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Abstract In this work, the plate bending formulation of

the boundary element method (BEM) based on the Kir-
chhoff s hypothesis, is extended to the analysis of stiffened

elements usually present in building floor structures.
Particular integral representations are derived to take

directly into account the interactions between the beams

forming grid and surface elements. Equilibrium and
compatibility conditions are automatically imposed by the
integral equations, which treat this composite structure as

a single body. Two possible procedures are shown for
dealing with plate domain stiffened by beams. In the first,

the beam element is considered as a stiffer region re-

quiring therefore the discretization of two internai lines

with two unknowns per node. In the second scheme, the
number of degrees of freedom along the interface is
reduced by two by assuming that the cross-section motion
is defined by three independent components only.

Keywords Plate bending, Boundary elements, Building
floor structures

publications, have pointed out the capability of the
method for modelling plates in bending, mentioning
further accuracy and reliability.

In order to use BEM to analyse more complex plates,
e.g., stiffened plates of building floor structures, one has to

extend the BEM formulations to take into consideration

arbitrarily displayed beams, general boundary and internai
constraints and several kinds of transversal loads acting
over the plate surface or part of it. Along these lines, Song
[6], Hartmann and Zotemantel [7] have presented inter-
esting approaches, discussing in detail displacement
restrictions at internai points and the use of hermitian
interpolations. More recently. Oliveira Neto and Paiva [8]

have shown a BEM/FEM for analysing building floor
structures.

While BEM is strongly recommended for plate bending
analysis, in which internai force and displacement fields

are always accurately modelled, the natural choice to solve

the building floor structures is the BEM/FEM combina-
tions. Boundary elements are recommended to deal with
plate elements, which are combined together by enforcing
equilibrium and compatibility conditions along the inter

faces. The FEM is used to model beam elements. However,

for complex floors, characterized by a large number of

connected beams and many plate regions of different
thickness, the number of degrees of freedom rapidly
increases and the solution accuracy diminishes.

To overcome these difficulties, Venturini and Paiva [9]

have proposed a scheme to deal with zoned domains
without dividing them into sub-regions. In their formu
lations, only the displacements along the interfaces require

approximation. Equilibrium conditions are automatically
satisfied, so no approximation of these values is required
along the interfaces. In addition, the number of degrees of

freedom at interface nodes is divided by two. A given in

tegral representation of displacements can be easily writ-

ten for the whole body. This technique has been extended
to potential and 2D elastic problems [10], preserving the

original characteristics: reduction of degrees of freedom
and increasing result accuracy. More recently, following
the same ideas, Fernandes et al. [11] have presented a

plate-bending BEM formulation to deal with a varying
thickness problem.

Here, this formulation is modifled to consider plate
domains stiffened by beams without combining the
algebraic equations written separately for each problem.
The beams are treated as regions of different thicknesses,
which can be very narrow, therefore representing the
stiffness variation introduced by this kind of stiffener.

1

Introduction

The boundary element method (BEM) is already a well-
established numerical technique to deal with an enormous
number of complex engineering problems. Among them,
analysis of plate bending problems has proved to offer a

particularly adequate field of applications for that tech

nique. The BEM is suitable for evaluating internai force

concentrations due to loads distributed over small regions,
which very often occur in plate bending analysis. More-
over, BEM can deal with deflections, slopes, moments, and

shear forces, approximating them by using the same order

polynomials. Thus, shear forces are much better evaluated
when compared with other numerical methods; they de-
pend only on the adopted boundary value approximation.

The first works discussing the use of direct boundary
element formulation, in conjunction with Kirchhoff s

theory, are of Bezine [1], Stern [2] and Tottenhan [3]. It is

also important to mention some previous studies dealing
with plate bending problems in the context of indirect
methods [4, 5]. These, as well as several other more recent
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Their rigidities are automatically taken into consideration
by the global integral representations of displacements and

rotations, in which the stiffener rigidity influences are

given by two-line integrais along the beam sides. To obtain

accurately the algebraic equations, quasi-singular integral
schemes are required to perform the integral along the

beam elements leading to stable numerical Solutions. The

formulation is further modified by assuming simple dis-

placement approximations in the direction perpendicular
to the beam axes. Displacements in this direction are as-

sumed to be linear and, therefore, given in terms of two

node values: the deflection and the rotation at the beam

skeleton point. These assumptions reduce strongly the
number of degrees of freedom of the entire problem.

Finally, some numerical examples are presented to
illustrate the accuracy of the results, as well as the

problem size reduction in terms of degree of freedom.

- The generalized internai force x displacement relations,

ntij == -D(vSijw,kk +(1 -

qi = -Dw,jji

- The effective shear force,

V„ = qn + dm„s/õs

where {n, s) are the local co-ordinate system, with n and

s referred to the boundary normal and tangential
directions, respectively; no summation is implied.
The problem definition is then completed by assuming

the following boundary conditions over F: u,- = ü,- on Fi

(generalized displacements, deflections, and rotations) and

pi = pj on F2 (generalized tractions, normal bending
moments, and effective shear forces), where Fi U F2 = F.

(5)

(6)

(7)
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3

Integral representations
As usual, the integral representations of deflections,
slopes, and generalized internai forces for Kirchhoff s

plates can be derived from a reciprocity relation written in

terms of bending moments and curvatures of two inde-
pendent mechanical States. The first State is represented by
the actual plate bending problem valid over the domain Çl,

for which curvatures w,y (q) and moments my(q) at a field

point q are defined, as well as the associated boundary
values: two generalized displacements, Ui(Q), and two
generalized tractions, p,(Q), referred to a boundary field

point Q. The second elastic State is obtained from the

fundamental solution w*{s,q), the deflection at the field

point q due to a unit load applied at a source point s. From

this State, fundamental values for curvatures, w\j{s, q), and
moments, m*-{s,q), can be easily derived (1,2,3,11). This

elastic State is defined over the infinite space of domain

Qoc that contains Q (see Fig. 1).
In order to obtain all the integral representations, the

following reciprocity relation is easily found for the

constant rigidity case:

2

Basic equations

Let us consider a flat plate of thickness h, referred to a

Cartesian system of co-ordinates with axes Xi and X2 lying
on its middle surface and axis X3 perpendicular to that

plane. The plate domain is denoted by íí (see Fig. 1), while

its boundary is represented by F. It is assumed that a

distributed load g is acting in the X3 direction on the plate
midplane, with no distributed externai moments.

For this plate, the following basic relationships are
defined:

- Equilibrium equations in terms of internai forces:

mij,j -qi = 0

qi,i +g = 0

where mij are bending and twisting moments, while q;
represents shear forces, with subscripts taken in the
range i,j = {1,2}.

- The plate bending differential equation,

mij.ii+g = 0

(2)

(3)
*.(s,q)w,y (q)dQ(q) = mijiq)w*j{s,q)àQiq)m

or
Q

g
(8)(É;- 1,2) (4)W,iijj -

D

The reciprocity relation (8) is valid only for plates exhib-

iting constant rigidity D, but its extension to a general case

is simple [11, 12]. Let us consider a plate element now

characterized by exhibiting variable thickness, i.e.,
f = t{q), which gives corresponding rigidity D = D{q).
Following the same steps to derive the reciprocity relations

(8), but now assuming D = D{q) variable (continuous or

abrupt variation), one can easily obtain.

where D = Eh^/{1 - v^) is the flexural rigidity and
V^w, is the Laplacian operator.W,iijj =

mij{q)w*j{s,q)d.Q{q)
Q

D{q)
*.(s,q)w,y(q)dQ(q) (9)m.-

Do
f!

where Dg is a reference value; For simplicity, it will be

assumed as the plate rigidity at the collocation point D(s).Fig. 1. Plate domain
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From Eq, (9), one can derive the deflection represen-
tation for the general case of varying rigidity plates with or

without abrupt rigidity changes. Thus, assuming that the

rigidity can vary over the domain, one can integrate
Eq. (9) by parts to obtain the deflection integral repre-
sentation, as follows,

Eigure 2 shows the case of a zoned domain with a

narrow region, which can be degenerated to represent the

behaviour of a beam element. For simplicity, single sub-

scripts are adopted to represent the externai boundary.
In order to write an appropriate number of equations

relating boundary and interface values, the usual way is to

differentiate equation (11) to obtain other integral
representation, finding the free terms that may appear due

to differentiation of strong singular kernels [13], The slope
integral representation is the usual relationship frequently
adopted to complete the necessary number of relations for

the corresponding algebraic system of equations. For
internai point S of sub-region Q; the slope equations is

given by,

N,
■ í1

C(S)w(S) + ^ o(Q)k:(s,Q)
D(S)^=1

.5g(Q) 8D(Q)
m:,(s,q) + Aí;(S,Q) w{Q)dr{Q)0s ôn 277

an
N,

1 ÔW

-z í)(q)m;(s,q)—(Q)dr(Q)
mk=l

n-

ídV* dM*dw\
2.

ôm ôm dndw{s)/õm + '^^ í
k=l J

Wc
Oc dr

R^(S,C)wc(C)
D{S)c=i

f í.mq)
J V 9^;

1
K

D,dR*c d^w* \\w{q)áü.{q) ( dw*

dm
D(S) dxidxj y -M, drWc =

Di dmQ õndmc=i
rdw*

y,(Q)iv’(S,Q)-M„(Q) (S,Q) dr(Q) N.dn v-y dw% f (r dQ
K-

£ec(C)w*(S,C)+ / {g{q)w*{S,q))dn{q)
r=i J

(12)

where m defines the slope direction.
For boundary and interface points the vector m must be

properly defined according to the adopted rotation value.

As is well known in the case of constant thickness plate,
boundary and interface values have to be approximated
before algebraic relations can be obtained from the

integral representations (11) and (12). Although using only
algebraic deflection relations to find the system of equa

tions has already proved to be an appropriate scheme for

analysing plate bending problems [11], in the present
formulation it is convenient to also use slope representa
tions for collocations defined along the interfaces. More-

over, at corners and other boundary and interface nodes
characterized by the presence of a discontinuity, double
nodes are adopted. In this case, an extra equation must be

written to make corner reaction and the corresponding
deflection independent values. Thus, at those points where

discontinuity is assumed, five independent equations
required: three deflection representations and two slope
representations. For nodes along the externai boundary,
two deflection equations are adopted, one for the bound-

(10)

where the rigidity D(S) at source point S was assumed as

Da, F/t is the sub-region boundary which may be defined to

make possible abrupt rigidity variation, while AT, is the

total number of sub-regions.
It is worth noting that only deflection and rotation

values are required at points along the interface. The

right-hand side integral over F is only performed over
the externai boundary. Thus, traction values along the

interface were eliminated, automatically satisfying
equilibrium conditions.

Equation (10) can be particularized for the simple
of zoned domain, in which the rigidities are constant over

the sub-regions, therefore the first and second derivatives
of the sub-region rigidity in Eq. (10) are assumed null.

This particular case has already been discussed in previous
publications where alternative strategies have been used to

obtain the final integral representation [11, 12].
Thus, for a collocation point S; belonging to sub-region

i and considering only the case of abrupt rigidity changes,
Eq. (10) is reduced to:

case

are

K

k=i C=1

Vlw-M
dn

dw* \ ‘ r

■J dF-f -f jV„w*-M, {gw*)àÇl r,3^dn
r

n.
23

(11) Fs,
Qi ^2where D; is the rigidity of the sub-region Í2,- taken as the

reference value and Fj-j is the interface between the sub-

region and its adjacent sub-region Slj. Fig. 2. Zoned domain with a narrow region representing a beam



ary node and the other for an externai collocation very

dose to the boundary. For interface nodes, deflection and

slope representations are adopted.
Free term definition is another important aspect

requiring discussion. For simplicity, slope equations are

only written for smooth boundary and interface nodes,
which lead to simple values. However, it is difficult to

avoid computing the free terms of the deflection equation
for collocations defined at corners. In Fig. 3, the usual

cases of externai and internai corners for which one needs

to derive the free terms are depicted, while the corre-
sponding values are given in Table 1.

In Table 1, Da is the rigidity of the adjacent sub-region,
while P2 ^nd y are internai angles of the corresponding
sub-regions, values usual in BEM formulations.

To complete the necessary integral relations for the
analysis of plate bending problems considering beam
inclusion, one can differentiate Eq. (11) twice to obtain

the curvature integral representation at internai points, as

follows,

Bending and twisting moment integral representations are

obtained from Eq. (13) by simply applying the definition
given in Eq. (5). To complete the internai force values at

internai points, one can differentiate Eq. (13) once more

and apply the definition of shear forces of Eq. (6) to find

its integral representation.
The derivatives appearing in Eq. (13) and in the shear

representation must be performed carefully; free terms
always arise when performing derivatives of strong and

hypersingular integrais. Relevant Information about the

correct procedure for extending Eq. (13) can be found
elsewhere [13].
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4

Algebraic equations
As usual for any BEM formulation, the integral
representations (11), (12), (13) and the ones written to

compute internai forces can be transformed into algebraic
expressions after discretizing the boundary into elements.
In the present case, plate boundary and interface have
been discretized into geometrically linear elements over

which the boundary values have been approximated by
quadratic shape functions. The approximations of the
boundary and interface values enable us to write algebraic
representations of deflections, rotations, moments, and

shear forces for any collocation point taken inside the

domain, along the boundary, along the interfaces, and
outside the plate. After selecting an appropriate number of

algebraic equations, one can assemble a convenient set of

equations to solve the problem in terms of boundary and

interface values. This set of algebraic equations has been

defined by writing two relations per node plus an extra
relation at each internai or externai corner. Only the

deflection representations are defined for boundary nodes

while, for interface boundary nodes, slope representations
are also adopted. The collocations related with boundary
nodes are taken either along the boundary or outside the

body, while for interface nodes the collocations are always
defined along the interface line.

The outside collocations have been placed very dose to

the boundary. To guarantee that the algebraic re
presentations are accurate, a sub-element scheme has been

used to compute the boundary and interface element in

tegrais. In this case, sub-element lengths must be smaller

than half of the minimum distance of the collocation to

any sub-element point. This scheme has proved to be very

precise and guarantees the quality of the final results.
After performing the element integrais, the algebraic set

of equations reads:

HU = GP -F T

where U contains deflection and rotation boundary and
interface nodal values, while P contains boundary node
tractions only; T is the independent vector due to the

applied loads.
This scheme is simple and can be applied to analyse

plates stiffened by beam elements accurately. One needs
only to model the beams as narrow plate regions, which
leads to a system of equations with a reduced number of

unknowns. There are two important aspects that deserve
special attention when using this scheme. Quasi-singular

d^v: ô^m: ôw\

•£ê/( drw -

dxjdxj ÕX,ÕXj õxjõxj Qn )

9^\
dxjdxjy

Dc
1 Wc

Dmc=l

dxi^Xj \dn ) ^
d^w* \

dxfixj

V, -M dr

dxfixj
nn

r

Nc

dQ (13)S
dxidxj(=1

n 4. 5
5

P3

Cl

Fig. 3. Internai and externai corner type cases

Table 1. Free terms K(Q) for usual corners in zoned domains

m) Type of corner (14)

Smooth externai boundary collocation
node Q
Smooth interface collocation node

Q; coefficient referred to region Qj
Type C3 corner collocation node Q

Type C2 corner collocation node Q;

P2 is referred to the plate with rigidity Df,
y is referred to the plate with rigidity Da

Corner collocation along externai
boundary; node type Ci

0.5

Pa1 -F
O;

^ Di2n

JL
2n
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Fig. 4. Plate domain stiffened by beams represented by narrow
regions

V

«r
integrais are necessarily present due to the narrowness of

some regions. They must be performed accurately by using
either analytical expressions or numerical schemes with an

appropriate sub-elementation procedure. For practical
building floor applications, performing numerically the

integrais has proved to be accurate enough.
When the beam is too narrow, the algebraic system of

equations becomes unstable: displacement equations of

any two dose collocation points are so similar that they
lead to inaccurate numerical Solutions. In this case, to

improve the quality of the results one has to eliminate all

strongly dependent degrees of freedom, eliminating as well

the corresponding algebraic relations. The simplest way to

reduce the number of unknowns is given by assuming
rigid rotation of the beam cross-section, making deflec-
tions and rotations of two opposite points no longer
independent values. Instead, they are written in terms of

the values of nodes defined along the beam skeleton lines.

Rotation will be assumed constant over the section, while

deflections are given by the skeleton values corrected
according to the distance from this line. Figure 4 defines

narrow regions as representing beams. The cross-section
rigid rotation is illustrated in Fig. 5, from which one may

write a simple relation between rotation, deflection values

taken on the right (T-j,), left interfaces, and along the

skeleton.

Thus, according to these kinematic assumptions, de
flections and rotations along both sides (F-j, and r|^) of the
narrow region of an internai beam read:

a/ == -ar = ar

Wr = Wc + acfi/2,

Fig. 5. Assumed deflections and rotations over the beam

cross-section

the whole displacement filed over these regions. Several
other alternatives have been tested, for which more de

grees of freedom to model the intersection zones were
required. It is important to observe that the skeleton line

nodes and the geometry of the beam cross-sections are the

only data required to define the narrow region, i.e., the

beam. The two dose actual interfaces can then be properly
generated to perform the integrais. The final system of

equations is now given in terms of four boundary values
(w, ôw/ôn, M„ and F„) and two interfaces values
(w, ôw/ô«).
No limit to reduce the integrais to one single line has

been set. The only approximation assumed is the rigid
rotation given by Eq. (15). This scheme leads to very small

system of algebraic equations without introducing too
many variable approximations.

5

Examples
The stiffened plate analysed here and the two discretiza-
tions following the schemes described in the previous
sections are defined in Fig. 6. One central beam plus two

others placed along the boundary are adopted to stiffen
this rectangular plate. The two stiffened sides are free,

while the two others are simply supported. The load is

given by the distributed moment M„ = 10 kNm/m applied
along the simply supported sides. Plate and beam mate
riais are assumed elastic with Young modulus
E = 3 000 000 kN/cm^ and Poisson ration v = 0.16. The

plate thickness is fip = 8 cm, while the beam heights are

hb = 20 cm. The discretizations are specified by; (a) using
the scheme where interface collocations are considered,

leading to 38 elements and 92 nodes (see Fig. 6b) and; (b)

defining collocations only along the beam skeleton lines,

leading to 22 elements and 36 nodes (see Fig. 6a). Figures 7
and 8 give the displacements and the moments in x and y

directions, respectively. The values were obtained along
the central beam {V2) by using the two discussed dis-
cretization schemes. As one can see, the results given in

terms of deflections obtained by using both schemes
compare very well (Fig. 7). Comparing the moment dis-
tribution along the central beam obtained for both cases.

(15a)

we = Wc - acb/2

where Wr, Wt and w^ are deflections on the right, left, and

along the skeleton, respectively, while ar, «f and are the

rotations.

In the case of an externai beam, the deflections along
the sides (F^j, and F(.^) are also given by the expression
(15b); however, for the rotations one has:

(15b)

(15c)x, = .ar = ar

With this approximation only two algebraic relations are

required at each beam node. Thus, the collocation point is

now placed along the beam skeleton, while and are
the assumed unknown values. The intersection regions
between two or more beams were also assumed rigid and,
consequently, only three displacements are left to describe
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other two sides are free. The problem has also been solved

by the two proposed schemes. Using the first scheme,
characterized by defining collocations along the interfaces,
275 nodes were defined along 116 boundary and internai
elements. When the second scheme is adopted, the total
number of nodes is reduced to 123 with 53 elements (see
Fig. 9). The results of both analyses in terms of deflections
are displayed in Fig. 10, while Fig. 11 gives the
sponding distribution of moments, and My, computed
along the central beam (Vs). Again, the computed deflec
tions using both schemes compare very well. The
ical results in terms of moment components appear to be

quite reasonable for this case. The only difficult appears to
be the accurate computation of the moment values at the

beam intersection. The differences observed at this point
are introduced by the assumed rigid rotations.

53 1357 65
54

V56 1 1 10
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Fig. 6. Stiffened plate
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Conclusions

x(m)
The BEM formulation for analysing zoned plate-bending
problem has been extended to deal with plate stiffened
by beams. Beam rigidity is taken into account by
assuming narrow sub-regions, without dividing the
stiffened plate into beam and plate elements. Equilibrium
and compatibility conditions are automatically guaran-

troduces negligible differences in the acmal beam stiffness teed by the global integral equations. Two schemes
as well as in the whole structure. Assuming that the results regarding the displacement approximation assumed
- enough adequate for analysing stiffened building floors along the beams were proposed. The formulation avoids
for instance, the second scheme is recommended since it unnecessary approximations usually present when treat

requires a reduced number of algebraic equations, conse- ing this problem with the standard sub-region techniq
quently reducing the computations. which reduces the number of unknowns and increases

To run the second example, we have borrowed several the accuracy of the results. The rigid
data from the previously analysed problem: the applied
boundary moment M„, the Young modulus E, the Pois-

Fig. 7. Deflections along the central beam (Vj)

very small differences are observed (Fig. 8). Thus, the rigid
rotation hypothesis assumed for the second scheme in-

are

ue.

cross-section

assumption made for the second scheme reduces

further the number of unknowns and preserves the
son’s ratio v, the plate thickness hp, and the beam height quality of the results when analysing stiffened plates
h^. Here, the plate is stiffened by beams placed along all often adopted for building floor structures showing their

sides and by two internai ones, as seen in Fig. 9. Boundary adequacy for dealing with practical problems, thus

values given in terms of moments are prescribed along the encouraging the BEM researchers to go ahead with this

simply supported sides connected to beams Vi and Vj; the kind of formulation.

even
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