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Abstract

We consider a large class of deformations of continuous and discrete biorthogonal
ensembles and investigate their behavior in the limit of a large number of particles.
We provide sufficient conditions to ensure that if a biorthogonal ensemble converges
to a (universal) limiting process, then the deformed biorthogonal ensemble converges
to a deformed version of the same limiting process. To construct the deformed version
of the limiting process, we rely on a procedure of marking and conditioning. Our
approach is based on an analysis of the probability generating functionals of the
ensembles and is conceptually different from the traditional approach via correlation
kernels. Thanks to this method, our sufficient conditions are rather mild and do
not rely on much regularity of the original ensemble and of the deformation. As a
consequence of our results, we obtain probabilistic interpretations of several Painlevé-
type kernels that have been constructed in the literature, as deformations of classical
sine and Airy point processes.
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1 Introduction

The notion of universality is omnipresent in the modeling of physical phenomena with
complex interactions. Informally speaking, it means that large families of models share
the same or similar features on microscopic scales, or in other words that microscopic
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Deformations of biorthogonal ensembles and universality

behavior is to a large extent independent of specific macroscopic dynamics of the model
at hand [31].

Random matrix theory is among the richest grounds for the manifestation and deep
understanding of universality, and it is understood that the microscopic behavior of
eigenvalues in a large class of Hermitian random matrix ensembles is described in terms
of a limited number of universal point processes. This means that in the large matrix
limit, the microscopic behavior of eigenvalues is described by one of a few canonical
processes, for instance the sine point process in the bulk of the spectrum and the Airy
point process at soft edges of the spectrum. In non-equilibrium statistical mechanics,
large classes of growth models are described, in appropriate large time scales, by
universal fluctuation fields, such as the KPZ fixed point or the Gaussian Free Field, which
contain in appropriate senses several of the aforementioned random matrix limiting
processes [58, 74, 17].

A rigorous mathematical justification of universality is often possible in models that
have an integrable structure. In the aforementioned random matrix theory, for instance,
a form of integrability arises at the level of eigenvalues, which in many models are
described in terms of determinantal point processes. In such models, the relevant
statistics are encoded in a function of two variables, the correlation kernel, which
depends on the size of the system in a parametric way. Through the analysis of this
correlation kernel in the large size limit, one is able to leverage local information to
provide universality results in its various different forms.

A natural viewpoint on universality is that perturbations or deformations of the
original system should not affect their large size microscopic behavior. While it is widely
understood that microscopic properties are indeed little affected by macroscopic and
mesoscopic deformations of models, we will show in contrast that they are sensitive
to microscopic deformations. More precisely, we will show that such microscopic
deformations lead to entire novel families of possible microscopic limit point processes.

We consider a large family of determinantal point processes, known as biorthogonal
ensembles, consisting of n particles whose correlation functions admit a representation
in terms of biorthogonal functions. This family of processes encompasses several im-
portant random matrix models, certain families of growth processes, polymer models,
random tilings, random partitions and more. We consider deformations of biorthog-
onal ensembles, and investigate under which conditions the behavior of the original
biorthogonal ensemble carries over to the deformed ensemble, in the limit of a large
number of particles. Here, we are concerned with the following question: if the original
biorthogonal ensemble satisfies some form of universality on microscopic scales, will
the deformed biorthogonal ensemble satisfy the same type of universality, or will the
deformation cause a different type of microscopic behavior?

For a class of deformations of the finite n particle system which take place at a
microscopic scale, we will show that in the large n limit, the universal limiting point
process is also deformed. Remarkably, both the deformed biorthogonal ensemble and
the deformed limiting point process can be constructed via a procedure of marking and
conditioning. In this way, even if the limiting point process is deformed, our results
show that it is still determined by the limit of the non-deformed biorthogonal ensemble,
together with the form of the deformation.

The main conceptual novelty is that we approach this problem via the probability
generating functional of the point processes and not via the more commonly used scaling
limits of correlation kernels. This different angle has two major advantages. Firstly,
we do not need to perform a technical asymptotic analysis of the deformed models
and we can instead rely on knowledge of the undeformed point process combined with
properties of the deformation. Secondly, we only need minimal regularity requirements
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for the deformations.
We now move on to the detailed discussion of our results.

2 Statement of results

Throughout the paper, we useK to denote the state space, or in other words the space
to which particles of the system belong. We will restrict ourselves to the case where K =

Rd with d a positive integer, in particular also encompassing point processes on Cm '
R2m. Our methods could apply to a more general framework with K being a subspace of
an arbitrary finite-dimensional complex Banach space, but for the applications we have
in mind the case K = Rd suffices, and to avoid more technical arguments we restrict to
them.

Biorthogonal ensembles

A biorthogonal ensemble on K [15, 62] is a probability measure on Kn, invariant
under permutation of the variables, of the form

1

zn
det [fk(xj)]

n
j,k=1 det [gk(xj)]

n
j,k=1

n∏
j=1

wn(xj)dν(xj). (2.1)

Here the positive reference measure ν is a Radon measure on K, possibly varying with
n, the systems of measurable and complex-valued functions (fj)nj=1, (gj)

n
j=1 are such that

det [fk(xj)]
n
j,k=1 det [gk(xj)]

n
j,k=1 > 0 for ν-a.e. (x1, . . . , xn) ∈ Kn,

the weight function wn : K→ [0,+∞) is ν-integrable, and the normalization constant zn
is given by

zn ..=

∫
Kn

det [fk(xj)]
n
j,k=1 det [gk(xj)]

n
j,k=1

n∏
j=1

wn(xj)dν(xj).

The entries of a random vector (x1, . . . , xn) distributed according to (2.1) are seen
as locations xj of random particles in the state space K, and we refer to (2.1) as a
biorthogonal ensemble with n particles. Typical absolutely continuous choices of ν
include the (n-independent) Lebesgue measure dν(x) = dx on R, R2 or C, or also the
Lebesgue measure restricted to the unit interval [0, 1] ⊂ R. In a similar spirit, in a
discrete setup we can take ν = νn to be the counting measure on the rescaled positive
integer lattice 1

nZ≥0, hence varying with the number n of particles.
The weight function, as well as the functions fk = fn,k and gk = gn,k, may also depend

on the number n of particles, although we will not make such dependence explicit in our
notation unless needed. Without loss of generality we could have omitted the weight wn

in (2.1), since wn can be absorbed by the reference measure ν or by the functions fk, gk,
but it will turn out instructive and convenient to separate the dependence on wn from
the rest of the measure.

Arguably the most studied of such models (2.1) are the orthogonal polynomial en-
sembles [61, 62], obtained when we take dν(x) = dx and fk(x) = gk(x) = xk−1 on
K = R, such that both determinants are Vandermonde determinants and the distribution
becomes

1

zn

∏
1≤j<k≤n

(xk − xj)
2

n∏
j=1

wn(xj)dxj . (2.2)

For wn = e−nV and V sufficiently regular and with sufficient growth at ±∞, this is
the probability distribution of the eigenvalues in the unitary invariant random matrix
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ensemble

1

z′n
e−nTrV (M) dM, dM =

n∏
j=1

dMjj

∏
1≤j<k≤n

dReMjkd ImMjk, (2.3)

on the space of n× n Hermitian matricesM [10, 34, 33]. Another interesting and more
general situation occurs when fk(x) = xk−1 but with gk general, in which case we obtain
the polynomial ensemble [63]

1

zn

∏
1≤j<k≤n

(xk − xj) det [gk(xj)]
n
j,k=1

n∏
j=1

wn(xj)dxj . (2.4)

Probability distributions of this form occur for singular values of products of random
matrices [2, 3, 63, 59], coupled random matrix models [11, 41] or matrix models with
eigenvalues in the plane [5, 12], and in Muttalib-Borodin ensembles [15]. The general
family of biorthogonal ensembles is rather large, and particular instances occur in
connection to non-intersecting random walks and paths, random growth models, random
tilings, random partitions, last passage percolation and polymer models, among many
others [21, 36, 40, 42, 48].

There is a natural discrete analogue to (2.4), obtained upon replacing dx by the
counting measure dν of, say, the re-scaled integers 1

nZ ⊂ K = R, or another discrete
lattice over R. Such discrete measures form part of the class of discrete Coulomb
gases [47, 55], and besides their natural interest as gases in statistical mechanics, they
also appear in connection with exclusion processes, the six-vertex model, asymptotic
representation theory, random tilings, to mention only a few [53, 56, 19, 9, 13, 17].

Biorthogonal ensembles on subsets of R2 (or equivalently C) arise for non-Hermitian
random matrices and biorthogonal ensembles on higher-dimensional spaces have been
explicitly constructed lately, for instance the higher dimensional elliptic ensembles [1]
and the spherical ensembles [6]. Some related constructions of point processes on more
general manifolds are also of interest (see for instance [7] and the references therein)
and many of the aspects we will discuss may be adapted to these frameworks as well
with non-essential modifications, but for the sake of clarity we restrict to considering the
state space K to be a Euclidean space.

Determinantal point processes

We will assume throughout the paper that the functions fj and gj defining the
biorthogonal ensemble (2.1) are such that

√
wnfj ,

√
wngj belong to L2(ν) = L2(K→ C, ν).

Then, the biorthogonal ensemble (2.1) is a determinantal point process [15, 79]: the
m-point correlation functions ρn,m : Km → [0,+∞) exist for any m ∈ N, and there exists
a kernel kn : K2 → C ∈ L2(ν × ν) for which they take the form

ρn,m(x1, . . . , xm) = det (kn(xj , xk))
m
j,k=1 . (2.5)

The correlation kernel of a determinantal point process is not unique. However, for
biorthogonal ensembles the kernel kn may be taken in the form

kn(x, y) =
√
wn(x)wn(y)

n∑
k=1

φk(x)ψk(y), (2.6)

where the (complex) linear span of (φk)nk=1 is equal to that of (fk)nk=1, and the linear
span of (ψj)

n
j=1 is equal to that of (gk)nk=1, and they satisfy the biorthogonality relations

that give name to the class, ∫
K

φk(x)ψj(x)wn(x)dν(x) = δjk. (2.7)
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Note that the left hand side above is the inner product of φk with ψj , not the inner
product of φk with ψj .

From the general theory of determinantal point processes [57, 16, 79], we then know
that statistics of (2.1) can be computed through a Fredholm series: for any bounded
measurable function h : K→ R, we have that

En

[
n∏

k=1

(1− h(xk))

]
=

∞∑
k=0

(−1)k

k!

∫
Kk

det (kn(xj , x`))
k
j,`=1

k∏
j=1

h(xj)dν(xj), (2.8)

where the expectation En is with respect to the probability law (2.1), and where all terms
corresponding to k > n on the right-hand side vanish.

Since
√
wnφj ,

√
wnψj are in L2(ν), the integral operator

knf(x) =

∫
K

kn(x, y)f(y)dν(y)

is a finite rank (not necessarily Hermitian) linear projection operator on L2(ν), whose
range is the linear span of

√
wnφ1, . . . ,

√
wnφn, and whose kernel is the orthogonal

complement of the linear span of
√
wnψ1, . . . ,

√
wnψn. In particular, kn is a trace-class

operator, and the right-hand side of (2.8) is then equal to the Fredholm determinant
det(1− hkn)L2(ν) defined through the functional calculus for trace-class operators [78],
where h denotes the operator of multiplication with the function h. When the underlying
measure is clear from the context or unimportant, we sometimes drop the notation
L2(ν) and write simply det(1− hkn)L2(ν) = det(1− hkn). For a sufficiently large class of
functions h, the expectations in (2.8) characterize the point process [27].

Scaling limits

A common approach towards asymptotic results in biorthogonal ensembles goes via
scaling limits of the correlation kernel. Given a sequence of biorthogonal ensembles (2.1)
with correlation kernels kn, let us fix a reference point x∗ ∈ K, and define the re-scaled
kernel

Kn(u, v) ..=
1

cnγ
kn
(
x∗ +

u

cnγ
, x∗ +

v

cnγ

)
, u, v ∈ K, (2.9)

for suitably chosen c ∈ C, γ > 0, possibly depending on the choice of x∗ ∈ K and on the
choice of wn. This kernel Kn also defines a scaled determinantal point process Xn which
is a biorthogonal ensemble, namely the probability distribution

1

Zn
det [Fk(uj)]

n
j,k=1 det [Gk(uj)]

n
j,k=1

n∏
j=1

Wn(uj)dµn(uj), u1, . . . , un ∈ K, (2.10)

where

Fk(u) = fk (x(u)) , Gk(u) = gk (x(u)) , Wn(u) = wn (x(u)) , dµn(u) ..= cnγdν (x(u)) ,

(2.11)
with x(u) = x∗ + u

cnγ , and

Zn
..=

∫
Kn

det [Fk(uj)]
n
j,k=1 det [Gk(uj)]

n
j,k=1

n∏
j=1

Wn(uj)dµn(uj).

This is in other words the probability distribution for the scaled points uj = u(xj) =

cnγ(xj − x∗) living on K. When, for instance, dν(x) = dx is the Lebesgue measure on R,
then dµn(u) = du is simply the Lebesgue measure on the scale u, which is independent of
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n. In contrast, if say dν is the counting measure on Z, then dµn is the counting measure
on the scaled lattice 1

nZ, hence varying with n.
Let us continue our discussion for a moment assuming that µn = µ is independent of

n. If the re-scaled kernel Kn(u, v) converges as n→ ∞ to a, say continuous, limit kernel
K(u, v), uniformly for u, v in compact subsets of K, some probabilistic consequences
for the point processes may be drawn. First, the limit kernel K then also defines a
determinantal point process X on K: this follows essentially from a criterion of Lenard
described, e.g., in [79]. Secondly, we have weak convergence of the point processes Xn

to X as n→ ∞, meaning that [28, Section 11.1] the finite dimensional distributions of
Xn converge weakly (in the sense of measures) to the finite dimensional distributions of
X . For Hermitian positive-definite kernels, this follows from the fact that the associated
operators converge in trace-norm, see e.g. [77, Proposition 3.10]. In general, proving
weak convergence of the point processes using convergence of the kernels requires
more careful arguments, as we will explain in Remark 2.4.

If µn depends on n, the same holds true if µn converges to some limiting measure µ
in a sufficiently strong sense. In many situations, the integral operator K with kernel K
will be an infinite rank projection on L2(µ), hence not trace-class, but locally trace-class,
i.e. its restriction to every bounded subset of K is trace-class. In such cases, random
point configurations in X are a.s. infinite [79] but locally finite, and we represent them
as counting measures ξ =

∑
i δui

.
In orthogonal polynomial ensembles with dν(x) = dx and wn(x) = e−nV (x) on K = R,

such scaling limits are well understood.
If x∗ is a (regular) point in the bulk of the spectrum, one has to take γ = 1, and

one finds the sine kernel Ksin(u, v) ..= sinπ(u−v)
π(u−v) as limit kernel for a suitable choice of

c = c(x∗) > 0. If x∗ is a (regular) soft edge, one has to take γ = 2/3 and an appropriate

c > 0, and the limit kernel is the Airy kernel KAi(u, v) ..= Ai(u)Ai′(v)−Ai(v)Ai′(u)
u−v . Near points

where wn is discontinuous, limit kernels related to other special functions, like the Bessel
kernel or confluent hypergeometric kernel, arise, see for instance [71, 18, 81, 72, 45, 64]
for some of their early appearances. For choices of weight functions wn leading to
singular bulk or edge points, limit kernels connected to Painlevé equations appear, see
e.g. [39] for an overview. Similar scaling limits have also been found in a variety of
biorthogonal ensembles beyond the orthogonal polynomial ensembles, though there is
no completely understood classification of all different types of possible limit kernels.

Weak convergence via probability generating functionals

Instead of studying the convergence of point processes via their correlation functions,
we prefer to study the weak convergence of point processes Xn

∗→ X in a more direct
way. We recall that weak convergence Xn

∗→ X of point processes means that the
finite dimensional distributions of Xn converge weakly (in the sense of measures) to
the finite dimensional distributions of X . In turn, such weak convergence is equivalent
to point-wise convergence of the probability generating functionals [28, Proposition
11.1.VIII]: Xn converges weakly to X as n → ∞ if and only if limn→∞ Gn[h] = G[h] for
every continuous function h : K→ [0, 1] of bounded support with supx∈K h(x) < 1, where

Gn[h] ..= En

[
n∏

k=1

(1− h(uk))

]
, G[h] ..= E

[∏
k

(1− h(uk))

]
(2.12)

are the probability generating functionals for the point processes Xn and X [28, Def-
inition 9.4.IV]. In other words, weak convergence is the convergence of all (suitably
regular) multiplicative observables of the particle system.

Naturally, another approach towards convergence results consists in taking scaling
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limits directly on the level of probability generating functionals, instead of correlation
kernels. This will enable us to prove convergence for a large class of weight functions
without explicit expressions for correlation kernels at our disposal. This approach is also
rather natural as well from the physical perspective. In essence, we are approaching
convergence from observables of the model rather than from the correlation functions.

In our context of scaled determinantal point processes with kernels of locally trace-
class integral operators Kn, the condition limn→∞ Gn[h] = G[h] translates into a limit
condition for Fredholm determinants,

lim
n→∞

det(1−
√
hKn

√
h)L2(µn) = det(1−

√
hK

√
h)L2(µ), (2.13)

which, in case µn = µ is independent of n, is achieved if the operators
√
hKn

√
h converge

in trace norm to the operator
√
hK

√
h as n→ ∞. Observe that det(1−

√
hKn

√
h)L2(µn) =

det(1− hKn)L2(µn) on the left-hand side, but the Fredholm determinant det(1− hK)L2(µ)

is not defined unless if hK is trace-class on L2(µ). Since K is locally trace-class and
h is assumed to have bounded support,

√
hK

√
h is trace-class, hence the Fredholm

determinant det(1−
√
hK

√
h)L2(µ) is well-defined. Therefore, we utilize the symmetrized

operator
√
hKn

√
h also on the left.

A class of deformations of biorthogonal ensembles

Let (Xn)n∈N be a biorthogonal ensemble of the form (2.10), with correlation kernel
Kn and probability generating functional Gn. From now on, we always have in mind
situations where dµn(u) is the reference measure on a microscopic scale, i.e. like in
(2.11), the distribution is induced by a scaling of a distribution of the form (2.1), so we
view Xn as the already appropriately scaled biorthogonal ensemble, with corresponding
scaled kernel Kn as above.

Given a measurable function σn : K → [0, 1] such that Gn[σn] 6= 0, we define a
deformed biorthogonal ensemble X σn

n with probability distribution

1

ZnGn[σn]
det [Fk(uj)]

n
j,k=1 det [Gk(uj)]

n
j,k=1

n∏
j=1

(1− σn(uj))Wn(uj)dµn(uj), (2.14)

and with associated probability generating functional

Gσn
n [h] ..=

1

ZnGn[σn]

∫
Kn

det [Fk(uj)]
n
j,k=1 det [Gk(uj)]

n
j,k=1

×
n∏

j=1

(1− h(uj))(1− σn(uj))Wn(uj)dµn(uj).

Any sequence (σn) thus induces a deformation

Wσn
n (u) ..= (1− σn(u))Wn(u), (2.15)

of the weight function on microscopic scales; before rescaling, in (2.1), the deformation
corresponds to the deformed weight function

wσn
n (x) = (1− σn (cn

γ(x− x∗)))wn(x). (2.16)

Naturally, one is asked to understand to what extent the convergence of the original
ensemble towards a certain limiting point process results in convergence of the deformed
ensembles as well. The construction of the deformed ensemble (2.14) relies on the
explicit form of the joint distribution of biorthogonal ensembles, but the biorthogonality
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structure is not carried through when taking scaling limits. Hence, before studying
convergence of such deformed ensembles, the first question is whether one can define
similar deformations X σ of the limit point processes X of the undeformed biorthogonal
ensembles. To construct such limiting deformed ensembles, we rely on a probabilistic
interpretation of the deformed biorthogonal ensemble X σn

n developed in [24], as we
describe next.

Conditional ensembles and universality

We start with a random point configuration ξ =
∑

j δuj
in a ground point process X on

the space K with reference measure µ, and a sufficiently regular function σ : K→ [0, 1]

which we view as the symbol for a deformation. For our purposes, this ground process
X will be either a biorthogonal ensemble of the form (2.10), or a determinantal point
process defined by a limit kernel like the sine or Airy kernel. We associate to each
uj independently a random Bernoulli mark mj , which is equal to 0 with probability
1− σ(uj) and equal to 1 with complementary probability σ(uj). We then condition this
marked point process on the event that all points have mark mj = 0, and we denote this
conditional point process by X σ. We may view the marked process as the observation
of particles in an experiment, when receiving a mark 1 means that the particle was
effectively observed. The resulting conditional ensemble X σ is thus the process obtained
under the condition that none of the particles were observed in the experiment. Within
such interpretation, the understanding of X σ provides insights on the lost data.

It was proved in [24] that the result of applying this procedure of marking (with a
function σ = σn) and conditioning on a biorthogonal ensemble Xn of the form (2.11) is
precisely the deformed biorthogonal ensemble (2.14). But the procedure is more general
and applies to general determinantal point processes X . The resulting conditional
process X σ is defined whenever G[σ] 6= 0, and it is still a determinantal point process,
which we can see as the natural n → ∞ generalization of the deformation (2.14).
Moreover, suppose that X has correlation kernel K, and that the associated integral
operator K is a locally trace-class operator on L2(µ). Then, it was proved in [24] that

Kσ ..=
√
1− σK(1− σK)−1

√
1− σ (2.17)

is a locally trace-class operator on L2(µ), and that the integral kernel Kσ of this operator
is the correlation kernel of the particles in the deformed determinantal point process
X σ. The associated probability generating functional Gσ is thus given by

Gσ[h] =

∞∑
k=0

(−1)k

k!

∫
Kk

det (Kσ(uj , u`))
k
j,`=1

k∏
j=1

h(uj)dµ(uj) = det(1−
√
hKσ

√
h)L2(µ).

(2.18)
If σ = 0, the deformed point process X σ is of course equal to the undeformed X .

If we start with Xn and assume Xn converges to a limit determinantal point process
X as n→ ∞, then what can we say about the large n limit of X σn

n ? From the perspective
of universality, a natural rephrasal of this question would be: how far can we deform Xn

to a new process X σn
n while still preserving the same limiting process X ?

As our results will show, if we deform a biorthogonal ensemble on microscopic scales,
for instance by taking σn independent of n in (2.15), then we lose universality of the
limit process: under appropriate but mild conditions, we will actually prove that the
deformed process X σn

n converges to the deformation X σ of the original limit process
X driven by the symbol σ = limn→∞ σn. This is still a natural phenomenon: when we
deform the model on microscopic scales, we modify the limit point process, but the new
limit point process is simply the corresponding deformation of the original limit point
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process. From another perspective, our results drastically enlarge the class of possible
limit kernels arising in biorthogonal ensembles, including in particular the classical
sine, Airy, and Bessel point processes, by adding to it all σ-deformations of existing
limit point processes. When the deformation takes place on sub-microscopic scales, we
will show that the limit point process is not deformed, see Remark 2.5. We will prove
our results for a wide variety of biorthogonal ensembles under rather mild conditions,
without assuming much regularity of the deformation symbol σn, and they will yield
asymptotic results of the deformed ensembles basically as consequences of the known
universality results of the corresponding undeformed ensembles.

Remark 2.1. Let us also mention that the kernels Kσ are intimately connected to the
theory of integrable kernels [50]. These are kernels which can be written in the form

K(u, v) =

∑k
j=1 gj(u)hj(v)

u− v
, with

k∑
j=1

gj(u)hj(u) = 0,

like the sine and Airy kernels, as well as all other known limit kernels of orthogonal
polynomial ensembles (with k = 2). If the kernel K is integrable, then the deformed
kernel Kσ is also integrable (with the same value of k). Moreover, Kσ can then be
characterized in terms of a k × k matrix-valued Riemann-Hilbert problem, which makes
them amenable to asymptotic analysis, and which allows to study associated integrable
differential equations, see [24]. For the deformations of the sine, Airy, and Bessel kernels,
the underlying differential equations are well understood [22, 46, 26, 75], as well as the
asymptotic behavior in certain regimes.

Convergence theorem for non-varying measures

The general setting of our main results starts with a sequence of n-point biorthogonal
ensembles Xn, n ∈ N, of the form (2.10) with a reference measure µn, kernels Kn, and
a sequence of deformations X σn

n of the form (2.14)–(2.15), induced by a sequence of
functions σn, n ∈ N. Our main result will ask for convergence of the original point
process Xn to a limiting process X in a suitable sense, in order to conclude convergence
of the deformed ensemble X σn

n towards a deformation X σ of the limiting process X .
We will need suitable assumptions on µn, σn and Kn, and we first consider the case

of a non-varying measure µn = µ. Loosely speaking, in this case we need (1) that the
deformed ensembles are well-defined, (2) that Kn and σn converge point-wise to a limit
kernel K and a function σ, and (3) a rough domination bound for the kernels Kn.

Assumption 2.2. Let µn = µ be a Radon measure on K which is independent of n.
The kernels Kn : K2 → C as in (2.9) and the functions σn : K→ [0, 1] are such that the
following conditions hold.

1. The deformed ensemble (2.14) is well-defined, i.e. Gn[σn] > 0 for every n ∈ N.

2. There exist a determinantal point process X on K with kernel K and probability
generating functional G, and a function σ : K→ [0, 1] for which G[σ] 6= 0, such that
for µ-a.e. u, v ∈ K, we have the point-wise limits

lim
n→∞

Kn(u, v) = K(u, v) and lim
n→∞

σn(u) = σ(u), for µ-a.e. u, v ∈ K.

3. For every bounded F ⊂ K, there exist Φ,Ψ ∈ L2(µ), possibly depending on F , such
that for every n ∈ N,√

1F (u) + σn(u)|Kn(u, v)|
√
1F (v) + σn(v) ≤ Φ(u)Ψ(v), for µ-a.e. u, v ∈ K,

where 1F is the indicator function of the set F .
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The following is a general convergence result for deformed biorthogonal ensembles.

Theorem 2.3. Let (Xn)n∈N be a sequence of biorthogonal ensembles of the form (2.10)
with corresponding sequence of correlation kernels (Kn)n∈N. Let (σn)n∈N be a sequence
of Borel measurable functions σn : K→ [0, 1]. If Assumption 2.2 holds, then the limit

lim
n→∞

Gσn
n [h] = Gσ[h], (2.19)

holds true for any continuous function h : K → [0,+∞) with bounded support. In
particular, the deformed biorthogonal ensemble X σn

n converges weakly as n→ ∞ to the
deformed limit point process X σ.

Theorem 2.3 is proven in Section 4.

Remark 2.4. The simplest case of the above result occurs when σn ≡ 0, which means
that we do not deform the biorthogonal ensembles Xn. In this case, Assumption 2.2
only means dominated convergence of the kernels Kn to K. Even if this is not the most
interesting situation, it is still worth to mention that Theorem 2.3 then gives a practical
sufficient condition to deduce weak convergence of the point processes Xn to X from
suitable convergence of the correlation kernels Kn to K. Note moreover that, if the
kernels Kn(u, v) are continuous and the convergence of Kn to K is uniform on compacts,
then Assumption 2.2 is always valid for σn ≡ 0.

Remark 2.5. Another simplified version of Theorem 2.3 occurs when the sequence
σn is not identically 0, but the limit function σ is identically zero. This happens for
instance if we set σn(u) = h(nεu) for some ε > 0 and for some function h decaying to 0

at infinity, which means that the deformation of the biorthogonal ensemble takes place
on sub-microscopic scales. Then, if Assumption 2.2 holds, Theorem 2.3 states that the
deformed biorthogonal ensembles X σn

n converge weakly to the undeformed limit point
process X : as announced informally before, limit point processes are insensitive to
sub-microscopic deformations.

We view Theorem 2.3 as a perturbative tool, close to the spirit of universality: once
the convergence of the original kernel Kn is established, we can extend the convergence
of the ground point processes (Xn) to their deformed versions (X σn

n ) after a routine
check of Assumption 2.2. Unlike the traditional approach through an asymptotic analysis
of the correlation kernels, our approach does not require a separate analysis of the
deformed ensembles. In this direction, in Section 3 we will apply Theorem 2.3 to several
concrete situations, extending known convergence results of the original sequences (Xn)

to their deformed versions (X σn
n ), for large families of deformations σn. Notably, thanks

to Theorem 2.3 we will provide a characterization of the correlation kernel of various
different conditional-thinned deformations of the sine and Airy point processes in terms
of integrable systems previously studied in the literature in depth, see Remark 3.3 later
on.

Convergence theorem for varying measures

There is an analogue to Theorem 2.3 for varying measures µn, which in particular will
allow us to consider biorthogonal ensembles over lattices. In addition to the previous
assumptions on Kn and σn, we need to assume a suitable type of convergence of the
varying measures µn to a measure µ. In the assumption below and in what follows,
for functions f, g we use the notation (f ⊗ g)(x, y) = f(x)g(y), and denote by µ⊗ λ the
product measure on K2 generated by two measures µ and λ.

Assumption 2.6. The sequence of Radon measures (µn), the kernels Kn : K2 → C as in
(2.9), and the functions σn : K→ [0, 1] are such that the following hold.

(1) The deformed ensemble (2.14) is well-defined, i.e. Gn[σn] > 0 for every n ∈ N.
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(2) There exist a determinantal point process X on K with continuous kernel K and
associated probability generating functional G, and a continuous function σ : K→
[0, 1], such that for any compact F ⊂ K, the limits

lim
n→∞

‖(1F ⊗ 1F )(Kn − K)‖L∞(µn⊗µn) = 0 and lim
n→∞

‖1F (
√
σn −

√
σ)‖L∞(µn) = 0

are valid.

(3) There is a Radon measure µ over K for which for every bounded F ⊂ K, there exist
continuous functions Φ,Ψ ∈ L2(µ)∩L2(µn), possibly depending on F but independent
of n, such that √

1F (u) + σn(u)|Kn(u, v)|
√
1F (v) + σn(v) ≤ Φ(u)Ψ(v),

for µn-a.e. u, v ∈ K and for every n. Furthermore, the norms

‖Φ‖L2(µn), ‖Φ‖L∞(µn), ‖Ψ‖L2(µn) and ‖Ψ‖L∞(µn)

remain bounded as n→ ∞, and for these same functions the weak convergence of
measures

Φ(x)Ψ(x)dµn(x)
∗→ Φ(x)Ψ(x)dµ(x) as N → ∞

takes place.

In Assumption 2.6, the measures µn and µ need not be finite, so it is not suitable to
talk about their weak convergence directly. However, since Φ,Ψ ∈ L2(µ)∩L2(µn), each of
the measures ΦΨdµ and ΦΨdµn is finite, and the weak convergence from Assumption 2.6
(3) makes sense.

We emphasize that Assumption 2.6 (2)–(3) requires an understanding of the kernel
Kn(u, v) for u, v in the varying set suppµn. In concrete discrete models, the n-dependent
kernel Kn is naturally defined only on suppµn, but not on the whole space, and its limit
K admits a continuous extension to the whole space K. This point will be clarified in the
concrete example of discrete Coulomb gases discussed in Section 3.3, and explains why
the pointwise convergence and bounds in Assumption 2.2 (2)–(3) are naturally replaced
with Assumption 2.6 (2).

The next result is the previously announced analogue of Theorem 2.3 for varying
measures.

Theorem 2.7. Let (Xn)n∈N be a sequence of biorthogonal ensembles of the form (2.11)
with correlation kernels Kn with a varying reference measure dµn. Let (σn)n∈N be a
sequence of Borel measurable functions σn : K→ [0, 1]. If Assumption 2.6 holds, then
we have the limit

lim
n→∞

Gσn
n [h] = Gσ[h] (2.20)

for any continuous function h : K → [0,+∞) with bounded support. In particular, the
deformed biorthogonal ensemble X σn

n converges weakly as n→ ∞ to the deformed limit
point process X σ.

We emphasize that Assumption 2.6 asks for the continuity solely of the limiting
functions K and σ, but not of Kn, σn. Assumption 2.6 involves conditions on Kn, σn that
must be verified on suppµn but not on the whole space. The limiting point processes X
and X σ are determinantal with respect to the kernel K as acting on L2(µ). With these
observations in mind, functions σn,Kn need to be defined only µn-a.e., and the continuity
of K, σ,Ψ,Φ on the whole space K can be replaced by the continuity of these functions
on a neighborhood of suppµ, and Theorem 2.7 still remains valid under such conditions.

Theorem 2.7 is proven in Section 5. It is particularly useful when dealing with
discrete biorthogonal ensembles, for which the underlying state spaces are scaled with
n to a continuum limit. We discuss some applications in this direction in Section 3.3.
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3 Applications of the general results

We now illustrate how our main theorems apply in several models of interest.

3.1 Bulk deformations of orthogonal polynomial ensembles

Consider orthogonal polynomial ensembles (2.2) with varying measure wn(x) =

e−nV (x). The correlation kernel kn can then be taken of the form (2.6), with φk = ψk

being the normalized orthogonal polynomial of degree k − 1 with respect to the weight
wn(x) on R.

Let us assume that

V is of class C2 and lim
x→±∞

V (x)/ log(1 + x2) = +∞. (3.1)

These rather weak regularity conditions ensure that we work under the framework
developed by Lubinsky [68, 67] and further extended together with Levin [66, 65] for the
study of universality. We now collect some known results for these orthogonal polynomial
ensembles that we will need.

A first result is concerned with the global limit density of the ensemble: there exists
an equilibrium density κV : R → [0,+∞) supported on a finite number of compact
intervals, for which

lim
n→∞

1

n
kn(x, x) = κV (x), (3.2)

uniformly for x in compact subsets of the interior of the support of κV . The associated
measure κV (x)dx is known as the equilibrium measure, as it is the solution of a mini-
mization problem from logarithmic potential theory [30, Chapter 6]. The convergence
(3.2) has been proved in the literature under various different settings and forms. If V
is real analytic the limit (3.2) holds uniformly for x ∈ R as inferred from [34], whereas
under the weaker regularity we are assuming this result is uniform on compact subsets
of the interior of suppκV as can be seen from [80].

A second result is concerned with local correlations between eigenvalues. Let us fix
a reference point x∗ ∈ R for which κV (x∗) > 0; such a point is referred to as a bulk point.
Consider the scaling x = x∗ + u

κV (x∗)n and the corresponding scaled kernel

Kn(u, v) ..=
1

κV (x∗)n
kn

(
x∗ +

u

κV (x∗)n
, x∗ +

v

κV (x∗)n

)
, (3.3)

i.e., the kernel defined in (2.9) with c = κV (x
∗) and γ = 1. Then, the following sine kernel

limit is a classical example of bulk universality:

lim
n→∞

Kn(u, v) = Ksin(u, v) ..=
sin(π(u− v))

π(u− v)
, (3.4)

point-wise for u, v ∈ R. This limit was proven by Pastur and Shcherbina in [73] under
weak conditions on V , and shortly later established using Riemann-Hilbert methods
(when V is real analytic) by Deift and collaborators using Riemann-Hilbert methods
[35, 30, 34, 33]. The general result under the weaker condition (3.11) below was proved
by Levin and Lubinsky in [65]. The limit kernel Ksin is the sine kernel, and it defines a
determinantal point process, the sine point process, which we denote as Xsin.

Finally, we need a rough uniform bound for the kernel on the diagonal, or in other
words a bound on the one-point correlation function: there exists a constant C > 0 for
which the inequality∣∣∣∣ 1

κV (x∗)n
kn

(
x∗ +

u

κV (x∗)n
, x∗ +

u

κV (x∗)n

)∣∣∣∣ ≤ C (3.5)
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holds true for any u ∈ R and any n. For u in compacts, this follows from [65, Equa-
tion (4.13)]. It extends to the full real line with the help of the so-called restricted range
inequalities, for instance with an application of [76, Chapter III, Theorem 2.1] – and
following their notation – for the weight w = e−V/2 and polynomial P2n =

∑n−1
k=0 φ

2
k, for

which P2n(x)w(x)
2n = kn(x, x), compare with (2.6).

Let us now introduce a suitable deformation of this ensemble. We take an integrable
function f : R→ [0,+∞) which is such that f(x) = O(|x|−η) as x→ ±∞, for some η > 1.
Define σn by the equation

1− σn(u) = e−f(ntu), t ≥ 0. (3.6)

The deformation induced by σn lives on microscopic scales if t = 0 and on sub-microscopic
scales if t > 0. Since 1− e−y ≤ y for all y ∈ R, we can bound

σn(u) = 1− e−f(ntu) ≤ f(ntu)

≤ C1[−M,M ](u) +
C

|u|η
1R\[−M,M ](u) =

.. H(u), (3.7)

for some constants C,M > 0. Observe that H : R → R is an integrable function
independent of n.

We proceed by proving that Assumption 2.2 is valid in this setting. Condition (1) is
easily verified, since 1− σn(u) > 0 for a.e. u ∈ R. To see that the point-wise limits in part
(2) are valid, we recall (3.4), and we observe that

lim
n→∞

σn(u) = σ(u) ..=

{
1− e−f(u), t = 0, u ∈ R,
0, t > 0, u ∈ R \ {0}.

(3.8)

To prove that part (3) of Assumption 2.2 is valid, we recall (3.5). Using that Kn is the
Christoffel-Darboux kernel for orthogonal polynomials, we apply the Cauchy-Schwarz
inequality to bound Kn(u, v) in terms of its diagonal values, and obtain

|Kn(u, v)| ≤
√
Kn(u, u)Kn(v, v) ≤ C. (3.9)

By construction of σn, we have for any compact F ⊂ R that√
1F (u) + σn(u)|Kn(u, v)|

√
1F (v) + σn(v) ≤ C

√
1F (u) +H(u)

√
1F (v) +H(v), t ≥ 0.

(3.10)
Since Φ(u) = Ψ(u) =

√
C(1F (u) +H(u)) is square-integrable, part (3) of Assumption 2.2

is valid for t ≥ 0.
Applying Theorem 2.3, we now obtain the following result.

Corollary 3.1. For any compactly supported continuous function h : R→ [0,+∞), we
have the limits

lim
n→∞

Gσn
n [h] =

{
Gσ
sin[h], t = 0,

Gsin[h], t > 0.

where Gsin and Gσ
sin are the probability generating functionals of the sine point process

and its σ-deformation,

Gsin[h] = det(1−
√
hKsin

√
h), Gσ

sin[h] = det(1−
√
hKσ

sin

√
h),

with
Kσ

sin =
√
1− σKsin(1− σKsin)

−1
√
1− σ.

In particular, the deformed orthogonal polynomial ensemble X σn
n converges weakly as

n→ ∞ to the deformed sine point process X σ
sin if t = 0, and to the sine point process Xsin

if t > 0.
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Let us discuss some special cases that appeared previously in the literature.

(1) If σ(u) = 1(−s,s) with s > 0, the deformation of the orthogonal polynomial ensemble
Xn consists of restricting the domain of its particles to R \ [−s, s]. Accordingly, the
deformed sine point process X 1(−s,s)

sin is the sine point process conditioned on the
event that a random point configuration contains no points in (−s, s). The Riemann-

Hilbert problem characterizing the kernel K
1(−s,s)

sin and a connection to the Painlevé V
equation were analyzed in the groundbreaking works [32] and [51], respectively.

(2) If σ(u) = γ1(−s,s) with s > 0 and γ ∈ (0, 1), the deformation of the orthogonal
polynomial ensemble Xn and of the sine point process are obtained by conditioning
on the event that a random thinned point configuration contains no points in (−s, s).
Here, the random thinned point configuration is the point configuration obtained
after removing each point independently with probability 1− γ. For γ ∈ (0, 1], the

limit kernel K
γ1(−s,s)

sin was expressed in terms of the solution of a Riemann-Hilbert
problem in [20], and its Fredholm determinant was associated to the Painlevé V
equation in [70], see also [43].

(3) If σ is of Schwartz class, the limit kernel Kσ
sin can be expressed in terms of the solution

of a Riemann-Hilbert problem connected to an integro-differential generalization of
the Painlevé V equation, and is connected to an integrable PDE introduced in [50]
which is an isospectral deformation of the Zakharov-Shabat system. This observation
is computed explicitly in [23], based on the results from [26].

Case (3) corresponds to σ as in (3.8), with t = 0. Case (2) corresponds to t = 0 and
the choice f(u) = − log(1 − γ1(−s,s)(u)) with γ ∈ (0, 1), which is a function of compact
support and as such satisfying the decay conditions for f .

In turn, Case (1) corresponds to t = 0 and formally to f(u) = − log(1 − 1(−s,s)(u)),
so that f(u) = +∞ on (−s, s). In particular, such f is not integrable. Nevertheless,
this case can still be recovered in a similar way as in Corollary 3.1, simply by setting
σn(u) = σ(u) = H(u) = 1(−s,s)(u) directly, instead of (3.6).

3.2 Edge deformations of orthogonal polynomial ensembles

Here, we consider the same class of orthogonal polynomial ensembles as in the previ-
ous subsection, namely we take (2.2) with wn(x) = e−nV (x), but now with V satisfying
the stronger condition

V is real analytic, strictly convex, and lim
x→±∞

V (x)/ log(1 + x2) = +∞. (3.11)

The real analyticity is needed to apply the results from [35, 30, 34, 33]; similar results
have been obtained under weaker conditions in [65] and [69], but require more technical
assumptions, and for the sake of brevity we choose not to pursue in this direction. The
strict convexity ensures that the support of the equilibrium density κV is a single interval,
which we denote as [x−, x+]. Instead of focusing on bulk points, we now fix one of the
edge points as a reference point, and for the sake of simplicity, we will henceforth
consider the right edge point x+. Thanks to the strict convexity of V , it is known that x+

is a regular soft edge, meaning that there exists C > 0 (depending on V and x+) such
that

κV (x) ∼ C
√
x+ − x, x→ (x+)−. (3.12)

In this situation, the proper scaling (2.9) is with γ = 2/3 and c =
(
π
2C
)2/3

with C as in
(3.12). In other words, we consider the re-scaled orthogonal polynomial ensemble Xn

with kernel

Kn(u, v) =
1

cn2/3
kn
(
x∗ +

u

cn2/3
, x∗ +

v

cn2/3

)
.
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We then have the edge scaling limit

lim
n→∞

Kn(u, v) = KAiry(u, v) ..=
Ai(u)Ai′(v)−Ai(v)Ai′(u)

u− v
, (3.13)

uniformly for u, v in compacts of the real line, which was proved in [34, 33]. The limit
kernel KAiry is the Airy kernel, and it induces the Airy point process which we denote as
XAiry. This limit process is universal, in the sense that it does not depend on V , and in
fact it appears in a wide range of models outside the realm of random matrix theory, see
e.g. [61, 57].

Like in the bulk, we need also a rough bound for the one-point function Kn(u, u),
which must be uniform in u ∈ R. It follows also from the asymptotics for Kn(u, u)

obtained in [34, 33] that there exists a constant C ′ > 0 such that

Kn(u, u) ≤ C ′(
√
|u|+ 1) for u < 0, Kn(u, u) ≤ C ′ e−V (u) for u ≥ 0. (3.14)

This was not stated explicitly in this form in [34, 33], but such estimates can be deduced
from the asymptotic analysis of the Riemann-Hilbert problem in [34, 33]. More precisely,
for |u| ≤ δn2/3 with δ > 0 sufficiently small, the estimate follows from the construction of
the local Airy parametrix together with the asymptotic behavior of the Airy function and
Airy kernel, while for |u| > δn2/3, it follows from the construction of the outer parametrix.

Similarly to the bulk case, we now introduce a suitable deformation of Xn. As before,
we take a locally integrable function f : R → [0,+∞) and define σn by (3.6). The
conditions we need to impose on f are different from those in the bulk case, because
they are dictated by the (different from the bulk) uniform bound (3.14). Here, we need f
to decay sufficiently fast as x→ −∞ such that f(x) = O(|x|−3/2−ε) for some ε > 0, and
we also assume that

lim
x→+∞

f(x) = L exists, possibly with L = +∞.

These conditions imply that there existsM > 0 such that for n sufficiently large and for
all t ≥ 0,

σn(u) = 1− e−f(ntu) ≤ 1[−1,+∞)(u) +M |u|−3/2−ε1(−∞,−1)(u).

Consequently,

σn(u)Kn(u, u) ≤ C e−V (u) 1[−1,+∞)(u) + CM |u|−1−ε1(−∞,−1)(u) =
.. H(u), (3.15)

and H is integrable and independent of n.
We now prove that Assumption 2.2 is valid. Condition (1) is again easily verified,

since 1−σn is non-negative and does not vanish identically. For part (2), we recall (3.13),
and we observe that

lim
n→∞

σn(u) = σ(u) ..= 1− e−f(u) if t = 0, u ∈ R, (3.16)

while

lim
n→∞

σn(u) = σ(u) ..=


0, u < 0

1− e−f(0), u = 0

1− e−L, u > 0

, if t > 0. (3.17)

It remains to prove part (3) of Assumption 2.2. By the Cauchy-Schwarz inequality (recall
for instance the first inequality in (3.9)), we have for any compact F ⊂ R that√

1F (u) + σn(u)|Kn(u, v)|
√
1F (v) + σn(v)

≤
√
(1F (u) + σn(u))Kn(u, u)

√
(1F (v) + σn(v))Kn(v, v).
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Moreover, by (3.14), we have

(1F (u) + σn(u))Kn(u, u) ≤ 2C e−V (u), u ≥ 0,

and
(1F (u) + σn(u))Kn(u, u) ≤ C1F (u)(1 +

√
|u|) +H(u), u < 0.

We set

Φ(u) = Ψ(u) ..=


√
2C e−V (u), u ≥ 0√
C1F (u)(1 +

√
|u|) +H(u), u < 0,

such that Φ,Ψ ∈ L2(R), and part (3) of Assumption 2.2 is valid.
Applying Theorem 2.3, we now obtain the following result.

Corollary 3.2. For any compactly supported continuous function h : R→ [0,+∞), the
limit

lim
n→∞

Gσn
n [h] = Gσ

Airy[h],

is valid, where Gσ
Airy is the probability generating functional of the σ-deformation of the

Airy point process,
Gσ
Airy[h] = det(1−

√
hKσ

Airy

√
h),

with
Kσ

Airy =
√
1− σKAiry(1− σKAiry)

−1
√
1− σ,

and σ given by (3.16)–(3.17). In particular, the deformed orthogonal polynomial ensem-
ble X σn

n converges weakly as n→ ∞ to the deformed Airy point process X σ
Airy.

Let us again consider some concrete examples.

(1) For σ(u) = 1(s,+∞), the deformed orthogonal polynomial ensemble is the original
one restricted to the domain (−∞, s). In other words, it consists of introducing a
hard edge in the vicinity of the soft edge, which corresponds to u = 0. This leads to

a hard-to-soft-edge transition, and the limit kernels K
1(s,+∞)

Airy in this transition have
been studied in [25] and are connected to the Painlevé II equation; it was however
not noticed there that the limit point process is the Airy point process conditioned
on having no particles bigger than s.

(2) For σ(u) = γ1(s,+∞)(u) with s ∈ R and γ ∈ (0, 1), the limit kernels Kσ
Airy and the

associated Riemann-Hilbert problems have been investigated in detail in [82, 14].
These kernels are connected to the Hastings-McLeod and Ablowitz-Segur solutions
of the Painlevé II equation.

(3) For the choice σ(u) = 1/(1 + e−tu−s) with t > 0 and s ∈ R, the kernel Kσ
Airy was

obtained in [46] as the limit at the soft edge scaling for a class of microscopic defor-
mations of orthogonal polynomial ensembles of the form (2.2). These deformations
were in particular assumed to be real analytic in a neighborhood of the real axis.
Here, we obtain a more general class of limit kernels parametrized by the function σ,
and we obtain it under weak regularity assumptions on the deformation. It was also
proved in [46] that the limit kernel Kσ

Airy can be expressed in terms of an integro-
differential generalization of the second Painlevé equation, by combining results
from [22] and [24].

In a similar vein as for the sine process, functions σ for which Case (3) applies
correspond to the general ones in (3.16)–(3.17) with t = 0, and Case (2) correspond to
t = 0 and f(u) = − log(1− γ1(s,+∞)(u)) with γ ∈ (0, 1). In these two cases Corollary 3.2
applies directly.
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Case (1) corresponds to t = 0, and to apply Theorem 2.3 we modify the arguments
outlined before Corollary 3.2 as follows. With m = min(inf F, s) the bound 1F (u) +
σ(u) ≤ 2 × 1(m,+∞)(u) applies, and the function H in (3.15) must be replaced by C ×
1(m,+∞)(u) e

−V (u), which is integrable. The arguments in the sequel of (3.15) can then
be applied.

Along the lines of (3), a combination of [22] and [24] similar to the one explored in
[46], together with Corollary 3.2, yields the characterization of the kernel Kσ

Airy in terms
of an integro-differential Painlevé II equation, for a large class of σ : R → [0, 1]. Gap
probabilities for a family of kernels which also contain the kernels Kσ

Airy for some choices
of σ have been recently studied by Kimura and Navand [60].

Remark 3.3. As mentioned, in all the cases (1)–(3) mentioned after Corollary 3.1, and
also in the cases (1)–(2) mentioned just above, the deformed kernel Kσ was characterized
in terms of a solution to a Riemann-Hilbert problem. The mentioned works established
the connection of the kernels with integrable differential equations (more specifically
Painlevé equations) and considered asymptotic questions related to them. Curiously, the
probabilistic characterization of such kernels as the correlation kernels of the conditional
thinned versions of the sine and Airy point processes was not noticed before, despite
the fact that it can help to obtain more insight in asymptotic questions, for instance to
construct g-functions needed in asymptotic Riemann-Hilbert analysis.

Even though we focused here on discussing deformations near bulk and soft edge
points, our general result Theorem 2.3 can be used to obtain similar results near hard
edges, near discontinuities of the weight functions, or near other types of singular points
where limiting kernels other than the sine and Airy kernels arise [46, 24].

3.3 Deformations of discrete Coulomb gases

The orthogonal polynomial ensembles (2.2) can be interpreted as continuous log-
gases. They admit natural discrete analogues that we now discuss. For positive integers
n and N with n < N , consider discrete measures of the form

Pn,N (x1, · · · , xn)
n∏

i=1

dνN (xj) ..=
1

Zn,N

∏
1≤i<j≤n

(xj − xi)
2

n∏
j=1

wN (xj)dνN (xj), (3.18)

viewed as a distribution of n particles xj on the discrete set

Λ = ΛN
..=
{
x
(N)
j : j = 0, . . . , N − 1

}
⊂ R. (3.19)

We assume ΛN ⊂ [0, 1] for simplicity, the considerations that follow would still go through

replacing [0, 1] by any other compact subset of the real axis. The points x(N)
j are usually

referred to as the nodes for the discrete ensemble. The set of nodes ΛN varies with N ,
and dνN is the N -dependent counting measure on ΛN . The partition function Zn,N is
taken such that (3.18) is a probability measure. The ensemble (3.18) is a biorthogonal
ensemble as well, in fact a discrete orthogonal polynomial ensemble. The functions
φj = ψj = p

(N)
j−1 in (2.7) are the orthonormal polynomials with respect to the discrete

varying measure wN (x)dνN (x) on ΛN , namely satisfying∫
ΛN

p
(N)
j (x)p

(N)
k (x)wN (x)dνN (x) =

∑
x∈ΛN

p
(N)
j (x)p

(N)
k (x)wN (x) = δj,k, j, k = 0, . . . , n,

(3.20)
where δj,k is the Kronecker delta, and conditions on the weight wN will be placed in a
moment. Particular instances of such orthogonal polynomial ensembles arise with the
rescaled Krawtchouk and Hahn weights, in connection with random domino tilings of
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the Aztec diamond, and random lozenge tilings of the hexagon, respectively [56, 53, 54].
Since their introduction in the seminal work [53], discrete particle systems of the form
(3.18) on various different subsets of the integers have been profoundly explored in
the literature, in particular in connection with growth models and tilings as the ones
mentioned, among many other ones. We refer the reader to [4, 29] for an account of the
overarching connection of (3.18) with other models.

For us, we consider (3.18) under the framework studied in [4], which we now briefly
describe. In summary, we work under the following assumptions.

Assumption 3.4. The discrete Coulomb gas ensemble (3.18) satisfies the following
conditions.

(i) The set of nodes ΛN is defined by a quantization rule (3.21) with respect to a
density function ρ.

(ii) The orthogonality weight is of the form wN (x) = e−NVN (x) for a suitable function
VN .

(iii) The constrained equilibrium measure of the system satisfies a regularity condition
(in the sense discussed around (3.24) below).

Under these assumptions, we are interested in the limit where n→ +∞ with n = βN

and β ∈ (0, 1) fixed. We now detail what parts (i)–(iii) of Assumption 3.4 mean. In what
follows, for a compactly supported finite measure λ on R, its logarithmic potential is

Uλ(z) ..=

∫
log

1

|x− z|
dλ(x), z ∈ R,

which is a well-defined function assuming values in (−∞,+∞].
We assume that the set of nodes ΛN is defined through a density function: there

exists a function ρ which is analytic in a complex neighborhood of [0, 1], ρ(x) > 0 on [0, 1],∫ 1

0
ρ(x)dx = 1, and the nodes are defined through the relation

∫ x
(N)
j

0

ρ(x)dx =
2j + 1

2N
, j = 0, . . . , N − 1, (3.21)

which is usually referred to as a quantization rule. We view ρ as a density on [0, 1], with
its corresponding logarithmic potential Uρ ..= Uρ1[0,1]dx. The weight wN is assumed to be
of the form

wN (x) = e−NVN (x), with VN (x) = V (x)− Uρ(x) +
η(x)

N
, (3.22)

and where V is independent of N , real analytic in a complex neighborhood G of (0, 1),
and η is allowed to depend on N but in such a way that

Cη
..= lim sup

N→∞
sup
z∈G

|η(z)| <∞. (3.23)

The function V may be viewed as the confining potential for the discrete Coulomb gas.
The term Uρ in (3.22) could have been incorporated into V , but it has a slightly different
meaning: it arises upon taking the discrete-to-continuous limit of the discrete set ΛN to
the interval [0, 1]. Furthermore, for technical reasons it is important that V admits an
analytic continuation to a full complex neighborhood of [0, 1], which is not necessarily
the case for Uρ.

The situation of equally spaced nodes is recovered with ρ ≡ 1 and x
(N)
j = 2j−1

2N ,
for which Uρ(x) = −x log x − (1 − x) log(1 − x) + 1. The particular cases of (rescaled)
Hahn and Krawtchouk polynomials correspond to equally spaced nodes and the choice
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V (x) = −(a + x) log(a + x) − (b − x) log(b − x) + cx + d, where a, b, c, d are appropriate
parameters.

A central role is played by the constrained equilibrium measure µV , which is the
unique Borel probability measure on [0, 1] that minimizes∫∫

1

|x− y|
dµ(x)dµ(y) +

1

β

∫
(V (x)− Uρ(x))dµ(x), (3.24)

over all Borel probability measures µ on [0, 1] satisfying the constraint µ(B) ≤ 1
β

∫
B
ρ(x)dx

for every Borel set B ⊂ [0, 1].
The constraint implies that the equilibrium measure µV is absolutely continuous

with respect to the Lebesgue measure, say dµV (x) = κV (x)dx, with 0 ≤ κV (x) ≤ ρ(x)/β.
Moreover, in our situation, the interval [0, 1] is divided into a finite number of bands,
voids, and saturated regions: a void is an interval on which κV (x) = 0, a band is an
interval on which 0 < κV (x) < ρ(x)/β, and a saturated region is an interval on which
κV (x) = ρ(x)/β. The density κV is real analytic on each of the bands. We assume that
κV (x)dx is a regular equilibrium measure, in the following sense.

(i) Both κV (x) and ρ(x)/β − κV (x) have a square-root behavior at each point where
they vanish.

(ii) The two endpoints 0 and 1 do not belong to the closure of a band.

Condition (i) is a generic condition on V , in the sense that if it is not satisfied by a
specific V , then it is satisfied for any sufficiently small perturbation of V ; we refer the
reader to [4, Section 2.1] for a detailed discussion. Condition (ii) implies that κV (0), κV (1)
are either 0 or ρ(0)/β, ρ(1)/β. We impose all these technical conditions in order to be
able to use convergence results and bounds for the kernel kn from established sources
in the literature. The computation of the constrained equilibrium measures for the
Hahn and Krawtchouk orthogonal polynomial ensembles are thoroughly discussed in [4,
Section 2.4] and [38], respectively.

Under the conditions just discussed, it is known that κV describes the one-point
function of the ensemble (3.18). Concretely, if J is any closed interval where 0 <

κV (x) <
ρ(x)
β , then the limit

lim
n→∞

kn(x, x) = κV (x), (3.25)

holds true as n → ∞ with n = βN as before, uniformly for x ∈ J . As stated, this is [4,
Lemma 7.12]. Variants of this result also appear in [37, 44, 52].

We will now apply Theorem 2.7 to the discrete Coulomb gas under Assumption 3.4.
For that, we need to verify Assumption 2.6, which we do as follows.

(I) Determine the scaling of the kernel (2.9) and the corresponding varying measures
µn that, together, determine a point process Xn with state space ΩN .

(II) Identify a limiting measure µ and the state space Ω where it acts.

(III) Determine the limiting kernel K acting on L2(µ), with the corresponding limiting
point process X on the state space Ω.

(IV) Determine a suitable class of varying symbols σn and their limit σ.

(V) Verify that, in this construction, Assumption 2.6 (1)–(3) holds.

We consider a bulk point, that is, a point x∗ for which 0 < κV (x
∗) < ρ(x∗)/β. Scale

the set of nodes ΛN to ΩN ,

ΩN
..=

κV (x
∗)n

β
(ΛN − x∗),
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and scale kn to Kn as in (2.9), here taking the form

Kn(u, v) ..= kn

(
x∗ +

βu

κV (x∗)n
, x∗ +

βv

κV (x∗)n

)
, u, v ∈ ΩN . (3.26)

Notice that we are not adding the usual factor 1
nκV (x∗) in front of the scaled kernel. This

is so because we prefer not to scale the counting measure of ΩN later on, and this choice
is also consistent with (3.25).

For later reference, we emphasize that kn is defined through the discrete orthonormal
polynomials (3.20) with varying weight wN , namely

kn(x, y) ..=
√
wN (x)wN (y)

n−1∑
k=0

p
(N)
k (x)p

(N)
k (y), x, y ∈ ΛN .

Notice that ΩN is naturally a finite set of K = R, and Kn is the correlation kernel of a
point process on ΩN , with the reference measure dµn being the counting measure on
ΩN , hence varying with n = βN . The kernel (3.26), is initially defined only for u, v ∈ ΩN .
We extend Kn to other values u, v ∈ R by setting it to zero for u, v ∈ R2 \ (ΩN × ΩN ).
Observe that verifying Assumption 2.6 (2)–(3) requires only information about the kernel
on suppµn = ΩN , so such an extension is only needed for completeness but does not
play any substantial role in what follows. This concludes step (I).

To identify the state space of the limiting point process, let us label

ΩN = {· · · < q
(N)
−1 < 0 ≤ q

(N)
0 < q

(N)
2 < · · · } = {q(N)

j }j∈J , J = JN ⊂ Z.

That is, ΩN is a collection of N sites q(N)
j indexed over J ⊂ Z, and q(N)

0 is the smallest
non-negative of such sites.

Condition (3.21) written in terms of the q(N)
j ’s implies that these nodes must satisfy

∫ q
(N)
j

q
(N)
j−1

ρ

(
x∗ +

βu

κV (x∗)n

)
du =

κV (x
∗)

β

n

N
= κV (x

∗). (3.27)

The density ρ is continuous and strictly positive on [0, 1], say with m ≤ ρ(x) ≤ M for
every x ∈ [0, 1]. This last identity implies in particular that

κV (x
∗)

M
≤ q

(N)
j − q

(N)
j−1 ≤ κV (x

∗)

m
, (3.28)

for every j. From the fact that q(N)
0 is the smallest non-negative site we obtain the

inequality |q(N)
0 | ≤ |q(N)

0 − q
(N)
−1 |, and therefore the sequence (q

(N)
0 )N remains bounded

as N → ∞. From now on we assume for definiteness that q(N)
0 → 0, otherwise all the

considerations that will follow still hold true after a suitable shift.
The bound (3.28) and the convergence q(N)

0 implies that for each j fixed, the sequence

(q
(N)
j )N remains bounded as N → ∞. Thanks to (3.27), we must thus have

q
(N)
j → κV (x

∗)

ρ(x∗)
j as N → ∞ while j is kept fixed. (3.29)

Thus, we identified that the set of nodes ΩN is converging to the limiting set Ω ..= κV (x∗)
ρ(x∗) Z.

More precisely, recalling that dµn is the counting measure for ΩN , and denoting by dµ

the counting measure for Ω, the limit (3.29) implies that the sequence (µn) converges
vaguely to µ, that is, for any continuous function h with compact support we have∫
hdµn →

∫
hdµ as N → ∞. This concludes step (II).
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For later, we also need the following rough concentration property: there exists
C0 > 0 such that for any interval [−L,L] and any n sufficiently large,

µn([−L,L]) ≤ C0L. (3.30)

Such a concentration is a consequence of (3.27), (3.28) and (3.29), and carries through
to µ([−L,L]) = limn→∞ µn([−L,L]).

As we will see in a moment, the kernel Kn converges to the discrete sine kernel,
defined on Ω by

K(u, v) = Kdsin(u, v) ..=
βκV (x

∗)

ρ(x∗)

sin(π(u− v))

π(u− v)
, u 6= v, Kdsin(u, u) ..=

βκV (x
∗)

ρ(x∗)
.

In other words, the expression for Kdsin is a multiple of the sine kernel in (3.4), but we
reserve the notation Kdsin to remind the reader that this kernel acts as an operator Kdsin

on the space `2(Ω) with the discrete counting measure µ. Nevertheless, observe that
Kdsin is continuous on R2 = K2, a condition which is necessary in Assumption 2.6. The
kernel Kdsin defines a point process Xdsin on the discrete set Ω. Step (III) is therefore
concluded.

We consider functions σn(u) of the form

σn(u) = σ(u) = 1− e−f(u), u ∈ R, (3.31)

where f : R→ [0,+∞) is continuous and compactly supported. In particular, σn does not
depend on n, and is interpreted as already living on the microscopic scale u. In principle,
we could replace the assumption of compact support of f by a mild growth condition on
f (compare with (3.6)), but that would require some mild global bounds on the kernel
Kn which we could not find in the literature, and obtaining them would go beyond the
scope of this paper. This concludes step (IV).

Finally, we now verify (V).
We start by analyzing the kernel Kn. First of all, given a compact F ⊂ R, [4,

Lemma 7.13] says that

sup
u,v∈F∩ΩN

|Kn(u, v)− Kdsin(u, v)| ≤
C

n
, (3.32)

where C = CF (x
∗) is a constant depending on F , the bulk point x∗ and β ∈ (0, 1), and

the inequality is valid as n → ∞ with n = βN . This statement yields the first limit in
Assumption 2.6 (2). The second limit in Assumption 2.6 (2) is trivial, as in our case of
consideration σn = σ is independent of n.

Finally, we verify Assumption 2.6 (3). For that, we bound the kernel Kn and the factor√
1F + σn separately. For the kernel, the convergence (3.32) and the boundedness of

Kdsin give that for any L > 0, a bound of the form

|1[−L,L](u)Kn(u, v)1[−L,L](v)| ≤ C1[−L,L](u)1[−L,L](v), u, v ∈ ΩN (3.33)

holds true.
Next, take L > 0 sufficiently large such that F ∪ supp f ⊂ [−L,L], making also sure

that ±L /∈ Ω. From the bound (3.33),

|
√
1F (u) + σn(u)Kn(u, v)

√
1F (v) + σn(v)| ≤ 2C 1[−L,L](u)1[−L,L](v) u, v ∈ ΩN .

Hence, setting Ψ(u) = Φ(u) = 2C 1[−L,L](u), the bound in Assumption 2.6 (3) holds
true. Thanks to (3.30), the L2(µn) and L∞(µn) norms of both Φ and Ψ remain bounded
as n → ∞. Because ±L /∈ Ω = suppµ and (µn) converges vaguely to µ, the weak
convergence ΦΨdµn

∗→ ΦΨdµ also holds true. Step (V) is finally completed, and using
Theorem 2.7 we concluded the following.
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Corollary 3.5. Consider the discrete Coulomb gas ensemble (3.18) under Assump-
tion 3.4. Scale it around a bulk point x∗ as in (3.26) and let σ be as in (3.31).

For any compactly supported continuous function h : R→ [0,+∞), the limit

lim
n→∞

Gσn
n [h] = Gσ

dsin[h],

is valid, where Gdsin and Gσ
dsin are the probability generating functionals of the discrete

sine point process on Ω = κV (x∗)
ρ(x∗) Z and its σ-deformation,

Gdsin[h] ..= det(1−
√
hKdsin

√
h), Gσ

dsin[h]
..= det(1−

√
hKσ

dsin

√
h),

with
Kσ

dsin
..=

√
1− σKdsin(1− σKdsin)

−1
√
1− σ.

In particular, the deformed discrete Coulomb gas X σn
n converges weakly as n → ∞ to

the deformed discrete sine point process X σ
dsin.

4 Proof of Theorem 2.3

In this section, we consider biorthogonal ensembles Xn as in (2.10) with kernels Kn

as in (2.9) and probability generating functionals Gn, acting on an underlying space
L2(µ) over the field C. Given a sequence of functions (σn), we consider the deformed
biorthogonal ensemble X σn

n from (2.14), and we assume that Kn and σn are such that
Assumption 2.2 holds true. As before, we denote Kσn

n for the correlation kernel of X σn
n ,

and Gσn
n for its probability generating functional; when applying this functional to a

function h, we will always assume that h : K → [0, 1) is continuous and compactly
supported, with supx∈K h(x) < 1. The next two auxiliary results are essentially special
cases of more general results in [24], but we include a self-contained proof here in our
settings, for the convenience of the reader.

Lemma 4.1. If Assumption 2.2 (1) holds, we have the identity

Gσn
n [h] = det

(
1−

√
hKσn

n

√
h
)
, with Kσn

n
..=

√
1− σnKn (1− σnKn)

−1 √
1− σn.

Proof. Recall from our general discussion on biorthogonal ensembles that the kernel Kn

can be taken of the form

Kn(u, v) =
√
Wn(u)Wn(v)

n∑
j=1

Φj(u)Ψj(v),

where Φ1, . . . ,Φn have the same linear span over C, say An, as F1, . . . , Fn, and Ψ1, . . . ,Ψn

have the same linear span over C, say Bn, as G1, . . . , Gn, and they satisfy the biorthogo-
nality relations ∫

K

Φj(u)Ψk(u)Wn(u)dµ(u) = δjk.

It is then straightforward to verify that the integral operator Kn with kernel Kn acting on
L2(µ) is the unique linear projection operator with range

√
WnAn and kernel the orthogo-

nal complement of
√
WnBn on L2(µ), where Bn is the space of functions whose complex

conjugate lies in Bn. Similarly, the integral operator corresponding to the correlation
kernel Kσn

n of X σn
n is the unique linear projection operator with range

√
(1− σn)WnAn

and kernel the orthogonal complement of
√
(1− σn)WnBn. We will now prove that this

projection operator is given precisely by

Kσn
n

..=
√
1− σnKn (1− σnKn)

−1 √
1− σn.
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The operator Kn is finite rank, so σnKn is trace-class. Recalling Assumption 2.2 (1),

Gn[σn] = det (1−
√
σnKn

√
σn) = det (1− σnKn) > 0,

so that 1− σnKn is an invertible L2(µ)-operator.
To see that Kσn

n is indeed the desired projection, we observe first that it is of rank n,
and that

(Kσn
n )

2
=

√
1− σnKn (1− σnKn)

−1
(1− σn)Kn (1− σnKn)

−1 √
1− σn

=
√
1− σnKn (1− σnKn)

−1
(1− σnKn)Kn (1− σnKn)

−1 √
1− σn

=
√
1− σnK

2
n (1− σnKn)

−1 √
1− σn

= Kσn
n ,

so that it is indeed a rank n projection. Furthermore, for Φ ∈ An, we have

(1− σnKn)[
√
WnΦ] =

√
WnΦ− σnKn[

√
WnΦ] = (1− σn)

√
WnΦ

because Kn is a projection onto An. Or, in other words, (1− σnKn)
−1[(1− σn)

√
WnΦ] =√

WnΦ, so that

Kσn
n [
√
(1− σn)WnΦ] =

√
1− σnKn (1− σnKn)

−1
[(1− σn)

√
WnΦ]

=
√
1− σnKn[

√
WnΦ]

=
√

(1− σn)WnΦ,

such that the range of Kσn
n is indeed

√
(1− σn)WnAn. For F in the orthogonal com-

plement of
√
(1− σn)WnBn, we have Kn[

√
1− σnF ] = 0, so (1 − σnKn)[

√
1− σnF ] =√

1− σnF , and

Kσn
n [F ] =

√
1− σnKn (1− σnKn)

−1
[
√
1− σnF ]

=
√
1− σnKn[

√
1− σnF ] = 0,

which concludes the proof.

Lemma 4.2. If Assumption 2.2 (1) holds, Gσn
n [h] is given by

Gσn
n [h] =

det (1− [σn + h− σnh]Kn)

det (1− σnKn)

Proof. We recall from Lemma 4.1 that the probability generating functional Gσn
n [h] is

given by

Gσn
n [h] = det(1−

√
hKσn

n

√
h) = det(1− hKσn

n ) = det
(
1− h(1− σn)Kn(1− σnKn)

−1
)
.

If det (1− σnKn) 6= 0, which is true by Assumption 2.2 (1), we rewrite the latter as

det
(
[1− σnKn − h(1− σn)Kn] (1− σnKn)

−1
)
=

det (1− [σn + h− σnh]Kn)

det (1− σnKn)
,

and the proof is complete.

Our strategy now consists in proving that

lim
n→∞

det
(
1−

√
σn + h− σnhKn

√
σn + h− σnh

)
=

det
(
1−

√
σ + h− σhK

√
σ + h− σh

)
, (4.1)

lim
n→∞

det (1−
√
σnKn

√
σn) = det

(
1−

√
σK

√
σ
)
. (4.2)
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This last determinant is non-zero by Assumption 2.2 (2). By Lemma 4.2, (4.1)–(4.2) imply
that

lim
n→∞

Gσn
n [h] =

det
(
1−

√
σ + h− σhK

√
σ + h− σh

)
det (1−

√
σK

√
σ)

= Gσ[h], (4.3)

where the last equality follows from [24, Theorem 2.4 (2)]. Thus, to complete the proof
of Theorem 2.3 under Assumption 2.2, it remains to prove (4.1)–(4.2).

For any bounded Borel measurable function ψ : K→ [0,+∞), we have that
√
ψKn

√
ψ

is finite rank and therefore trace-class on L2(µ), and

det
(
1−

√
ψKn

√
ψ
)
=

∞∑
k=0

(−1)k

k!
Sn,k[ψ]

with

Sn,k[ψ] = Sn,k[ψ, µ] ..=

∫
Kk

det

(√
ψ(uj)Kn(uj , u`)

√
ψ(u`)

)k

j,`=1

k∏
j=1

dµ(uj). (4.4)

Similarly, if φ : K→ [0,+∞) is such that
√
φK

√
φ is trace-class on L2(µ),

det
(
1−

√
φK
√
φ
)
L2(µ)

=

∞∑
k=0

(−1)k

k!
Sk[φ],

where analogously

Sk[φ] = Sk[φ, µ] ..=

∫
Kk

det

(√
φ(uj)K(uj , u`)

√
φ(u`)

)k

j,`=1

k∏
j=1

dµ(uj). (4.5)

We will prove first that Sn,k[ψn] → Sk[φ] as n → ∞ for any k, with ψn = σn, φ = σ,
and also with ψn = σn + h − σnh, φ = σ + h − σh. Afterwards we will prove that the

whole series
∑∞

k=0
(−1)k

k! Sn,k[ψn] converges as n → ∞ to
∑∞

k=0
(−1)k

k! Sk[φ] for the same
choices of ψn, φ. These results are proven in Lemmas 4.4 and 4.5, respectively, and imply
(4.1)–(4.2). For proving them, we will need two versions of Hadamard’s inequality, which
we recall as the next lemma.

Lemma 4.3. For a k × k matrixM , denote its j-th column byMj ∈ Ck, and for a vector
v = (v1, · · · , vk)T ∈ Ck denote

‖v‖2 ..=

(
k∑

i=1

|vi|2
)1/2

, ‖v‖∞ ..= sup
1≤i≤k

|vi|.

Then for any k × k matricesM and L, the inequalities

|detM | ≤
k∏

i=1

‖Mi‖2 (4.6)

and

|detM − detL| ≤ kk/2
(
max
1≤i≤k

(‖Mi‖∞, ‖Li‖∞)

)k−1

max
1≤i≤k

‖Mi − Li‖∞ (4.7)

hold true.

Proof. Inequality (4.6) is the classical Hadamard’s inequality. Inequalities similar to
(4.7) are known for other matrix norms, see for instance [49], in particular Theorem 2.12
therein. But we failed to find it in the exact form (4.7), and for completeness we provide
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a simple proof. Let (v1, . . . , vk) be the matrix whose i-th column is the column vector
vi ∈ Ck, andMj be the j-th column of the matrixM . By linearity of the determinant on
each column,

detM = det(M1 − L1,M2,M3, · · · ,Mk) + det(L1,M2,M3, · · · ,Mk)

= det(M1 − L1,M2,M3, · · · ,Mk) + det(L1,M2 − L2,M3, · · · ,Mk)

+ det(L1, L2,M3, · · · ,Mk)

=

k∑
i=1

det(L1, · · · , Li−1,Mi − Li,Mi+1, · · · ,Mk) + detL.

Subtracting detL from both sides, and using (4.6) and the basic inequality ‖v‖2 ≤
k1/2‖v‖∞ several times, inequality (4.7) follows.

Lemma 4.4. Let k ∈ N, and assume that Assumption 2.2 holds. Then,

lim
n→∞

Sn,k[σn] = Sk[σ], lim
n→∞

Sn,k[σn + h− σnh] = Sk[σ + h− σh].

Proof. It suffices to verify the second limit, as the first limit follows from it by setting
h ≡ 0.

Write φn = σn + h− σnh and φ = σ + h− σh. We have

Sn,k[φn] =

∫
Kk

det

(√
φn(uj)Kn(uj , u`)

√
φn(u`)

)k

j,`=1

k∏
j=1

dµ(uj).

By Assumption 2.2, the integrand converges point-wise to

det

(√
φ(uj)K(uj , u`)

√
φ(u`)

)k

j,`=1

for µ-a.e. (u1, . . . , uk) ∈ Kk. Moreover, with Φ,Ψ as in Assumption 2.2 for a bounded set
F containing supph, set

Z ..= {(x1, · · · , xk) ∈ Kk | Φ(xj)Ψ(xj) = 0, for some j}.

The integrand of Sn,k vanishes on Z, and we may write

Sn,k[φn] =

∫
Kk\Z

det

(√
φn(uj)Kn(uj , u`)

√
φn(u`)

Φ(uj)Ψ(u`)

)k

j,`=1

k∏
j=1

Φ(uj)Ψ(uj)dµ(uj). (4.8)

Thanks to the inequalities 0 ≤ φn = σn(1− h) + h ≤ σn + 1F , each entry of the matrix is
bounded in absolute value by 1, hence the determinant is bounded in n, for fixed k. It
follows that there exists a constant Ck > 0 such that the absolute value of the integrand
is bounded from above by

Ck

k∏
j=1

Φ(uj)Ψ(uj),

which is integrable over Kk, since Φ,Ψ ∈ L2(µ). Thus, by Lebesgue’s Dominated
Convergence Theorem, we have that

lim
n→∞

Sn,k[φn] =

∫
Kk

det

(√
φ(uj)K(uj , u`)

√
φ(u`)

)k

j,`=1

k∏
j=1

dµ(uj) = Sk[φ],

concluding the proof.
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Lemma 4.5. If Assumption 2.2 holds, then we have the limits (4.1) and (4.2).

Proof. As before, it is sufficient to prove (4.1), the limit (4.2) then follows setting h ≡ 0

We keep denoting φn = σn + h− σnh and φ = σ + h− σh. Recall that

det
(
1−

√
φnKn

√
φn

)
=

∞∑
k=0

(−1)k

k!
Sn,k[φn],

and we know from Lemma 4.4 that Sn,k[φn] → Sk[φ] for every k ∈ N as n→ ∞. In order
to use Lebesgue’s Dominated Convergence Theorem for series, we bound Sn,k[φn]. We
start again from identity (4.8), in which we have the determinant of a k × k matrix with
entries bounded in absolute value by 1. By Hadamard’s inequality (4.6), the determinant
is bounded in absolute value by kk/2, and we obtain

|Sn,k[φn]| ≤ kk/2
(∫

K

Φ(u)Ψ(u)dµ(u)

)k

≤ kk/2‖Φ‖k2‖Ψ‖k2 ,

where we used the Cauchy-Schwarz inequality. But the series

∞∑
k=0

kk/2

k!
‖Φ‖k2‖Ψ‖k2

is convergent, so we can indeed use Lebesgue’s Dominated Convergence Theorem for
series to obtain

lim
n→∞

det
(
1−

√
φnKn

√
φn

)
= lim

n→∞

∞∑
k=0

(−1)k

k!
Sn,k[φn] =

∞∑
k=0

(−1)k

k!
Sk[φ]

= det
(
1−

√
φK
√
φ
)
,

and (4.1) is proved.

5 Proof of Theorem 2.7

We now consider biorthogonal ensembles Xn with kernels Kn which satisfy Assump-
tion 2.6. In particular, the kernel Kn acts on a space L2(µn) with n-dependent Radon
measure µn, and the sequence of measures (µn) converges to a measure µ in the
sense of Assumption 2.6 (3). As before, we consider the deformed biorthogonal ensem-
ble X σn

n from (2.14), with probability generating functional Gσn
n , and we assume that

h : K→ [0,+∞) is continuous and compactly supported, with ‖h‖∞ < 1

Our strategy is the same as in Section 4. Thanks to Lemma 4.2, it suffices to prove

lim
n→∞

det
(
1−

√
σn + h− σnhKn

√
σn + h− σnh

)
L2(µn)

=

det
(
1−

√
σ + h− σhK

√
σ + h− σh

)
L2(µ)

, (5.1)

lim
n→∞

det (1−
√
σnKn

√
σn)L2(µn)

= det
(
1−

√
σK

√
σ
)
L2(µ)

, (5.2)

as in that case we obtain again that

lim
n→∞

Gσn
n [h] =

det
(
1−

√
σ + h− σhK

√
σ + h− σh

)
L2(µ)

det (1−
√
σK

√
σ)L2(µ)

= Gσ[h]. (5.3)
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Recall the quantities Sµ
n,k[ψ] and S

µ
k [φ] that were introduced in (4.4) and (4.5), where we

now make the dependence on the measure µ explicit in our notation. In turn, to prove
(5.1)–(5.2) it suffices to prove

lim
n→∞

∞∑
k=1

(−1)k

k!
Sµn

n,k[σn] =
∞∑

n=1

(−1)k

k!
Sµ
k [σ] and (5.4)

lim
n→∞

∞∑
k=1

(−1)k

k!
Sµn

n,k[σn + h− σnh] =

∞∑
n=1

(−1)k

k!
Sµ
k [σ + h− σh]. (5.5)

We will show these series convergences by first showing that each term converges to
the corresponding term in the limit, and then arguing that the limit commutes with the
sum. We first need to establish a technical result.

Lemma 5.1. Let (νn) be a sequence of finite Borel measures over a fixed Euclidean
space E, converging weakly to a finite Borel measure ν on E as n→ ∞.

(i) If (fn) is a sequence of uniformly bounded Borel measurable functions and f is a
bounded continuous function, for which

lim
n→∞

‖1B(fn − f)‖L∞(νn) = 0,

for any compact B ⊂ K, then

lim
n→∞

∫
fn dνn =

∫
f dν.

(ii) If G is an open set for which ν(∂G) = 0, then νn
∣∣
G

∗→ ν
∣∣
G
as n→ ∞.

Proof. Write ∫
fn dνn −

∫
f dν =

∫
(fn − f) dνn +

∫
f dνn −

∫
f dν.

From the weak convergence and the continuity of f , we obtain that
∫
f dνn −

∫
f dν → 0

as n→ ∞, and we now prove that
∫
(f − fn)dνn → 0.

The uniform boundedness of the sequence (fn) and the boundedness of f imply that
for some constantM > 0, the bound |fn(x)− f(x)| ≤M holds true for every x ∈ E and
every n.

Fix an arbitrary ε > 0. Since νn
∗→ ν and ν is finite, there is a compact B ⊂ E for

which νn(E \B) < ε/M for every n sufficiently large. We then write∣∣∣∣∫ (fn − f) dνn

∣∣∣∣ ≤ ∫
E\B

|fn − f |dνn +

∫
B

|fn − f |dνn

≤ ε+ ‖(fn − f)1B‖L∞(νn)νn(B)

≤ ε+ ‖(fn − f)1B‖L∞(νn)νn(E).

The convergence νn
∗→ ν implies that νn(E) =

∫
1 dνn → ν(E), so the last term on

the right-hand side above converges to zero by assumption. Since ε > 0 is arbitrary, the
proof of (i) is complete. Part (ii) is folklore, but we have not been able to find a detailed
reference, so we provide a proof of it. We start by recalling Portmanteau’s Theorem [8,
Theorem 2.1], which says that for Borel probability measures λn and λ the following
conditions are equivalent:

(1) λn
∗→ λ;
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(2) lim infn→∞ λn(U) ≥ λ(U), for every open set U ⊂ E;

(3) lim supn→∞ λn(F ) ≤ λ(F ), for every closed set F ⊂ E;

(4) λn(B) → λ(B), for every Borel set B for which λ(∂B) = 0.

To prove (ii), assume first that νn and ν are probability measures, with νn
∗→ ν, and G

is an open set for which ν(∂G) = 0. If ν(G) = 0, then ν
∣∣
G
≡ 0, and

lim sup νn(G) ≤ lim sup νn(G) ≤ ν(G) = ν(G) ∪ ν(∂G) = 0.

and by the implication (3) ⇒ (1) we see that νn
∣∣
G

→ 0 = ν
∣∣
G
. Assuming now that

ν(G) > 0, the weak convergence νn
∗→ ν and (4) above imply that νn(G) → ν(G) > 0, and

for n sufficiently large we may introduce

λn ..=
1

νn(G)
νn
∣∣
G

and λ ..=
1

ν(G)
ν
∣∣
G
.

We already have the convergence νn(G) → ν(G), so to conclude that νn
∣∣
G

∗→ ν
∣∣
G
it is

sufficient to verify that λn
∗→ λ. For the latter, we now verify the condition (2): given any

open set U ,

lim inf λn(U) ≥ lim
1

νn(G)
lim inf νn(G ∩ U) =

1

ν(G)
lim inf νn(G ∩ U)

≥ 1

ν(G)
ν(G ∩ U) = λ

∣∣
G
(U).

where the last inequality follows from the weak convergence of probability measures
νn

∗→ ν. This concludes the proof of (ii) when νn, ν are probability measures.
For the general case of finite measures, if ν(E) = 0, that is, ν is the trivial measure,

then (ii) is immediate. Otherwise, the weak convergence νn
∗→ ν gives that

νn(E) =

∫
1E dνn →

∫
1E dν,

and we may assume that νn(E) > 0. We now introduce

ν̂n ..=
1

νn(E)
νn, ν̂ ..=

1

ν(E)
ν = ν(E),

which are probability measures, and as such the first part of the proof yields that
ν̂n
∣∣
G

∗→ ν̂
∣∣
G
. But νn

∣∣
G

= νn(E)ν̂n
∣∣
G
, ν
∣∣
G

= ν(E)ν̂
∣∣
G
and νn(E) → ν(E), and the result

follows.

Lemma 5.2. Let k ∈ N, and let Assumption 2.6 hold. Then,

lim
n→∞

Sµn

n,k[σn] = Sµ
k [σ], lim

n→∞
Sµn

n,k[σn + h− σnh] = Sµ
k [σ + h− σh].

Proof. For any bounded functions φn and φ, we have

|Sµn

n,k[φn]− Sµ
k [φ]| ≤

∫
Kk

∆n(x1, . . . , xk)

k∏
j=1

dµn(xj)

+

∣∣∣∣∣∣
∫
Kk

D(x1, . . . , xk)
k∏

j=1

dµn(xj)−
∫
Kk

D(x1, . . . , xk)
k∏

j=1

dµ(xj)

∣∣∣∣∣∣ , (5.6)
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where

D(x1, . . . , xk) ..= det

(√
φ(xj)K(xj , x`)

√
φ(x`)

)k

j,`=1

,

∆n(x1, . . . , xk) ..=∣∣∣∣∣det
(√

φn(xj)Kn(xj , x`)
√
φn(x`)

)k

j,`=1

− det

(√
φ(xj)K(xj , x`)

√
φ(x`)

)k

j,`=1

∣∣∣∣∣ .
As before, we are interested in the choices (φn, φ) = (σn, σ) and (φn, φ) = (σn + h −
σnh, σ + h − σh) with h : K → [0, 1) continuous and compactly supported. The former
case follows from the latter by setting h ≡ 0. So we focus only on the latter, and verify
that each of the two terms on the right-hand side of (5.6) goes to zero.

Let Φ,Ψ be as in Assumption 2.6, where F is a bounded set for which supph ⊂ F (if
h ≡ 0, we can choose for instance F = ∅). Set

G ..= Kk \ {(x1, . . . , xk) ∈ Kk | Φ(xj)Ψ(xj) = 0 for some j}.

Because the functions Φ and Ψ are continuous, the set G is open. Assumption 2.6 (3)
implies that whenever (x1, · · · , xk) ∈ Kk \G, both determinants in ∆n(x1, . . . , xk) vanish
because at least one row in the matrices is identically zero, so that ∆n(x1, . . . , xk) = 0.
Therefore, we may write the second line of (5.6) as∫

G

D(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

k∏
j=1

Φ(xj)Ψ(xj)d(µn − µ)(xj). (5.7)

as well as∫
Kk

∆n(x1, . . . , xk)

k∏
j=1

dµn(xj) =

∫
G

∆n(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

k∏
j=1

Φ(xj)Ψ(xj)dµn(xj). (5.8)

The function D(x1,...,xk)∏k
j=1 Φ(xj)Ψ(xj)

is continuous on the open set G, and by the definition

of G we know that the measure of ∂G under
∏

Φ(xj)Ψ(xj)dµ(xj) is zero. The weak

convergence ΦΨdµn
∗→ ΦΨdµ combined with Lemma 5.1 (ii) then implies that the

difference of integrals in (5.7) goes to 0.
To conclude the proof it remains to verify that the integral on the right-hand side

of (5.8) converges to 0. For that, we will use Lemma 5.1 (i) with E = Kk, an arbitrary
compact set B, and the choices

fn(x1, . . . , xk) = 1G(x1, . . . , xk)
∆n(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

, dνn(x) =

k∏
j=1

Φ(xj)Ψ(xj)dµn(xj),

f(x1, . . . , xk) = 0, dν(x) =

k∏
j=1

Φ(xj)Ψ(xj)dµ(xj).

From Assumption 2.6 (3) we have νn
∗→ ν. Using linearity of determinants,

∆n(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

=∣∣∣∣∣∣det
(√

φn(xj)Kn(xj , x`)
√
φn(x`)

Φ(xj)Ψ(x`)

)k

j,`=1

− det

(√
φ(xj)K(xj , x`)

√
φ(x`)

Φ(xj)Ψ(x`)

)k

j,`=1

∣∣∣∣∣∣
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Since supph ⊂ F we have

0 ≤ φn = σn(1− h) + h ≤ σn + 1F ,

and therefore Assumption 2.6 (3) implies that each entry of each determinant in ∆n is
bounded by 1. Applying the first Hadamard’s inequality (4.6), we obtain

∆n(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

≤ 2kk/2, (x1, . . . , xk) ∈ G, (5.9)

so the sequence (fn) is indeed uniformly bounded.
A simple calculation shows that

‖1Bfn‖L∞(νn) = ‖1B∩G ∆n‖L∞(⊗kµn). (5.10)

To bound the right-hand side, we now show how to apply the second Hadamard inequality.
With

M =M(x) ..= 1G∩B(x)

(√
φn(xj)Kn(xj , x`)

√
φn(x`)

)k

j,`=1

,

L = L(x) ..= 1G∩B(x)

(√
φ(xj)K(xj , x`)

√
φ(x`)

)k

j,`=1

,

we have 1G∩B∆n = |detM − detL| pointwise, and Assumption 2.6 (3) gives the inequali-
ties

‖Mj(x)‖∞, ‖Lj(x)‖∞ ≤ ‖Φ‖L∞(µn)‖Ψ‖L∞(µn), x ∈ G ∩B.

From the definition ofMj and Lj we also have for each j that

‖Mj(x)− Lj(x)‖∞ ≤ ‖1B(
√
φn −

√
φ)‖L∞(µn)‖1B ⊗ 1BKn‖L∞(µn⊗µn)‖1B

√
φ‖L∞(µn)

+ ‖1B
√
φ‖L∞(µn)‖1B ⊗ 1B(Kn − K)‖L∞(µn⊗µn)‖1B

√
φ‖L∞(µn)

+ ‖1B
√
φ‖L∞(µn)‖1B ⊗ 1BK‖L∞(µn⊗µn)‖1B(

√
φn −

√
φ)‖L∞(µn).

Denote the right-hand side of this last inequality by ρn. Hadamard’s inequality (4.7) then
yields that

‖1B∩G∆n‖L∞(⊗kµn) ≤ kk/2(‖Φ‖L∞(µn))
k−1(‖Ψ‖L∞(µn))

k−1ρn.

From Assumption 2.6 (3), the L∞ norms of Φ and Ψ on the right-hand side above remain
bounded as n → ∞. From the inequalities 0 ≤

√
u+ 1 −

√
v + 1 ≤

√
2(
√
u −

√
v) for

0 ≤ v ≤ u ≤ 1 applied to u = max{σn, σ}, v = min{σn, σ}, we obtain that

|
√
φn −

√
φ| ≤ |

√
σn + 1F −

√
σ + 1F | ≤

√
2|
√
σn −

√
σ|,

and when combined with Assumption 2.6 (2) it gives that ρn → 0. Hence, ‖1Bfn‖L∞(νn) →
0 for every bounded set B, Lemma 5.1 (i) is applicable, and we conclude that the term
on the right-hand side of the first line of (5.6) goes to 0, as we wanted.

Remark 5.3. Note that in many situations, one may take Φ,Ψ strictly positive, such that
G = Kk in the above proof. This simplifies some of the arguments such that the proof
can be shortened considerably. In particular, we do not need Lemma 5.1 (ii) in that case.

Lemma 5.4. If Assumption 2.6 holds, then the limits (5.4)–(5.5) hold true.
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Proof. Similarly to Lemma 5.2, it suffices to prove (5.5), the limit (5.4) then follows by
setting h ≡ 0. We follow closely the notation and ideas from the proof of Lemma 5.2.

Set as usual φn = σn + h− σnh, φ = σ + h− σh and

Dn(x1, . . . , xk) ..= det

(√
φn(xj)Kn(xj , x`)

√
φn(x`)

)k

j,`=1

.

Proceeding as we did for (5.9), we obtain

|Sµn

n,k[σn]|

≤
∫
G

∣∣∣∣∣ Dn(x1, . . . , xk)∏k
j=1 Φ(xj)Ψ(xj)

∣∣∣∣∣
k∏

j=1

Φ(xj)Ψ(xj)dµn(xj) ≤ kk/2
∫ k∏

j=1

Φ(xj)Ψ(xj)dµn(xj)

≤ kk/2‖Φ‖kL2(µn)
‖Ψ‖kL2(µn)

,

where we used Cauchy-Schwarz for the last inequality. By assumption, the L2 norms on
the right-hand side remain bounded as n→ ∞, yielding that the series

∞∑
k=1

kk/2

k!
‖Φ‖kL2(µn)

‖Ψ‖kL2(µn)

is convergent. Therefore, Lebesgue’s Dominated Convergence Theorem applies to the
series

∞∑
k=0

1

k!
Sµn

n,k[φn]

and it provides (5.5).

This concludes the proof of Theorem 2.7.
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