

NADES-extracted hibiscus-starch cryogels as real-time food freshness sensors: a sustainable alternative

rhaine da silva dos santos¹, Larissa Tessaro², Bianca Chieregato Maniglia³

¹Instituto de Química de São Carlos - Universidade de São Paulo, ²São Carlos Institute of Chemistry, University of São Paulo (*Physical Chemistry*), ³Institute of Chemistry, University of São Paulo (*Físico Química - IQSC*)

e-mail: rhainesantos@usp.br

Rising demand for fresh, high-quality food has driven the development of innovative packaging systems, especially those with intelligent features that provide real-time information on product freshness and safety [1]. This project focuses on developing pH-sensitive cryogels based on potato starch and hibiscus (Hibiscus sabdariffa L.) extract to create biodegradable, non-toxic, and cost-effective smart packaging materials. Rich in anthocyanins, hibiscus extract was used as a natural pH-sensitive dye [2]. Two extraction methods were evaluated: a conventional solvent using methanol (SOC) and a green alternative natural deep eutectic solvent (NADES), specifically choline chloride:lactic acid (1:1) with 20% (w/w) water. NADES are eco-friendly solvents with low toxicity and tunable polarity, offering improved extraction of bioactives [3]. Extracts were characterized by pH, density, polarity, total anthocyanin and phenolic content, and antioxidant capacity (ABTS assay). Cryogels were prepared by adding extracts (1, 2, 5, and 10 g/100 g starch) into potato

starch hydrogels (10 g/100 g, dry basis), then molded, freeze-dried, and stored. Colorimetric response to pH (4, 7, 10) was analyzed using CIELAB parameters (L*, a*, b*) and ΔE^* via ImageJ in vapor-generating solutions. In situ performance was tested with bovine meat stored

at 4 °C for 0, 2, and 4 days. NADES extracts showed higher phenolic content and antioxidant capacity than SOC. Only cryogels with 10 g/100 g extract showed a strong colorimetric response, especially with NADES extracts. These cryogels shifted from red (acidic), rose (neutral), green (basic), with significant ΔE^* values. Visible color change during meat storage confirmed their potential as smart freshness sensors. The study supports NADES as a

sustainable alternative to conventional solvents and highlights the potential of hibiscusenriched starch cryogels for smart food packaging, with future work needed to improve sensitivity and scalability.

Acknowledgements

USP PUB (2918), FAPESP (2020/08727-0, 2024/10994-8, 2024/02072-3)

References

- [1] Miller, R., Gonzalez-Maeso, J., & Kerry, J. P. Foods, 10(2), 299 (2021).
- [2] Alañón, M. E., Ivanović, M., Pimentel-Mora, S., Borrás-Linares, I., Arráez-Román, D., &

Segura-Carretero, A. Food Research International, 137, 109646 (2020).

[3] Mihaylova, D. et al. Journal of Cheminformatics, 15, 41 (2023).