obtained using the numerical integrator Runge–
Kutta–Dormand–Prince of 8(7) order,50 with an error tolerance of
10�13. In particular, adaptive step-size Runge–Kutta methods provide
efficient performance while maintaining acceptable error levels, even
when compared to symplectic integrators, depending on the specific
problem.51

So, to find a STB, we calculate the rotation number profile XðzÞ
and identify whether it has an extreme value ð@X=@IÞzSTB ¼ 0, from
which a shearless orbit, corresponding to the barrier, can be generated
by using zSTB as the initial condition. The rotation number of an orbit
is essentially the average angular displacement experienced by the
orbit, so it will be rational if the orbit is periodic and irrational if it is
quasiperiodic. To calculate it, we use the method proposed in Ref. 52,
by which we obtained a reliable convergence of X with less iterations.
Therefore,

X ¼ 1
2p

XK�1

j¼0

ŝ j;KPðFðzjÞ � zjÞ; (11a)

ŝ j;K ¼ sðj=KÞXK�1

j¼0

sðj=KÞ
; (11b)

sðxÞ ¼ exp
�1

xð1� xÞ
� �

for x 2 ð0; 1Þ;

0 for x 62 ð0; 1Þ;

8><
>: (11c)

where P is a suitable angular projection that for our particular prob-
lem can be taken asPðzjÞ ¼ wj. Also, notice we are performing a nor-
malization by 2p. In Appendix A, we compare the convergence of the

rotation number using an equal-weighted average, sðxÞ ¼ 1, which is a
common approximation, with the superconvergent method that
weights the average according to the relation (11c).

For the integrable case, H1 ¼ 0, it is easy to show the rotation
number of the T-period stroboscopic map does not depend on the ini-
tial angle w0 and is equal to X ¼ gðIÞ=x0. In consequence, according
to the configuration of the profiles ErðIÞ, vkðIÞ, and qðIÞ, see Eq. (7b),
the twist condition can be violated and, therefore, STBs appear at the
zero-derivative points of gðIÞ.

Specifically, we take into account the plasma profiles and parame-
ters for the tokamak TCABR,11,53,54 for which the minor and major radii
are a ¼ 0:18 m and R ¼ 0:61 m, respectively, and the toroidal magnetic
field is B0 ¼ 1:20 T. The plasma profiles are taken in the form

ErðrÞ ¼ E0 þ E1
r
a

� �
þ E2

r
a

� �2

; (12a)

vkðrÞ ¼ v0 þ v1tanh b1
r
a

� �
þ b0

� �
; (12b)

qðrÞ ¼
q0 þ ðqa � q0Þ r

a

� �2

for r � a;

qa
r
a

� �2

for r > a;

8>>><
>>>: (12c)

as shown Fig. 1. For these profiles, which have already been examined
in previous works,39,43 we consider the dimensionless parameters:

FIG. 1. Dimensionless plasma profiles, mainly, (a) the radial electric field, Er ðrÞ,
(b) the parallel velocity, vkðrÞ, and (c) the safety factor, qðrÞ.

FIG. 2. Rotation number profile for the integrable case, H1 ¼ 0. The black (solid)
curve corresponds to the massless approximation, q ¼ 0:0, the red (dotted) one to
q ¼ 1:637� 10�2, the green (dashed) one to q ¼ 3:770� 10�2, and the blue
(dashed-dotted) one to q ¼ 5:556� 10�2.
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b0 ¼ �16:42, b1 ¼ 20:30, q0 ¼ 1:0, and qa ¼ 4:0; and, before carry-
ing out the adimensionalization, the parameters: v0 ¼ �5:98 km/s,
v1 ¼ 11:793 km/s, E0 ¼ �6:0 kV/m, E1 ¼ 5:751 kV/m, and
E2 ¼ �2:592 kV/m, i.e., Ea ¼ 2:274 kV/m. Furthermore, for the
electrostatic potential perturbation, we employ as dominant spatial
modes, M ¼ 16 and L ¼ 3, and as fundamental angular frequency
x0 ¼ 60:0 rad/ms (approximately 5.70rad after the adimensionalization).

As a result, for the integrable case, non-monotonic behavior in
the rotation number profile is obtained, see Fig. 2, and, consequently, a
STB is expected to exist. We show in the right panel of the figure a
magnification localized in the reversed-shear region, where a subtle
difference in the profile can be observed by varying the Larmor radius.
For this case, the shearless point position displacement and its rotation
number vary slightly with q. Because of that, near the STB, some ratio-
nal and irrational orbits are not accessible anymore for some particles
with large Larmor radius, if compared with the former case q ¼ 0.

Now, concerning H1 6¼ 0 for the non-integrable scenario, four
harmonics corresponding to the main resonances, n ¼ 2; 3; 4, and the
non-resonant mode, n ¼ 1, according to Fig. 2, are taken. For the
resonant modes, we adopt the amplitudes 0.80V, 1.50V, and 0.85V,
which become the dimensionless fixed parameters /2 ¼ 1:95� 10�3,
/3 ¼ 3:66� 10�3, and /4 ¼ 2:08� 10�3, respectively. Additionally,
we regard the amplitude /1, which corresponds to the non-resonant
mode, as a control parameter. Some studies have shown that the STB
can be repeatedly destroyed and restored as the amplitude of non-
resonant modes varies,39 while resonant modes are associated with
high transport coefficients.11 Accordingly, we establish the fluctuation
level linked to the resonant modes, which induces a degree of chaotic
transport, and examine the influence of non-resonant modes on regu-
lating this transport in conjunction with the finite Larmor radius.

Thus, for the scenario /1 ¼ 0 shown in Fig. 3, the impact of the
FLR effect is illustrated. The left panel provides an overview of the
Poincar�e section for the massless case, where most of the KAM tori are
broken. Only the non-twist barrier, formed by the STB (colored in
black) and the neighboring invariant curves, survives. The effect of
introducing the FLR is shown in the panels (b) and (c). Panel (b)
presents a magnification of the STB region, while panel (c) shows
some islands. The orbits in gray and black, which correspond to
q ¼ 0, are included as background and reference.

FIG. 3. Phase space for /1 ¼ 0:0. In gray and black colors, we show chaotic and quasi-periodic orbits for the massless case, q ¼ 0:0. Red, green, and blue colors corre-
spond to orbits for q ¼ 1:637� 10�2, q ¼ 3:770� 10�2, and q ¼ 5:556� 10�2, respectively. Panel (a) shows only the Poincar�e section for q ¼ 0:0; meanwhile, panels
(b) and (c) are magnifications of the shearless curve and the main islands, respectively, including the FLR effect. Specifically, in panel (c), we show magnifications around the
black-colored islands in panel (a), ordering them from the top to the bottom.

FIG. 4. Rotation number profiles for H1 6¼ 0. (a) /1 ¼ 0:0 and (b)
/1 ¼ 2:283� 10�2. Black, red, green, and blue colors correspond to q ¼ 0:0,
q ¼ 1:637� 10�2, q ¼ 3:770� 10�2 and q ¼ 5:556� 10�2, respectively. For
the black-colored profile in panel (b), we present in panel (c) magnifications around
three different extrema where shearless curves can be identified. Specifically, (c.1)
is near I ¼ 0:57, (c.2) is near I ¼ 0:60, and (c.3) is near I ¼ 0:65.
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The barrier in Fig. 3(b) exhibits minimal variation with q, except
for a radial displacement and a subtle difference in shape. This can also
be verified by looking at the rotation number profile in Fig. 4(a). For this
perturbation scenario, most differences are evidenced by looking at the
islands. For example, as q increases, in panel 3(c.1), the center of the
main island, close to I ¼ 1:0, shifts; in panel 3(c.2), a local bifurcation
occurs for the periodic orbits near I ¼ 0:6; and, in panel 3(c.3), new
island chains appear in the lower chaotic region for the largest value con-
sidered of q. Also, a variation in the size of the islands can be observed.

When we increase the value of /1, in contrast to the previous
results, various transport barrier scenarios are obtained by varying q.
This is depicted in the Poincar�e sections of Fig. 5 for
/1 ¼ 2:283� 10�2. In these scenarios, we observe that a bifurcation
of the shearless curve occurs for the massless approximation, leading
to the appearance of three different shearless transport barriers, see
panel (a). This bifurcation can emerge due to cubic and quartic contri-
butions in non-twist maps.34,48 Then, introducing the FLR effect, pan-
els (b) and (c), the STBs disappear, leaving invariant curves and a
partial barrier with sticky behavior, respectively. Eventually, a single
shearless curve arises again when increasing the FLR until
q ¼ 5:556� 10�2, as shown in (d). The rotation number profiles of
the previous cases are shown in Fig. 4(b) and 4(c); only for
q ¼ 3:770� 10�2, there is no profile because all KAM tori are broken.
These results indicate that, for the same fluctuation levels, while some
test particles experience reduced transport due to the presence of trans-
port barriers, others do not exhibit the same resistance to transport.
This is beneficial, as it may provide a selective decontamination mech-
anism for specific particles.

To get an overall view of how /1 affects the existence of shearless
curves under different scenarios of q, we construct STB bifurcation dia-
grams as shown in Fig. 6. For clarity, panel (a) includes only the mass-
less case (black) and the q ¼ 1:637� 10�2 case (red), while panel (b)
shows scenarios for q ¼ 3:770� 10�2 (green) and q ¼ 5:556 �10�2

(blue). Fundamentally, for each value of /1, we compute the rotation
number profile and examine it to identify the presence of extreme

points. If they are found, we plot points corresponding to the rotation
numbers,XSTB, of the shearless orbits.

Particularly for the parameters and profiles we have chosen,
bifurcations of the shearless curve are inhibited as the FLR effect
increases. They are common for large non-resonant perturbation
amplitudes, for which cubic and quartic contributions appear to gain
relevance in the numerical map.34,48 Furthermore, it is interesting to
remark that the STB becomes more resilient to small and medium per-
turbations as q increases. This is clearly evidenced in panel (b), where
the first two intervals of the barrier are larger and have almost no gaps
compared to panel (a). In general, for the largest value of q considered,
represented by the blue-colored bifurcation diagram, the barrier is bro-
ken up less frequently and restored more easily.

These results highlight the role of the FLR in influencing the phase
space topology and controlling chaotic transport. The shearless barrier
bifurcation diagrams identify specific parameter intervals where signifi-
cant transport and nonlinear mechanisms occur, including STB
breakup, multiple-separatrix reconnection, and STB reemergence. These
mechanisms are significant not only from a dynamical systems perspec-
tive but also for plasma physics, as highlighted in other studies.55

IV. CHAOTIC TRANSPORT REDUCTION

In this section, we explore additional diagnostics to gain broader
insights into the influence of the FLR effect. We focus on chaotic

FIG. 5. Poincar�e sections for /1 ¼ 2:283 �10�2 and (a) q ¼ 0:0, (b) q ¼ 1:637
�10�2, (c) q ¼ 3:770� 10�2, and (d) q ¼ 5:556� 10�2. Shearless transport
barriers are colored in magenta.

FIG. 6. Bifurcation diagrams of the shearless transport barrier for (a) q ¼ 0 (black)
and q ¼ 1:637� 10�2 (red), and for (b) q ¼ 3:770� 10�2 (green) and
q ¼ 5:556� 10�2 (blue).
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transport’s behavior as the control parameters vary, particularly after
the non-twist barrier is broken.

So, we analyze the transmissivity, gt, and the “transport current,”
�c, which are measurements compared to the probability of a given
chaotic orbit escape from some region to another one and the escape
rate of orbits, respectively. They are computed as follows:

• We select an ensemble of N randomly chosen initial conditions,
fzi0gNi¼1, in a small chaotic area under the non-twist barrier. A previ-
ous survey of the phase space must be done to guarantee that by
varying the parameters, the orbits are still in a chaotic region.

• We integrate each orbit until either a maximum of K iterations or
it crosses the threshold Ig, i.e., Iij > Ig. If the second criterion is
fulfilled, we record the time Ki

c ¼ j, and the orbit identified by zi0
is counted as an escaping orbit. Otherwise, Ki

c ¼ 0. By doing this,
we calculate a mean escape time only considering the orbits that
actually escape, as shown next.

• We compute the transmissivity as gt ¼ Nt=N , where Nt is the total
number of escaping orbits, and the transport current as
�c ¼ gt=ðhKci=KÞ, where hKci ¼

PN
i¼1 K

i
c=Nt is the mean escape

time.

Notice that if gt > 0, at least one orbit of the ensemble escapes;
therefore, the non-twist barrier does not exist. Conversely, if gt ¼ 0, it
is very likely that at least one KAM torus survives and acts as a barrier
to transport. A small transmissivity indicates resistance to transport,
such as sticky behavior or remnants of the non-twist barrier, as shown
in Fig. 5(c). This resistance prevents a fraction of the particles from
crossing within the time period K. On the other hand, large values of
gt imply that the characteristic escape time of the particles is less
than K.

However, equal gt scenarios do not translate into equal chaotic
transport conditions. This is because hKci can vary significantly
between scenarios. High transport situations occur when the transmis-
sivity is large, and the mean escape time is small, i.e., when the trans-
port current �c is large. Conversely, low transport occurs when the
transport current is small, which corresponds to scenarios where hKci
is large, or gt is small, or both.

In Fig. 7, we present diagrams of the transmissivity and the
transport current as a function of /1. These diagrams were obtained
using N ¼ 103 randomly chosen initial conditions in the intervals
w0 ¼ ½�0:54;�0:42� and I0 ¼ ½0:275; 0:29�, integrated until either
K ¼ 5� 103 crossings in the Poincar�e section or until Iij > 0:8.
Moreover, from the results in Fig. 6, we identify intervals of /1 where
scenarios with or without shearless transport barriers occur.
Combining these results, we provide a detailed picture of the control of
chaotic transport for the four Larmor radius values considered.

Then, from panel 7(a), we can say, for practical purpose, that
there are similar behavior patterns in the first three cases, except for a
shift in the value of the perturbation at which maximum transmissivity
occurs. In contrast, for the last case, the transmissivity never reaches
the maximum value, gt ¼ 1, and increases more slowly with /1. Of
the four cases, this one is the most conclusive in terms of chaotic trans-
port reduction through transmissivity diagnosis.

Additionally, as pointed out in the previous section, the color
bars show that the STB typically bifurcates for small q values and large
perturbations, and the first intervals of /1 are larger as q increases.
Nonetheless, we now observe new intervals in which no STB exists,

but different types of barriers inhibit chaotic transport, such as those
in Figs. 5(b) and 5(c). Additional mechanisms for transport reduction
are likely to appear, such as those discussed in Refs. 56 and 57. As
shown in panels (a.3) and (a.4), these barriers appear more frequently
for the largest values of q.

In panel 7(b), it becomes clearer that the FLR effect leads to a
reduction in chaotic transport. As q increases, the transport current
consistently decreases, with its peak shifting toward larger values of
/1. Furthermore, while the black, red, and green cases have a maxi-
mum transport current on the order of 101, the blue case reduces the
transport current by one order of magnitude.

In a combined manner, the diagnoses of transmissivity and trans-
port current allow us to discern subtle differences between scenarios.
This is generally illustrated in the q� /1 parameter spaces shown in
Fig. 8. There, scenarios with no chaotic transport are depicted in white,
where STBs, KAM tori, or strong partial barriers may emerge.
Conditions with low chaotic transport are predominantly shown in
blue, indicative of partial barriers as well. Then, we observe that trans-
port barriers tend to be more robust as the Larmor radius increases,

FIG. 7. Diagrams with /1 of the (a) transmissivity and (b) transport current
for q ¼ 0 (black), q ¼ 1:637� 10�2 (red), q ¼ 3:770� 10�2 (green), and
q ¼ 5:556� 10�2 (blue). The color bars in the panels (a) represent the /1 inter-
vals in which it was identified one shearless curve (black), two or more shearless
curves (magenta), zero transmissivity but no STB (cyan), and gt > 0 (gray).
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requiring larger values of /1 to maximum transport. Moreover, follow-
ing the main stripe, while we cannot observe significant variation in
transmissivity, there is a clear systematic decrease in transport current
conditions as q increases.

Finally, the lower stripe, which appears for most of the Larmor
radius interval and within a perturbation interval for /1 of 0:5� 10�2

to 1� 10�2, is linked to an interesting partial barrier dynamics, as
detailed in Ref. 58. In these scenarios, even-period twin islands exhibit
stable/unstable manifolds of the associated hyperbolic points that share
a common branch which, in turn, separates two chaotic regions.
Consequently, very few orbits manage to cross.

In conclusion, our findings suggest that the FLR effect plays a
crucial role in promoting more robust transport barriers and reducing
the chaotic transport of test particles. We encourage other researchers
to explore further aspects of this work, particularly the influence of the
radial equilibrium electric field profile in chaotic transport and the
symplectic map developed in Appendix B.

V. CONCLUSIONS

A drift-wave guiding-center test particle transport model has
been implemented to evaluate the influence of the Larmor radius on
chaotic transport and the onset of transport barriers in tokamaks.
Specifically, we examined the guiding-center motion of a test particle
as it moves along the magnetic field lines and is drifted by a gyro-

averaged velocity caused by a non-uniform electrostatic field. The
numerical simulations presented in this work were performed using
parameters and plasma radial profiles for the tokamak TCABR; none-
theless, the results are valid for a wide class of magnetic confinement
devices, such as large aspect-ratio tokamaks and Helimak devices,
which feature simpler geometries.

By considering monotonic radial profiles of the safety factor and
the plasma parallel velocity, along with an electric field composed of a
radial equilibrium part with a non-monotonic profile, the twist condi-
tion of the dynamical system was violated. The plasma equilibria were
perturbed by the superposition of electrostatic harmonic waves, and
shearless transport barriers were observed to inhibit chaotic transport.
Partial barriers and KAM tori were also found, contributing to the cha-
otic transport reduction.

We observed that, in general, transport barriers become more
resilient to perturbations as the Larmor radius increases. With a large
Larmor radius, transport barriers are destroyed only with high pertur-
bation amplitudes. Furthermore, even in the absence of barriers, we
found that the Larmor radius effect also reduces chaotic transport by
making the orbits typically spend more time to escape and reducing
the fraction of escaping orbits.

In particular, we have explored the behavior of transport barriers
and chaotic transport by examining bifurcation diagrams of shearless
transport barriers and the escape rate of an ensemble of chaotic orbits.
We analyzed the influence of the electrostatic perturbation amplitude
and the impact of the Larmor radius. Regarding the bifurcation dia-
grams, while varying the control parameters, we examined the rotation
number profiles and identified the existence of extreme values where
shearless transport barriers can be detected. For the escape rate, we
computed the fraction of orbits able to escape from one region to
another and the mean escape time of these orbits.

Our results indicate that for small Larmor radii, bifurcations of the
shearless curve are likely to occur at high perturbation values, leading to
the observation of multiple shearless barriers. However, as the Larmor
radius increases, these bifurcations are mitigated. Additionally, we iden-
tified intervals of zero escape rate where no shearless transport barriers
were found, meaning that other types of barriers emerge to inhibit cha-
otic transport, such as KAM tori and strong partial barriers. As the
Larmor radius increases, the intervals of the electrostatic perturbation
amplitude for which some transport barrier exists become greater. In
particular, the hardest-to-break and easiest-to-restore shearless transport
barriers were found at the largest Larmor radius examined.

We also discussed some chaotic transport diagnoses and showed
that although the transmissivity, which measures the probability of a
given chaotic orbit escaping, is a good indicator for characterizing
transport, equal transmissivity scenarios do not necessarily translate
into equal chaotic transport conditions due to differences in the char-
acteristic mean escape time. Nevertheless, by using the escape rate, we
were able to distinguish subtle differences between scenarios.
Specifically, we demonstrated that the escape rate decreases as the
Larmor radius increases. We surveyed parameter spaces involving the
electrostatic perturbation amplitude and the Larmor radius, computing
both transmissivity and escape rate.

Our model, which employs oversimplified drift wave physics and
a simple geometry, has several limitations. While the spectrum of tur-
bulent electrostatic fluctuations is inherently complex, we simplify the
model by focusing on a single spatial mode with a finite number of

FIG. 8. Parameter spaces with q and /1. Panel (a) shows the transmissivity, gt ,
and panel (b) the current, �c. The white color indicates, in both panels, that some
type of barrier exists (B labeled scenario in the color bar).
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harmonics, neglecting the radial dependence of the fluctuations.
Additionally, the chaotic advection approach neglects the self-
consistency of real turbulence, which is expected to significantly influ-
ence particle transport. In particular, nonlinear field coupling can
greatly reduce the particle diffusion coefficient.2 Moreover, the dimen-
sionality of the dynamics is reduced to one, disregarding key turbulent
mechanisms such as energy cascades and Arnold diffusion.

Despite these limitations, we were able to capture key features that
are consistent with more realistic approaches. In particular, we have
shown that the Larmor radius effect plays a crucial role in the dynamics
of chaotic transport and the formation of transport barriers in tokamaks.
As the Larmor radius increases, we observe a reduction in chaotic trans-
port and an increase in the robustness of transport barriers.
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APPENDIX A: ROTATION NUMBER CONVERGENCE

We calculate the convergence error for two numerical methods
used to determine the rotation number. First, we compute the rota-
tion number, X, by applying an equal-weighted average, using the
expressions in (11a) and (11b), with sðxÞ ¼ 1. Then, for compari-
son, we use the superconvergent method, used in this article, which
applies weighted averaging according to (11c). In Fig. 9, we compare
the convergence errors of both methods, presenting the results for
eight orbits near the center of the main resonance of the case shown
in Fig. 3(a), where I � 1 and the true rotation number is X	 ¼ 3.

As expected, the equal-weighted averaging method shows a
convergence proportional to K�1, while the superconvergent
method achieves a significantly faster convergence, approximately
proportional to K�4. It is interesting to notice that the superconver-
gent method exhibits a saturation in convergence, limited by the
error tolerance of the numerical integrator, which is set to 10�13.

APPENDIX B: SYMPLECTIC MAP

Although in this paper we only discuss the results obtained by the
presented model in its ordinary differential form (6), we would like to
show that an analytical symplectic map can be obtained and that it
also represents an interesting topic, mainly, for studying the influence
of the FLR effect and the plasma profiles on the chaotic transport of
test particles. So, basically, on using the Fourier series representation
of the Dirac delta function, /n ¼ /0 and kðwÞ ¼ /0 cosðwþ aÞ, the
equations of motion (6) can be written as

_I ¼ �2pf ðIÞ dkðwÞ
dw

Xþ1

n¼�1
dðx0t � 2pnÞ; (B1a)

_w ¼ gðIÞ þ 2p
df ðIÞ
dI

kðwÞ
Xþ1

n¼�1
dðx0t � 2pnÞ: (B1b)

Additionally, let us define In ¼ Iðt�n Þ and wn ¼ wðt�n Þ, with
t�n ¼ nT � �, T ¼ 2p=x0 and � ! 0þ. Integrating over one jump
ðt�n ; t�nþ1Þ, we obtain the discrete model

FIG. 9. Convergence error of the rotation number, computed using equal-weighted
averaging (black empty circles) and the superconvergent method (blue filled
circles). The green and red lines show the convergence trends as the integration
time increases.
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Inþ1 ¼ In � Tf ðInþ1ÞdkðwÞdw

			
wn

; (B2a)

wnþ1 ¼ wn þ TgðInþ1Þ þ T
df ðIÞ
dI

			
Inþ1

kðwnÞ; (B2b)

where the implicit form on Inþ1 ensures the area-preserving nature
of the map. Discrete models are useful because they reproduce the
characteristic features of their differential counterparts and reduce
the computational cost. For these reasons, we strongly encourage
researchers to explore the map described by (B2), as it promises
valuable insights and advancements in the field.
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