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We investigate the persistence of US unemployment applying seasonal fractional integration (FARISMA) models
to assess both seasonal and non-seasonal long-range dependence. The analysis is carried out at three levels
of data aggregation: state, regional census division, and national aggregation. Using wavelet multiresolution
decomposition, we separate out irregular components to assess changes in persistence in unemployment
dynamics. Our findings indicate strong evidence of hysteresis in US unemployment rates, with both seasonal

and non-seasonal long memory contributing to the persistence of unemployment. These results are evidence
that challenges the NAIRU hypothesis, suggesting that exogenous shocks to unemployment have prolonged
effects that do not dissipate within a finite time horizon.

1. Introduction

There are important issues in applied economic analysis for policy
planning purposes that require the evaluation of aggregate data over
broad time spans. One of these cases is persistence in unemployment
rates, understood in economics as rigidity in the labor market (Coakley
et al., 2001). The question of persistence has been explored in many
macroeconomic and finance areas, such as business cycles, permanent
income theory, exchange rates, purchasing power parity, inflation,
etc. Renowned references in these areas are Campbell and Mankiw
(1987), Diebold and Rudebusch (1989), Cheung and Lai (1993), Baillie
and Bollerslev (1994), and Baillie et al. (1996). According to Alogosk-
oufis et al. (1988), Pissarides (1992) and Pries (2004), persistence in
the labor market is understood to be the result of different mechanisms
that involve economic growth, technology, institutional benchmarking,
and others. Blanchard and Summers (1986) were the first to describe
evidence that persistence plays an important role in the analysis of un-
employment, with significant implications for policy makers’ decisions.
These authors studied unemployment in Europe in the 1980’s and found
that economic shocks have persistent effects that traditional theories
cannot fully explain. This persistent behavior in unemployment series
was termed “hysteresis” in reference to the physical phenomenon.
According to Smith (1994), the phenomenon of hysteresis is the result
of a high positive correlation between past and present unemployment.
Using physical concepts, Ball and Mankiw (2002) explain that hystere-
sis in the unemployment rate implies the existence of a stochastic trend
in the economic variable. As a consequence, the memory structure
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of the unemployment series becomes permanently influenced by past
shocks. Thus, the Hysteresis Hypothesis (HH) diverges from the concept
of a Natural Rate as postulated by Friedman (1968) and Phelps (1968),
as well as from the Non-Accelerating Inflation Rate of Unemploy-
ment (NAIRU) doctrine. Based on the principles of the Phillips curve,
Friedman’s theory relates expected inflation to the extent that current
unemployment deviates from the long-run NAIRU dynamic. Following
the NAIRU concept, the equilibrium dynamic in the unemployment rate
is time-reversible (Srinivasan and Mitra, 2012; Caporale et al., 2022).

The NAIRU doctrine predicts that the effects of exogenous shocks on
the labor market dissipate in a finite time, leaving little room for active
policy. In contrast, HH allows for countercyclical policies; in fact, Ca-
porale and Gil-Alana (2007) argue that under HH monetary policy
can combat unemployment without immediately triggering accelerated
inflation. The implications for monetary policy are discussed further
in Ball (2009). Additional details on series dynamics and theoretical
implications can be found in Ayala et al. (2012) and Amable and
Mayhew (2011).

This paper offers new perspectives on persistence in US unem-
ployment by focusing on two different sources of persistence. Unlike
previous comparative studies, we explore the total persistence by de-
composing the seasonal and non-seasonal long-memory components
through a fractional integration framework, addressing the gap in the
existing literature. State, divisions, and national series were analyzed
to consider the effect of regional aggregation on series persistence.
We contribute to the literature showing evidence that the hysteresis
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phenomenon in the US unemployment emerges from the interaction of
the seasonal and non-seasonal long-memory components.

The remainder of this study is organized as follows: Section 2 ex-
plores the econometric approaches used in previous research; Section 3
presents some key concepts related to seasonal long-memory processes
and addresses the maximum likelihood estimator; Section 4 provides a
brief description of wavelet analysis and Section 5 describes the data
and the main results; we conclude the study in Section 6 with final
remarks.

2. Econometric approaches

Persistence in unemployment has been tested using several econo-
metric frameworks. For example, Song and Wu (1997) analyzed the HH
in US unemployment series using traditional unit root tests on annual
data from 48 states and found evidence of stochastic trends. Clemente
et al. (2005) revisited these results using unit root tests that allow
structural breaks, finding evidence that sometimes contradicts previous
research (some series rejecting the unit root hypothesis or the HH only
at the 10% significance level). Ewing and Wunnava (2001) included
structural breaks in their analysis of monthly, seasonally-adjusted un-
employment data for the US, Canada, and Mexico, suggesting that the
series are trend-stationary around a breaking trend.

According to Doukhan et al. (2003), long-memory models capture
low-frequency information more adequately through the mathemat-
ical concept of fractional integration. Persistence in unemployment
was one of the first topics explored using long-memory models. For
example, Diebold and Rudebusch (1989) examined the persistence
of economic shocks on US GDP and unemployment, providing evi-
dence in favor of fractional integration orders consistent with persistent
mean-reversible behavior. Using quarterly, seasonally-adjusted unem-
ployment series, they contested the HH based solely on unit root
tests. Shimotsu (2010) found that point estimates for the US unemploy-
ment rate are mean-reversible, although the HH cannot be rejected at a
5% significance level. In Latin America, Ayala et al. (2012) identified a
mean-reverting pattern in most countries after accounting for structural
changes. Caporale et al. (2022) have also contributed to this body
of research by applying fractional integration methods to seasonally
adjusted and unadjusted data of the 27 member states of the EU.

Some economic time series are influenced by periodic phenomena
such as temperature changes, rainfall levels, cultural celebrations such
as Christmas, Black Friday, Valentine’s Day, Easter, Mother’s Day,
Cyber Monday, Memorial Day (see, e.g. Hylleberg et al., 1990; del
Barrio Castro and Rachinger, 2021; Gil-Alana and Poza, 2024). In
particular unemployment series are strongly affected by these cyclical
or seasonal behaviors originating from different sources that affect
industrial and agricultural productions, tourism, and others (Abbring
et al., 2001; Yi et al., 2021; Kajal and Yimeng, 2024). The seasonal
phenomena have prompted the extension of fractional integration mod-
els to account for seasonal long memory. Such seasonal long-memory
models have been widely applied in the natural sciences and in climate
research (see, e.g., Gil-Alana and Robinson, 2001, Ooms and Franses,
2001; Lohre et al., 2003; Caporale et al., 2021; Koycegiz, 2024; Yosh-
ioka, 2024; Caporale et al., 2025). In economics, these models were
used by and Porter-Hudak (1990) and Ray (1993) to analyze aggregate
monetary data and forecast product revenues, respectively. Gil-Alana
(2008), examined seasonal fractional integration and cointegration in
Denmark labor demand series and pointed to the misspecification
problem if the seasonal long-memory component were not taken into
account in the models. To avoid neglecting these effects, this study
evaluates the joint influence of seasonal and regular long memories
on US unemployment persistence. Early works such as Carlin et al.
(1985) and Carlin and Dempster (1989) highlight both the sensitivity
of seasonal adjustments to modeling assumptions and the potential of
Bayesian methods to provide a coherent framework for such analyses.

Labour Economics 97 (2025) 102818

The influences of trends and nonlinearities on US unemployment
persistence were also assessed in this study using wavelet analysis. For
this purpose, the analytical strategy adopted was to compare the frac-
tional integration parameters estimated from two groups of data: the
original series and series whose nonlinear components and trends have
been extracted using wavelet decomposition procedures. We follow the
procedures used by Craigmile et al. (2004, 2005) in a broad sense.
However, instead of choosing the decomposition levels to take just
trends relative to low order polynomials into account, they were chosen
with reference to the most important asymmetries in the data. Thus,
the irregular components were extracted from the data by filtering
the coarse-scale component and making the respective phase shift
adjustments. Fig. 1 exemplifies the filtering results for the total U.S.
unemployment rate. The original series and the scale S4 component
calculated using the Maximal Overlap Discrete Wavelet Transform
(MODWT) are shown in panel (a), and the filtered series is depicted in
panel (b). This non-endogenous procedure of full filtering the irregular
components allowed us to assess these components with respect to
unemployment persistence and, thus, evaluate their influence on the
acceptance of the HH.

3. Seasonal fractionally integrated processes

Fractional integration theory allows for generalizations of long-
memory models to capture persistent seasonal movements. Hosking
(1981) proposed a generalized long-memory model with a single spec-
tral pole at a nonzero frequency:

(1-24B+B2)" X, = ¢, ¢Y)

where B is the lag operator, d is the fractional integration parameter,
A = cos(w) for —z < v < 7 and ¢, is white noise with variance 63. The
process (1), known as the Gegenbauer process, since it can be expanded
in Gegenbauer polynomials (Gray et al., 1989). More details can be
seen in Hunt et al. (2022). Further studies include Andel (1986), Chung
(1996), Giraitis and Leipus (1995), Woodward et al. (1998), Hsu and
Tsai (2009).

In our empirical analysis, we use the FARISMA model, closely
related to both the ARUMA and Gegenbauer models. Researchers such
as Porter-Hudak (1990), Hassler (1994), Arteche and Robinson (2000),
Arteche (2002), Reisen et al. (2006a,b) and Diongue et al. (2008)
have examined FARISMA models, which extend the autoregressive
fractionally integrated moving average (ARFIMA) model to incorporate
seasonal effects.

For our study, we use the definition of the FARISMA process as
follows. The stochastic process {X,} is defined as a multiplicative
FARISMA(p, d. q) X (p, dy, q,) model if it satisfies

B(B)D,(B)(1 — BY (1 — B (X, — u) = O(B)O,(B*)e;. @)

where yu is the mean, ¢, is a Gaussian white noise process with zero
mean and variance ¢2; ®(B) and @ (B°) are the autoregressive and
seasonal autoregressive polynomials; ©(B) and O, (B*) are the moving
average and seasonal moving average polynomials; and s is the seasonal
period. More details of FARISMA models can be seen in Bisognin and
Lopes (2009) and Reisen et al. (2006a).

The polynomials in (2) have no common roots, and all characteristic
roots lie outside the unit circle. The short-memory components are
captured by these polynomials, while the fractional difference operators
model long-memory behavior. The non-seasonal fractional difference
operator (1 — B)? = A% is given by

o (d P~ T=d+k)
) <k>(_B) =2 T'(=d)T'(k + 1)B

k=0 k=0

, 3)

which is better defined in the frequency domain A% = (1 — ¢=®)4. The
analogous seasonal fractional difference operator is AAf‘ = (1 —e7i®%)ds,
which applies the filter in time domain to seasonal lags s and zero
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Fig. 1. US Total Unemployment rate (log).
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Fig. 2. Example of theoretical Spectral Density Function (SDF) of FARISMA models.

otherwise. Bisognin and Lopes (2009) demonstrate that the stationarity
conditions for the pure FARISMA processes are that d + d;, < 0.5,
d, <0.5.
According to Bisognin and Lopes (2009), the spectral density func-
tion (SDF) of the FARISMA model is given by
0-62 —io—2d —isw)~2d;
Fr@) =35 (1= 1= 7% ) x Fppa(@), @

where fapya(@) denotes the transfer filters of the ARMA part of the
process, as defined in Brockwell and Davis (2009).

Persistent time series (d,d; > 0) exhibit a pole at zero frequency
for non-seasonal persistence and at seasonal frequencies for seasonal
persistence. They are characterized by a pole at their power spectrum
(meaning fy(w) — oo,w — 0) and at frequencies v, = 2zj/s,j =
1,2, ...[s/2] for seasonally persistent time series. Generally, singularity
in the spectral density function at frequency w, represents a cycle of pe-
riod 27 /w,. However, several peaks at the seasonal frequencies indicate
that the time series has a periodic or seasonal component. Fig. 2 depicts
four graphic examples of the theoretical spectral density function of
the FARISMA process with a seasonal period of s = 12 months. The
first plot in Fig. 2(a) represents the SDF of a pure seasonal, stationary
fractional noise and the plot in Fig. 2(b) represents the SDF of a non-
stationary process with both seasonal and non-seasonal long memory.
Fig. 2(c) exhibits a pure, non-seasonal long-memory process with d =
0.25 with intermediate memory and no seasonal long memory effects.
Finally, in Fig. 2(d) displays a stationary FARISMA with d = 0.25 and
d, =0.15.

Through factorization of the filter transfer functions, Reisen et al.
(2006b) showed that the pure FARISMA process is a particular case
of the multifactor ARUMA model, and could also be connected to
Gegegenbauer processes.

Under normality assumption, the exact Gaussian maximum likeli-
hood estimator (MLE) maximizes the log-likelihood function

£0) = =3 10g| X0 - =3 (X, = 0 ZO7' X, - ) - Blog2m, (5)

where X, is the vector of observations, 6 is the vector of parame-
ters, and X is the variance-covariance matrix for X,. Beran (1994)
noted that the ML estimator for ¢ is obtained by solving //(§) = 0,
while Haslett and Raftery (1989) provided an ML solution involving
extensive computation with many trial values 6,. Whittle (1953) pro-
posed a maximum likelihood estimator for short-memory processes that
avoids these computational difficulties. The resulting Whittle Maxi-
mum Likelihood (WML) method minimizes the approximate likelihood
computed in the frequency domain:

I(w)
T 0)| .

where f(w;0) is the spectral density function and I(w) is the peri-
odogram.

L(9) = /ﬂ [log f(@;0) +

4

4. Wavelet analysis: A brief description

Wavelet analysis has recently become popular in many scientific
areas. A historical and technical perspective on signal processing, from
Fourier analysis to wavelets, is found in Meyer (1993), and a non-
technical description is provided in Hubbard (1998). It is beyond the
scope of this work to provide an extensive description of wavelet theory
and methods. Thus, we will focus on the fundamental concepts of
wavelet frameworks used in the empirical approach and give the ap-
propriate bibliographical references for the most important remaining
issues.
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Wavelets are functions y € L, with /R dt w(t) = 0, |ly|| = 1 and
are centered in the neighborhood of ¢ = 0, localized in time and scale.
It is possible to construct wavelets such that the dilated and translated
families form an orthonormal basis of L,.

The wavelet basis are generated from binary rescales and transla-
tions of the wavelet function y or scaling function ¢, also referred
to as mother and father wavelets, respectively. This means that, for
the wavelet and scaling functions, we set y; , = 27/ /2y (@277 x — k) and
¢ (t) =2712¢27t - k), where j, k € Z (Mallat, 2009).

It can be shown that the family of subspaces generated by {y;}
and {¢;,} form a multiresolution analysis (MRA) in the sense of Mallat
(1989). A sequence of nested and closed subspaces V,,n € Z in L,(R)
forms an MRA if:

L feVie fQ ke,
. There exists a scaling function ¢ € V}, such that {¢(x—k),k € Z}
forms a Riesz basis of V.

1. {0jc..chhcV,cVycV_ CcV,C...CL,
2. L®)=UZ V;

3. ﬂ;.";_ij:{O}

4

5

Whenever ¢ and y fulfill the requirements for a MRA, using equa-
tions in y and ¢, a multiresolution decomposition can be considered as
of the subspaces V; in L, as:

J-j-1
Vi=V;® @ Wit %)
k=0

where W; is the subspace generated by {w;;}.cz and V; is the sub-
space generated by {¢;;},cz. 1 When these conditions are met, it is
possible to generate a wavelet multiresolution decomposition (MRD)
of square-integrable signals into different scales which ensure perfect
reconstruction under orthonormal wavelet families. Therefore, a time
series {X ,}f:l can be decomposed as

J 27-i J
X, =crobro®+ Y Y diw 0 =S;(0+ Y Do), ®
j=1 k=1 Jj=1
with the coefficients given by the inner product d;;, = (X,y;,) and
¢jx = (X,¢;,) (Bruce and Gao, 1996). The signal S;(r) is commonly
referred to as the “smooth signal” of level j, while D;(t) is known as
the “detail signal” of level j.

In practice, the wavelet decomposition of a signal is calculated using
standard filterbank theory, where signal x, is convolved and downsam-
pled by 2 with high-pass {g,} and low-pass {h,} filters, associated,
respectively, with y(r) and ¢(r), which are obtained as hy, = (¢, ;)
and g, = (—1)*h,_, (Vidakovic, 1999). This procedure of convolution
and decimation would require that the signal be of length T = 2/ for
J L.

In this article, we consider the non-decimated wavelet transform,
also referred to as the maximal overlap discrete wavelet transform
(MODWT) as described by Percival and Walden (2002), which can be
applied to signals of all lengths, since there is no decimation step. The
difference is that the filters {%,} and {§,} are periodized on the basis
of scaled versions of the original high-pass and low-pass filters. In this
case, filters 7 and § are rescaled by h, = h,/v/2 and g, = g,//2 and
transforms are performed by circular convolution with no decimation.

The wavelet detail D; will capture changes in x, as scales j < J as-
sociated with frequencies in the band (1/2/*!,1/2/]. These components
decompose the series deviation from its trend related to its smaller time
scales. The smooth component .S, captures the mean level at the j =0
scale and evaluates the trend of a time series related to its longest time
scale.

The MRA provided by the MODWT overcomes some of the limita-
tions of the traditional Discrete Wavelet Transform (DWT). In contrast
to the latter, the MODWT is not restricted to sample sizes of a multiple
of 2 and it is not translation invariant. The association of the MODWT
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with zero-phase filters results in detail and smooth components that
are perfectly aligned with the original series. Two important features of
wavelet MRA in the analysis of time series were highlighted by Kumar
et al. (2011). First, wavelet analysis can be performed on non-stationary
series without the need for prior transformation and, second, it can
isolate any low-frequency nonlinear component, while maintaining all
high-frequency details. For the purposes of our analysis, the MRA
provides a versatile way to filter time series components associated
with specific time scales, as well as polynomial trend and local irregular
components. In the next section, the procedure used in our empirical
comparative analysis to filter trends is described in detail. The techni-
calities of filterbank theory and of MODWT in particular can be seen
in Nguyen and Strang (1996) and Percival and Walden (2002).

5. Persistence in US unemployment series

The aim of adopting the FARISMA models in this empirical study
was to investigate the simultaneous occurrence of seasonal and non-
seasonal long-memory processes in the US unemployment rate se-
ries and their conjugated effect on series persistence. The integration
parameters were estimated using model (2).! The maximum likeli-
hood method described in Section 3 was used for the estimations.
We were also interested in investigating whether trends and irregular
movements in the series, such as breaks, regimes, and high-order
polynomial trends, could have any influence on the evaluation of
the persistence level. In practice, we have investigated whether the
HH would be rejected after all these components have been excluded
from the unemployment series. In order to answer this question, we
follow a customized version of the algorithm proposed by Bisaglia and
Gerolimetto (2009). Instead of using the procedures developed by Bai
and Perron (1998, 2003) to detect neglected breaks, we applied wavelet
multiresolution decomposition to access the main sources of possible
non-linearities and trends.

First, the series were decomposed into four levels using the
Daubechies’ Least Asymmetric wavelet [LA(8)], also known as Symm-
lets. As a result of the properties of filterbanks, when Symmlets are
used in MODWT, the transform coefficients can be rotated circularly
so that they are approximately aligned (in time) with events of the
original time series (Nguyen and Strang, 1996; Bruce and Gao, 1996).
Therefore, we adjust the wavelet S4 decomposition for zero-phase
alignment and they are subtracted from the log-unemployment series.
Lastly, the filtered series were generated taking the difference between
the original series and their respective S4 components.?

We are aware that, when applying this procedure, some of the true
low-frequency components of the series might be eliminated and long-
memory parameters may be underestimated.> However, our argument
in favor of this methodology is that, even with this possibility, if we find
non-stationary, non-mean-reversible fractional orders of integration,
this would be a sign of more robust evidence against the NAIRU hypoth-
esis. When applying procedures like endogenous break identification,
researchers cannot be sure if the remaining low-frequency components
are an integral part of the series or not, leading to wrong conclusions
about series persistence. Thus, it should be clear that our goal in

1 First estimates have shown the possible presence of short-memory com-
ponents in the series, as in MA(5). In practice, these components have no
influence on long-term estimates given the algorithm we employ. Thus, we
avoid the cumbersome short-memory model selections for the 61 series.

2 The LA(8) wavelet was chosen based on its technical properties, as
reported in Percival and Walden (2002)

3 In our earlier simulation experiments, based on the same procedures used
in this study and involving deterministic polynomial trends, the following
relation between the long-memory parameters estimated based on the original
series (d) and on the filtered series (d %) was encountered: d *< d. The
experiment also showed that this result depends primarily on the number of
decompositions chosen in the multiresolution analysis.
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US Census Divisions and States
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Fig. 3. Map depicting of US Census Divisions and States used in the analysis.
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Fig. 4. Unemployment Series of US Census Divisions: Original Series (in log) and Filtered Series.

this empirical study is not to find the true data generating process
for the series. Rather, our main goal remains to find solid evidence
of persistence in the US unemployment series, excluding all possible
sources of breaks and trends.

The dataset comprises 61 series, with 7' = 588 monthly observations
at three levels of aggregation: US state (51 series including the District
of Columbia), regional (9 series), and the US national unemployment
rate.” Fig. 3 shows the composition of the nine geographical regions. All
data were provided by the US Census Bureau, and the period covered
by the study was January 1976 to December 2024.

Fig. 4 depicts the original and filtered series in the nine regions. For
the sake of parsimony, we avoid showing the 51 graphs for the state
series. The filtered series shown at the bottom of each graph reveal that
the wavelet S4 component is responsible for most of the low-frequency
information and captures virtually all of the “irregularities” and “ir-
regular low-frequency components” present in the series. Traditional
spectral analysis confirmed that information in other frequency bands,
including seasonality, was barely affected.

Tables 1 and 2 display the national, regional, and state estimations
of d and d, calculated using the original and filtered series, respectively.

4 The District of Columbia was included in the state group to facilitate the
presentation of the results.

Our analysis focuses on the long-term dynamics of unemployment
series, specifically the interaction between seasonal and non-seasonal
long-memory components. In practice, short-memory components such
as autoregressive (AR) and moving average (MA) terms do not affect
long-run behavior. Consequently, the series were modeled as fractional
noise processes (p =0, ¢ =0, p, = 0 and ¢, = 0), with the innovation
process ¢, in (2) specified either as a stationary SARMA process or, in
the simplest case, a white noise.

Fig. 5 displays the superimposed empirical and theoretical spectra
for the nine regions in decibels. The empirical spectra were estimated
using the periodogram method and the theoretical spectra were calcu-
lated using the estimated parameters for the FARISMA model following
(4). The continuously slow spectrum decay silhouettes from low to high
frequencies indicate the presence of “traditional” or “non-seasonal”
long memory, while their decaying singularities in the seasonal fre-
quencies reflect the typical seasonal long memory.

The results using the original series show that 11 of the 61 regions
analyzed have d > 1 and 48 of them are such that d > 0.9. Taking into
account the confidence intervals, 21 of them contain 1. The national
unemployment series and 6 of the 9 regional series displayed the
same characteristics. The minimum point estimate for non-seasonal
long-memory was d = 0.78 for the state of South Dakota.

The mean of the estimated seasonal long-memory parameter for
the states, regions, and national series is around 0.34. Together, the
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Table 1

Estimated long-memory parameters using original and filtered series for US regions.
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Original series (log)

Filtered series

Region d d, Cl(d) Cl(d,) d d, Cl(d) Cl(d,)

USA 0.987 0.300 (0.955 ; 1.02) (0.272 ; 0.329) 0.749 0.319 (0.716 ; 0.781) (0.29 ; 0.347)
ENCD 0.957 0.299 (0.925 ; 0.99) (0.271 ; 0.328) 0.717 0.308 (0.684 ; 0.749) (0.279 ; 0.336)
ESCD 0.881 0.334 (0.848 ; 0.913) (0.305 ; 0.362) 0.562 0.329 (0.53 ; 0.595) (0.301 ; 0.358)
MAD 1.001 0.291 (0.968 ; 1.033) (0.262 ; 0.32) 0.751 0.325 (0.718 ; 0.783) (0.296 ; 0.354)
MTD 1.007 0.340 (0.974 ; 1.039) (0.311 ; 0.368) 0.750 0.359 (0.717 ; 0.782) (0.331 ; 0.388)
NED 0.985 0.329 (0.953 ; 1.018) (0.3 ; 0.358) 0.715 0.362 (0.683 ; 0.748) (0.334 ; 0.391)
PCD 1.063 0.302 (1.03 ; 1.095) (0.273 ; 0.33) 0.857 0.317 (0.825 ; 0.89) (0.289 ; 0.346)
SAD 0.964 0.274 (0.931 ; 0.996) (0.245 ; 0.302) 0.728 0.297 (0.696 ; 0.761) (0.269 ; 0.326)
WNCD 0.936 0.402 (0.904 ; 0.969) (0.373 ; 0.431) 0.691 0.418 (0.658 ; 0.723) (0.389 ; 0.446)
WSCD 0.983 0.344 (0.951 ; 1.016) (0.315 ; 0.372) 0.731 0.347 (0.698 ; 0.763) (0.318 ; 0.376)

Table 2

Estimated long-memory parameters using original series for US states.

Original series (log)

Filtered series

Region d d, Cl(d) Cl(d,) d d, Cl(d) CI(d,)

AK 0.910 0.393 (0.877 ; 0.942) (0.365 ; 0.422) 0.714 0.428 (0.682 ; 0.747) (0.399 ; 0.456)
AL 0.909 0.323 (0.877 ; 0.941) (0.294 ; 0.352) 0.628 0.319 (0.596 ; 0.66) (0.29 ; 0.347)
AR 0.985 0.391 (0.953 ; 1.018) (0.362 ; 0.42) 0.811 0.448 (0.778 ; 0.843) (0.419 ; 0.477)
AZ 0.980 0.276 (0.948 ; 1.013) (0.248 ; 0.305) 0.707 0.333 (0.674 ; 0.739) (0.304 ; 0.362)
CA 1.082 0.319 (1.05 ; 1.114) (0.29 ; 0.348) 0.860 0.332 (0.827 ; 0.892) (0.304 ; 0.361)
co 1.062 0.345 (1.029 ; 1.094) (0.316 ; 0.373) 0.792 0.334 (0.759 ; 0.824) (0.305 ; 0.363)
CT 0.995 0.394 (0.963 ; 1.027) (0.365 ; 0.423) 0.742 0.483 (0.709 ; 0.774) (0.454 ; 0.511)
DC 0.919 0.354 (0.886 ; 0.951) (0.326 ; 0.383) 0.547 0.365 (0.514 ; 0.579) (0.337 ; 0.394)
DE 1.002 0.383 (0.969 ; 1.034) (0.355 ; 0.412) 0.810 0.403 (0.778 ; 0.842) (0.374 ; 0.432)
FL 1.009 0.247 (0.977 ; 1.042) (0.218 ; 0.276) 0.817 0.284 (0.784 ; 0.849) (0.255 ; 0.312)
GA 0.920 0.269 (0.887 ; 0.952) (0.24 ; 0.298) 0.655 0.290 (0.622 ; 0.687) (0.262 ; 0.319)
HI 0.897 0.243 (0.864 ; 0.929) (0.215 ; 0.272) 0.601 0.241 (0.569 ; 0.634) (0.212 ; 0.269)
A 0.851 0.387 (0.818 ; 0.883) (0.358 ; 0.415) 0.566 0.395 (0.533 ; 0.598) (0.366 ; 0.424)
D 0.923 0.375 (0.891 ; 0.956) (0.346 ; 0.403) 0.689 0.390 (0.656 ; 0.721) (0.362 ; 0.419)
IL 0.990 0.287 (0.958 ; 1.022) (0.258 ; 0.316) 0.770 0.289 (0.738 ; 0.803) (0.26 ; 0.318)
IN 0.920 0.293 (0.888 ; 0.953) (0.264 ; 0.321) 0.666 0.289 (0.633 ; 0.698) (0.261 ; 0.318)
KS 0.860 0.377 (0.827 ; 0.892) (0.349 ; 0.406) 0.579 0.365 (0.547 ; 0.612) (0.337 ; 0.394)
KY 0.807 0.293 (0.774 ; 0.839) (0.265 ; 0.322) 0.465 0.295 (0.432 ; 0.497) (0.266 ; 0.324)
LA 0.975 0.375 (0.942 ; 1.007) (0.347 ; 0.404) 0.773 0.368 (0.741 ; 0.805) (0.339 ; 0.397)
MA 0.967 0.304 (0.934 ; 0.999) (0.275 ; 0.333) 0.676 0.325 (0.644 ; 0.709) (0.296 ; 0.353)
MD 0.950 0.344 (0.918 ; 0.983) (0.315 ; 0.373) 0.632 0.361 (0.6 ; 0.665) (0.332 ; 0.389)
ME 0.999 0.333 (0.967 ; 1.032) (0.305 ; 0.362) 0.821 0.376 (0.789 ; 0.854) (0.348 ; 0.405)
MI 0.930 0.288 (0.898 ; 0.963) (0.259 ; 0.317) 0.671 0.295 (0.639 ; 0.704) (0.266 ; 0.324)
MN 0.910 0.446 (0.878 ; 0.943) (0.417 ; 0.474) 0.707 0.478 (0.674 ; 0.739) (0.45 ; 0.507)
MO 0.930 0.370 (0.898 ; 0.963) (0.341 ; 0.398) 0.624 0.387 (0.591 ; 0.656) (0.358 ; 0.415)
MS 0.859 0.394 (0.826 ; 0.891) (0.365 ; 0.423) 0.456 0.387 (0.424 ; 0.488) (0.358 ; 0.416)
MT 0.869 0.378 (0.837 ; 0.901) (0.35 ; 0.407) 0.608 0.413 (0.576 ; 0.641) (0.384 ; 0.441)
NC 0.916 0.296 (0.883 ; 0.948) (0.267 ; 0.324) 0.643 0.306 (0.611 ; 0.675) (0.277 ; 0.334)
ND 0.895 0.486 (0.863 ; 0.928) (0.457 ; 0.515) 0.670 0.491 (0.637 ; 0.702) (0.463 ; 0.52)
NE 0.828 0.407 (0.796 ; 0.861) (0.378 ; 0.436) 0.522 0.412 (0.489 ; 0.554) (0.384 ; 0.441)
NH 0.929 0.287 (0.896 ; 0.961) (0.258 ; 0.316) 0.616 0.310 (0.584 ; 0.648) (0.282 ; 0.339)
NJ 1.031 0.306 (0.998 ; 1.063) (0.277 ; 0.335) 0.802 0.326 (0.77 ; 0.835) (0.297 ; 0.355)
NM 0.974 0.418 (0.942 ; 1.007) (0.39 ; 0.447) 0.640 0.476 (0.607 ; 0.672) (0.448 ; 0.505)
NV 1.038 0.290 (1.006 ; 1.07) (0.261 ; 0.319) 0.827 0.299 (0.794 ; 0.859) (0.27 ; 0.327)
NY 1.013 0.234 (0.981 ; 1.046) (0.205 ; 0.263) 0.788 0.270 (0.756 ; 0.821) (0.242 ; 0.299)
OH 0.958 0.332 (0.926 ; 0.991) (0.304 ; 0.361) 0.692 0.333 (0.66 ; 0.725) (0.304 ; 0.362)
OK 0.942 0.296 (0.91 ; 0.975) (0.268 ; 0.325) 0.671 0.306 (0.639 ; 0.703) (0.277 ; 0.334)
OR 1.003 0.331 (0.971 ; 1.036) (0.303 ; 0.36) 0.795 0.352 (0.763 ; 0.828) (0.324 ; 0.381)
PA 0.903 0.350 (0.87 ; 0.935) (0.321 ; 0.378) 0.565 0.379 (0.533 ; 0.597) (0.35 ; 0.407)
RI 0.953 0.372 (0.921 ; 0.986) (0.344 ; 0.401) 0.678 0.375 (0.646 ; 0.711) (0.347 ; 0.404)
SC 0.918 0.294 (0.886 ; 0.951) (0.266 ; 0.323) 0.650 0.297 (0.617 ; 0.682) (0.269 ; 0.326)
SD 0.779 0.397 (0.746 ; 0.811) (0.368 ; 0.426) 0.511 0.409 (0.478 ; 0.543) (0.38 ; 0.438)
TN 0.897 0.324 (0.865 ; 0.93) (0.295 ; 0.352) 0.603 0.323 (0.571 ; 0.635) (0.294 ; 0.352)
TX 0.986 0.341 (0.954 ; 1.019) (0.313 ; 0.37) 0.723 0.337 (0.691 ; 0.755) (0.308 ; 0.366)
UT 0.916 0.371 (0.884 ; 0.949) (0.342 ; 0.399) 0.627 0.378 (0.595 ; 0.66) (0.35 ; 0.407)
VA 0.911 0.266 (0.879 ; 0.944) (0.238 ; 0.295) 0.650 0.298 (0.618 ; 0.682) (0.269 ; 0.327)
VT 0.888 0.357 (0.856 ; 0.921) (0.329 ; 0.386) 0.570 0.377 (0.537 ; 0.602) (0.348 ; 0.406)
WA 0.972 0.268 (0.94 ; 1.005) (0.239 ; 0.297) 0.802 0.284 (0.769 ; 0.834) (0.255 ; 0.313)
WI 0.889 0.336 (0.857 ; 0.921) (0.308 ; 0.365) 0.643 0.368 (0.61 ; 0.675) (0.339 ; 0.396)
wv 0.939 0.355 (0.906 ; 0.971) (0.326 ; 0.384) 0.681 0.372 (0.648 ; 0.713) (0.343 ; 0.4)
WY 0.906 0.395 (0.874 ; 0.938) (0.366 ; 0.424) 0.562 0.417 (0.53 ; 0.594) (0.388 ; 0.446)

estimated seasonal and non-seasonal parameters imply a divergent non-
stationary pattern for all original series. On average, the sum of both d
and d, is of 1.27. Following Bisognin and Lopes (2009), we know that
as w — 0, then f(w) ~ C; |w|¥*9s. Since d + d; ~ 1 for many series, it

follows that a more simplistic analysis might suggest unit root behavior
when considering only low frequencies of the power spectrum, and this
could interfere with typical unit root tests. However, a more careful
examination of the spectral density of the signal strongly suggests the
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Fig. 5. Spectral density function for all US Census Regions.
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Fig. 6. Histograms of the Long-Memory Parameters for all estimates.

presence of seasonal long memory, as shown in Fig. 5.

On the other hand, almost all (96.7%) estimated non-seasonal
parameters from the filtered series lie in the non-stationary mean-
reversible interval, with the exception of Kentucky and Mississipi. Fig. 4
shows that the exclusion of S4 components eliminates a large part of the
spectral energy in the extreme low frequency bands. Consequently, a
significant reduction in values was observed. However, even in this case
the combination of seasonal and non-seasonal long memory processes
implies d + d, > 1 for 38 of 61 evaluated series and d + d, > 0.5 for all
series.

The estimated seasonal parameters lie on the non-stationarity
threshold for the two types of series. Using the original series, the
lowest value d = 0.2405 was found in the Mississippi series, followed
by Kentucky and South Dakota, with 0.4667 and 0.5109 respectively.
The highest values were 0.8596, 0.8269 and 0.8213 for the states of
California, Nevada, and Maryland, respectively. The d estimate for the
national series is 0.7489, versus 0.9873 in the unfiltered national series.

The histograms of d and d, for the 61 series are shown in Fig. 6. The
differences between the parameters estimated using the filtered and
original series are clearly seen in the box plot representation presented
in Fig. 7. The group of results from the original series shows that
the distribution of d, shows a leptokurtic pattern with values highly
concentrated around the mean of 0.9436 with a standard deviation

of 0.061. These findings indicate strong non-seasonal persistence in
unemployment in states. Using filtered data, the mean and standard
deviation of d were 0.6815 and 0.09, respectively. Thus, in this case,
the empirical distribution of the parameter has higher variability than
the distribution based on the original series.

We can draw from this empirical analysis that, for both original and
filtered data, the combination of the two long-memory effects implies
a non-stationary dynamic in the unemployment series and therefore
strong persistence in this variable. Even excluding an important part
of the low-frequency components where the non-linearity is located,
the joint contribution of the non-seasonal and seasonal long memory
effects does not allow us to reject the HH for the national, regional,
and state series, with the exception of the District of Columbia.®

5 In order to compare the traditional I(1)-I(0) analysis with our results, we
applied the ADF and KPSS unit root tests on the same series analyzed in this
study, but seasonally adjusted by the X13 method. Following Enders (1995)
algorithm with the ADF test, for all original series, except VT, the unit root
hypothesis was not rejected with significance 5%. The inverse result was found
for all detrended series. Similar conclusions were obtained using the KPSS test.
These results help support our suspicions about seasonal long-memory effects
on time series behavior. Tables of results may be obtained upon request.
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6. Final remarks

The main objective of our study has been to understand how the
conjunction of seasonal and non-seasonal long-memory processes af-
fects the long-term dynamics of US unemployment series. The ap-
plied analysis was based on the natural extension of the long-memory
concept to the seasonal phenomenon. Using FARISMA models, long-
memory parameters were estimated for state, regional, and national ge-
ographic areas, providing the basis for the analysis of total persistence
in US unemployment.

Previous studies have analyzed persistence in unemployment series
based on seasonally adjusted values. Some of them have suggested
that US unemployment might follow a long-term mean-reversible dy-
namic, especially when breaks and regimes are taken into account.
However, as in the natural sciences, seasonal phenomena can represent
an important source of persistence in economic variables.

Wavelet multiresolution decomposition was used to address po-
tential effects of trends and non-linear changes on series persistence,
accessing the specific frequency band where these components are lo-
cated. The long-memory parameters were estimated with both original
and filtered series in order to evaluate the influence of breaks on
the persistence of the series. Seasonal long-memory estimations were
virtually the same using the filtered and original series. Non-seasonal
long-memory estimates based on original data have revealed an ex-
tremely persistent non-stationary unemployment dynamic. However,
the parameters estimated using filtered series have fallen in the long-
term mean-reversible interval, in line with other studies. Surprisingly,
however, the average estimated seasonal long-memory parameters lie
in the same interval, representing a very high non-stationary level
for seasonal persistence. Therefore, even assuming that the wavelet
filtering has eliminated a number of low-frequency components, the
joint effect of non-seasonal and seasonal long-memory processes still
implies strong persistence dynamics in unemployment series across
national, regional, and state levels.

The aggregate effects of exogenous shocks from seasonal and non-
seasonal dynamics on the labor market are not decreasing within a
finite horizon of time, supporting therefore the HH over the NAIRU
as the most plausible hypothesis for explaining the unemployment rate
behavior in the US. This could open space for sustained countercyclical
policies without the immediate threat of inflation acceleration.

In future research, we intend to evaluate the preliminary evidence
shown in the results that indicates that states with lower GDPs suf-
fer higher seasonal persistence in their unemployment rates. Based
on this analysis further studies can assess the policy implications of
hysteresis in a spatially heterogeneous labor market, as well as perform
comparative studies with other filtering methods and long memory
models. Finally, we intend to extend the analysis to similar models
using semiparametric approaches, in which distortions from short-run
dynamics could be diminished.
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