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Stiffened plate bending analysis by the boundary element method

G. R. Fernandes, W. S. Venturini

Abstract In this work, the plate bending formulation of
the boundary element method (BEM) based on the Kir-
chhoff’s hypothesis, is extended to the analysis of stiffened
elements usually present in building floor structures.
Particular integral representations are derived to take
directly into account the interactions between the beams
forming grid and surface elements. Equilibrium and
compatibility conditions are automatically imposed by the
integral equations, which treat this composite structure as
a single body. Two possible procedures are shown for
dealing with plate domain stiffened by beams. In the first,
the beam element is considered as a stiffer region re-
quiring therefore the discretization of two internal lines
with two unknowns per node. In the second scheme, the
number of degrees of freedom along the interface is
reduced by two by assuming that the cross-section motion
is defined by three independent components only.

Keywords Plate bending, Boundary elements, Building
floor structures

1
Introduction
The boundary element method (BEM) is already a well-
established numerical technique to deal with an enormous
number of complex engineering problems. Among them,
analysis of plate bending problems has proved to offer a
particularly adequate field of applications for that tech-
nique. The BEM is suitable for evaluating internal force
concentrations due to loads distributed over small regions,
which very often occur in plate bending analysis. More-
over, BEM can deal with deflections, slopes, moments, and
shear forces, approximating them by using the same order
polynomials. Thus, shear forces are much better evaluated
when compared with other numerical methods; they de-
pend only on the adopted boundary value approximation.
The first works discussing the use of direct boundary
element formulation, in conjunction with Kirchhoff’s
theory, are of Bezine [1], Stern [2] and Tottenhan [3]. It is
also important to mention some previous studies dealing
with plate bending problems in the context of indirect
methods [4, 5]. These, as well as several other more recent
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publications, have pointed out the capability of the
method for modelling plates in bending, mentioning
further accuracy and reliability.

In order to use BEM to analyse more complex plates,
e.g., stiffened plates of building floor structures, one has to
extend the BEM formulations to take into consideration
arbitrarily displayed beams, general boundary and internal
constraints and several kinds of transversal loads acting
over the plate surface or part of it. Along these lines, Song
[6], Hartmann and Zotemantel [7] have presented inter-
esting approaches, discussing in detail displacement
restrictions at internal points and the use of hermitian
interpolations. More recently, Oliveira Neto and Paiva [8]
have shown a BEM/FEM for analysing building floor
structures.

While BEM is strongly recommended for plate bending
analysis, in which internal force and displacement fields
are always accurately modelled, the natural choice to solve
the building floor structures is the BEM/FEM combina-
tions. Boundary elements are recommended to deal with
plate elements, which are combined together by enforcing
equilibrium and compatibility conditions along the inter-
faces. The FEM is used to model beam elements. However,
for complex floors, characterized by a large number of
connected beams and many plate regions of different
thickness, the number of degrees of freedom rapidly
increases and the solution accuracy diminishes.

To overcome these difficulties, Venturini and Paiva [9]
have proposed a scheme to deal with zoned domains
without dividing them into sub-regions. In their formu-
lations, only the displacements along the interfaces require
approximation. Equilibrium conditions are automatically
satisfied, so no approximation of these values is required
along the interfaces. In addition, the number of degrees of
freedom at interface nodes is divided by two. A given in-
tegral representation of displacements can be easily writ-
ten for the whole body. This technique has been extended
to potential and 2D elastic problems [10], preserving the
original characteristics: reduction of degrees of freedom
and increasing result accuracy. More recently, following
the same ideas, Fernandes et al. [11] have presented a
plate-bending BEM formulation to deal with a varying
thickness problem.

Here, this formulation is modified to consider plate
domains stiffened by beams without combining the
algebraic equations written separately for each problem.
The beams are treated as regions of different thicknesses,
which can be very narrow, therefore representing the
stiffness variation introduced by this kind of stiffener.
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Their rigidities are automatically taken into consideration
by the global integral representations of displacements and
rotations, in which the stiffener rigidity influences are
given by two-line integrals along the beam sides. To obtain
accurately the algebraic equations, quasi-singular integral
schemes are required to perform the integral along the
beam elements leading to stable numerical solutions. The
formulation is further modified by assuming simple dis-
placement approximations in the direction perpendicular
to the beam axes. Displacements in this direction are as-
sumed to be linear and, therefore, given in terms of two
node values: the deflection and the rotation at the beam
skeleton point. These assumptions reduce strongly the
number of degrees of freedom of the entire problem.
Finally, some numerical examples are presented to
illustrate the accuracy of the results, as well as the
problem size reduction in terms of degree of freedom.

2

Basic equations

Let us consider a flat plate of thickness h, referred to a
Cartesian system of co-ordinates with axes x; and x, lying
on its middle surface and axis x; perpendicular to that
plane. The plate domain is denoted by Q (see Fig. 1), while
its boundary is represented by T'. It is assumed that a
distributed load g is acting in the x; direction on the plate
midplane, with no distributed external moments.

For this plate, the following basic relationships are
defined:

- Equilibrium equations in terms of internal forces:
mij; —qi = 0 (1)
i +8 =0 (2)

where m;; are bending and twisting moments, while g;
represents shear forces, with subscripts taken in the
range i,j = {1,2}.

- The plate bending differential equation,

C myi+g=0 (3)
or
W:iijj:‘gli (i,j=1,2) (4)

where D = Eh*/(1 —1?) is the flexural rigidity and
w,iijj = V*w, is the Laplacian operator.

Fig. 1. Plate domain

- The generalized internal force x displacement relations,
mj = —D(vOywk +(1 — v)w,;) (5)
qi = —Dwji (6)

- The effective shear force,

Vi = qn + Omy /s (7)

where (n, s) are the local co-ordinate system, with n and

s referred to the boundary normal and tangential

directions, respectively; no summation is implied.

The problem definition is then completed by assuming
the following boundary conditions over I': u; = u; on I';
(generalized displacements, deflections, and rotations) and
pi =p; on I'; (generalized tractions, normal bending
moments, and effective shear forces), where I'y UT, =T.

Integral representations
As usual, the integral representations of deflections,
slopes, and generalized internal forces for Kirchhoff’s
plates can be derived from a reciprocity relation written in
terms of bending moments and curvatures of two inde-
pendent mechanical states. The first state is represented by
the actual plate bending problem valid over the domain Q,
for which curvatures w,;; (q) and moments m;;(q) at a field
point q are defined, as well as the associated boundary
values: two generalized displacements, u;(Q), and two
generalized tractions, p;(Q), referred to a boundary field
point Q. The second elastic state is obtained from the
fundamental solution w*(s, q), the deflection at the field
point g due to a unit load applied at a source point s. From
this state, fundamental values for curvatures, w*.(s, q), and
moments, m;.(s7 q), can be easily derived (1,2,3,11). This
elastic state is defined over the infinite space of domain
Q. that contains Q (see Fig. 1).

In order to obtain all the integral representations, the
following reciprocity relation is easily found for the
constant rigidity case:

[ it s (@ea) = [ mitawits a0
Q Q

(8)
The reciprocity relation (8) is valid only for plates exhib-
iting constant rigidity D, but its extension to a general case
is simple [11, 12]. Let us consider a plate element now
characterized by exhibiting variable thickness, i.e.,
t = t(q), which gives corresponding rigidity D = D(q).
Following the same steps to derive the reciprocity relations
(8), but now assuming D = D(q) variable (continuous or
abrupt variation), one can easily obtain,

/ mij(g)w;; (5,9)dq)
Q
= / %j)m;}(s,q)w,ij (9)d0q) (9)
Q

where D, is a reference value; For simplicity, it will be
assumed as the plate rigidity at the collocation point D(s).



From Eq. (9), one can derive the deflection represen-
tation for the general case of varying rigidity plates with or
without abrupt rigidity changes. Thus, assuming that the
rigidity can vary over the domain, one can integrate
Eq. (9) by parts to obtain the deflection integral repre-
sentation, as follows,

C(S)w(S) +ZD—(155/ <D(Q)v;(s, Q)
k=1

,,oD(Q) . . oD(Q)
+2 as Mns(S’Q)+T

M, Q)> w(Q)dr(Q)

(10)
where the rigidity D(S) at source point S was assumed as
Do, T'x is the sub-region boundary which may be defined to
make possible abrupt rigidity variation, while N; is the
total number of sub-regions.

It is worth noting that only deflection and rotation
values are required at points along the interface. The
right-hand side integral over I is only performed over
the external boundary. Thus, traction values along the
interface were eliminated, automatically satisfying
equilibrium conditions.

Equation (10) can be particularized for the simple case
of zoned domain, in which the rigidities are constant over
the sub-regions, therefore the first and second derivatives
of the sub-region rigidity in Eq. (10) are assumed null.
This particular case has already been discussed in previous
publications where alternative strategies have been used to
obtain the final integral representation [11, 12].

Thus, for a collocation point S; belonging to sub-region
i and considering only the case of abrupt rigidity changes,
Eq. (10) is reduced to:

LY Low Dy
k=1 "1 C=1"""
I‘kj

* aW* e * ) *
= / <V,1w —M”E> dF+;RCwC+ / (gw")dQ
r - Q
(11)
where D; is the rigidity of the sub-region Q; taken as the

reference value and [y is the interface between the sub-
region {4 and its adjacent sub-region Q.

Figure 2 shows the case of a zoned domain with a
narrow region, which can be degenerated to represent the
behaviour of a beam element. For simplicity, single sub-
scripts are adopted to represent the external boundary.

In order to write an appropriate number of equations
relating boundary and interface values, the usual way is to
differentiate equation (11) to obtain other integral
representation, finding the free terms that may appear due
to differentiation of strong singular kernels [13]. The slope
integral representation is the usual relationship frequently
adopted to complete the necessary number of relations for
the corresponding algebraic system of equations. For an
internal point S of sub-region Q; the slope equations is
given by,

N
Dy ov: OM: 0w

ow(s)/om+ —/( Tw— ”—>dI"
kZ:;D,- g om Om On

N, 2
~D.0OR; ow* ow*
= = [ Vaoe = My ) dT"
1L;:ID,-amWC /< om M@n6m>d
r
N,
S owg ow*
Re——=< dQ
+§=-:1 C6m+/<g6m>
(12)

where m defines the slope direction.

For boundary and interface points the vector m must be
properly defined according to the adopted rotation value.

As is well known in the case of constant thickness plate,
boundary and interface values have to be approximated
before algebraic relations can be obtained from the
integral representations (11) and (12). Although using only
algebraic deflection relations to find the system of equa-
tions has already proved to be an appropriate scheme for
analysing plate bending problems [11], in the present
formulation it is convenient to also use slope representa-
tions for collocations defined along the interfaces. More-
over, at corners and other boundary and interface nodes
characterized by the presence of a discontinuity, double
nodes are adopted. In this case, an extra equation must be
written to make corner reaction and the corresponding
deflection independent values. Thus, at those points where
discontinuity is assumed, five independent equations are
required: three deflection representations and two slope
representations. For nodes along the external boundary,
two deflection equations are adopted, one for the bound-

<
~—

I

Q] } QZ

Fig. 2. Zoned domain with a narrow region representing a beam
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ary node and the other for an external collocation very
close to the boundary. For interface nodes, deflection and
slope representations are adopted.

Free term definition is another important aspect
requiring discussion. For simplicity, slope equations are
only written for smooth boundary and interface nodes,
which lead to simple values. However, it is difficult to
avoid computing the free terms of the deflection equation
for collocations defined at corners. In Fig. 3, the usual
cases of external and internal corners for which one needs
to derive the free terms are depicted, while the corre-
sponding values are given in Table 1.

In Table 1, D, is the rigidity of the adjacent sub-region,
while f3, and y are internal angles of the corresponding
sub-regions, values usual in BEM formulations.

To complete the necessary integral relations for the
analysis of plate bending problems considering beam
inclusion, one can differentiate Eq. (11) twice to obtain
the curvature integral representation at internal points, as
follows,

Ow(qm) =Dy [ [V O*M: ow
O Mm) o5 2k n gy I I g
ax0x; +;Dm / (axiaxjw a0, an>

k(

N, 2
< D, [ O°R.
i ;D_m <6xi6xj> We

' *w* * [ow
= \% -M —_—
/ ( " Oux;0x; " Qux;0x; < on ))dr

A
o*w
— )dQ
+/ <g6x,-6xj>d
Q

N«' &
DRLE
g

c 1
A ax,-axj ( 3)
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Fig. 3. Internal and external corner type cases

Table 1. Free terms K(Q) for usual corners in zoned domains

K(Q

Type of corner

0.5 Smooth external boundary collocation
node Q
Smooth interface collocation node
Q; coefficient referred to region Q;
Type Cs corner collocation node Q

Type C, corner collocation node Q;
B is referred to the plate with rigidity Dj;
7 is referred to the plate with rigidity D,
Corner collocation along external
boundary; node type C,

Bending and twisting moment integral representations are
obtained from Eq. (13) by simply applying the definition
given in Eq. (5). To complete the internal force values at
internal points, one can differentiate Eq. (13) once more
and apply the definition of shear forces of Eq. (6) to find
its integral representation.

The derivatives appearing in Eq. (13) and in the shear
representation must be performed carefully; free terms
always arise when performing derivatives of strong and
hypersingular integrals. Relevant information about the
correct procedure for extending Eq. (13) can be found
elsewhere [13].

4

Algebraic equations

As usual for any BEM formulation, the integral
representations (11), (12), (13) and the ones written to
compute internal forces can be transformed into algebraic
expressions after discretizing the boundary into elements.
In the present case, plate boundary and interface have
been discretized into geometrically linear elements over
which the boundary values have been approximated by
quadratic shape functions. The approximations of the
boundary and interface values enable us to write algebraic
representations of deflections, rotations, moments, and
shear forces for any collocation point taken inside the
domain, along the boundary, along the interfaces, and
outside the plate. After selecting an appropriate number of
algebraic equations, one can assemble a convenient set of
equations to solve the problem in terms of boundary and
interface values. This set of algebraic equations has been
defined by writing two relations per node plus an extra
relation at each internal or external corner. Only the
deflection representations are defined for boundary nodes
while, for interface boundary nodes, slope representations
are also adopted. The collocations related with boundary
nodes are taken either along the boundary or outside the
body, while for interface nodes the collocations are always
defined along the interface line.

The outside collocations have been placed very close to
the boundary. To guarantee that the algebraic re-
presentations are accurate, a sub-element scheme has been
used to compute the boundary and interface element in-
tegrals. In this case, sub-element lengths must be smaller
than half of the minimum distance of the collocation to
any sub-element point. This scheme has proved to be very
precise and guarantees the quality of the final results.

After performing the element integrals, the algebraic set
of equations reads:

HU =GP +T (14)

where U contains deflection and rotation boundary and
interface nodal values, while P contains boundary node
tractions only; T is the independent vector due to the
applied loads.

This scheme is simple and can be applied to analyse
plates stiffened by beam elements accurately. One needs
only to model the beams as narrow plate regions, which
leads to a system of equations with a reduced number of
unknowns. There are two important aspects that deserve
special attention when using this scheme. Quasi-singular
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Fig. 4. Plate domain stiffened by beams represented by narrow
regions

integrals are necessarily present due to the narrowness of
some regions. They must be performed accurately by using
either analytical expressions or numerical schemes with an
appropriate sub-elementation procedure. For practical
building floor applications, performing numerically the
integrals has proved to be accurate enough.

When the beam is too narrow, the algebraic system of
equations becomes unstable: displacement equations of
any two close collocation points are so similar that they
lead to inaccurate numerical solutions. In this case, to
improve the quality of the results one has to eliminate all
strongly dependent degrees of freedom, eliminating as well
the corresponding algebraic relations. The simplest way to
reduce the number of unknowns is given by assuming
rigid rotation of the beam cross-section, making deflec-
tions and rotations of two opposite points no longer
independent values. Instead, they are written in terms of
the values of nodes defined along the beam skeleton lines.
Rotation will be assumed constant over the section, while
deflections are given by the skeleton values corrected
according to the distance from this line. Figure 4 defines
narrow regions as representing beams. The cross-section
rigid rotation is illustrated in Fig. 5, from which one may
write a simple relation between rotation, deflection values
taken on the right (I'},), left (l"gb) interfaces, and along the
skeleton.

Thus, according to these kinematic assumptions, de-
flections and rotations along both sides (I', and I',)) of the
narrow region of an internal beam read:

o] = —0, = U¢

wy = we + acb/2,

(15a)
(15b)

where w,, w¢ and w, are deflections on the right, left, and
along the skeleton, respectively, while ¢, «; and «, are the
rotations.

In the case of an external beam, the deflections along
the sides (I'", and I'\,) are also given by the expression
(15b); however, for the rotations one has:

we = w.—ab/2

o= 0y = 0 (15¢)

With this approximation only two algebraic relations are
required at each beam node. Thus, the collocation point is
now placed along the beam skeleton, while w, and o, are
the assumed unknown values. The intersection regions

between two or more beams were also assumed rigid and,
consequently, only three displacements are left to describe

b/2 b/2

o~

— e s
o

b —

Wl

Fig. 5. Assumed deflections and rotations over the beam
cross-section

the whole displacement filed over these regions. Several
other alternatives have been tested, for which more de-
grees of freedom to model the intersection zones were
required. It is important to observe that the skeleton line
nodes and the geometry of the beam cross-sections are the
only data required to define the narrow region, i.e., the
beam. The two close actual interfaces can then be properly
generated to perform the integrals. The final system of
equations is now given in terms of four boundary values
(w,0w/0n, M, and V,) and two interfaces values

(w, 0w/0n).

No limit to reduce the integrals to one single line has
been set. The only approximation assumed is the rigid
rotation given by Eq. (15). This scheme leads to very small
system of algebraic equations without introducing too
many variable approximations.

5

Examples

The stiffened plate analysed here and the two discretiza-
tions following the schemes described in the previous
sections are defined in Fig. 6. One central beam plus two
others placed along the boundary are adopted to stiffen
this rectangular plate. The two stiffened sides are free,
while the two others are simply supported. The load is
given by the distributed moment M,, = 10 kNm/m applied
along the simply supported sides. Plate and beam mate-
rials are assumed elastic with Young modulus

E = 3000000 kN/cm? and Poisson ration v = 0.16. The
plate thickness is h, = 8 cm, while the beam heights are
hy = 20 cm. The discretizations are specified by: (a) using
the scheme where interface collocations are considered,
leading to 38 elements and 92 nodes (see Fig. 6b) and; (b)
defining collocations only along the beam skeleton lines,
leading to 22 elements and 36 nodes (see Fig. 6a). Figures 7
and 8 give the displacements and the moments in x and y
directions, respectively. The values were obtained along
the central beam (V;) by using the two discussed dis-
cretization schemes. As one can see, the results given in
terms of deflections obtained by using both schemes
compare very well (Fig. 7). Comparing the moment dis-
tribution along the central beam obtained for both cases,
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Fig. 6. Stiffened plate
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Fig. 7. Deflections along the central beam (V)

very small differences are observed (Fig. 8). Thus, the rigid
rotation hypothesis assumed for the second scheme in-
troduces negligible differences in the actual beam stiffness
as well as in the whole structure. Assuming that the results
are enough adequate for analysing stiffened building floors
for instance, the second scheme is recommended since it
requires a reduced number of algebraic equations, conse-
quently reducing the computations.

To run the second example, we have borrowed several
data from the previously analysed problem: the applied
boundary moment M, the Young modulus E, the Pois-
son’s ratio v, the plate thickness hp, and the beam height
hy. Here, the plate is stiffened by beams placed along all
sides and by two internal ones, as seen in Fig. 9. Boundary
values given in terms of moments are prescribed along the
simply supported sides connected to beams V; and V;; the

E —— Mx - discretized
§ beam central lines
X discretized

X interfaces

=

£ discretized beam
*E central lines

z . )

X —»— discretized

> interfaces

=

x(m)

Fig. 8. Moments M, and M, along the central beam (V)

other two sides are free. The problem has also been solved
by the two proposed schemes. Using the first scheme,
characterized by defining collocations along the interfaces,
275 nodes were defined along 116 boundary and internal
elements. When the second scheme is adopted, the total
number of nodes is reduced to 123 with 53 elements (see
Fig. 9). The results of both analyses in terms of deflections
are displayed in Fig. 10, while Fig. 11 gives the corre-
sponding distribution of moments, M, and M, computed
along the central beam (Vs). Again, the computed deflec-
tions using both schemes compare very well. The numer-
ical results in terms of moment components appear to be
quite reasonable for this case. The only difficult appears to
be the accurate computation of the moment values at the
beam intersection. The differences observed at this point
are introduced by the assumed rigid rotations.

6

Conclusions

The BEM formulation for analysing zoned plate-bending
problem has been extended to deal with plate stiffened
by beams. Beam rigidity is taken into account by
assuming narrow sub-regions, without dividing the
stiffened plate into beam and plate elements. Equilibrium
and compatibility conditions are automatically guaran-
teed by the global integral equations. Two schemes
regarding the displacement approximation assumed
along the beams were proposed. The formulation avoids
unnecessary approximations usually present when treat-
ing this problem with the standard sub-region technique,
which reduces the number of unknowns and increases
the accuracy of the results. The rigid cross-section
assumption made for the second scheme reduces even
further the number of unknowns and preserves the
quality of the results when analysing stiffened plates
often adopted for building floor structures showing their
adequacy for dealing with practical problems, thus
encouraging the BEM researchers to go ahead with this
kind of formulation.
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