

ALOCAÇÃO OTIMIZADA DE BATERIAS EM UMA MICRORREDE UTILIZANDO ALGORITMOS GENÉTICOS

João H. F. Dias

Pedro I. N. Barbalho

Denis V. Coury

Escola de Engenharia de São Carlos - Universidade de São Paulo

joaohenriquefd@usp.br

Objetivos

As microrredes (MRs) são essenciais para a integração de recursos energéticos distribuídos (REDs) no sistema de distribuição [1]. Dessa forma, o sistema de baterias desempenha um papel importante para a operação eficiente de uma MR, viabilizando o uso de gerações distribuídas (GDs) associadas a sistemas inteligentes [2]. Nesse contexto, o objetivo dessa pesquisa foi a alocação otimizada de baterias em uma MR por meio de algoritmos genéticos (AGs), com foco na melhoria do perfil de tensão e da redução da participação da potência da MR na rede principal.

Métodos e Procedimentos

A MR em estudo foi modelada no Simulink, baseando-se no benchmark do Conseil International des Grands Réseaux Électriques (CIGRE) para médias tensões [3]. A Figura 1 apresenta a MR, delimitada a partir da barra 3 (ponto de acoplamento comum — PAC), com GDs nas barras 6, 7 e 11. A operação do AG foi iniciada com a exportação dos dados do sistema sem baterias. Cada indivíduo do algoritmo representou os seguintes dados: barras do sistema para alocação; número de baterias a serem alocadas; e potência nominal do banco de baterias, todos valores inteiros. Ainda, o problema foi modelado de forma que as baterias possuíam a mesma potência. A Equação 1a

apresenta a função objetivo do AG e suas condições.

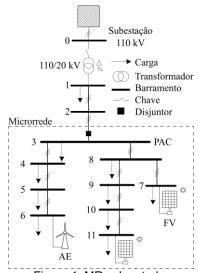


Figura 1. MR sob estudo.

$$\min f(\cdot) = \sum (1-V_i)^2 + |P_{PAC}|, i \in \{6,11\} \quad (1a)$$

s.a.:
$$|P_{BESS}| \in \{0,1, ..., 1000\} \text{ kW}$$
 (1b)

$$N_{BESS} \in \{1, 2, 3\}$$
 (1c)

Resultados

A partir da metodologia descrita, foram simulados quatro cenários com operação do sistema em regime permanente. Os cenários contemplaram diferentes níveis de

carregamento da MR (L_f), além de diferentes níveis de potência das GDs (FV₇, FV₁₁ e P_{AE}). Os casos avaliados e seus parâmetros são enumerados na Tabela 1, cujos dados estão em MW. A Tabela 2 apresenta os resultados encontrados.

Tabela 1. Cenários utilizados na simulação.

Casos	L _f	FV ₁₁	FV_7	P_{AE}
1	1	1	1	1
2	1	0	0	0
3	0,5	1	1	1
4	0.5	0	0	0

Tabela 2. Soluções otimizadas para cada caso.

Casos	Pos.1	Pos.2	Pos.3	Z	P(MW)
1	10	6	-	2	0,548
2	3	11	6	3	1
3	3	8	-	2	-0,919
4	11	6	10	3	0.699

A partir disso, percebe-se que ocorreu absorção de potência no caso 3. Nesse, os geradores injetaram mais potência na MR que o necessário para suprir a demanda das cargas. Em razão disso, as baterias absorveram a potência excedente. Ao analisar as posições de alocação, houve uma tendência em alocá-las nas extremidades da MR.

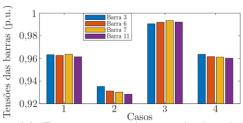
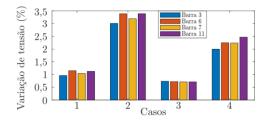

A Tabela 3 indica as tensões das barras 6 e 11, assim como a potência no PAC e o valor da função objetivo.

Tabela 3. Parâmetros dos casos analisados.


Casos	V ₆	V ₁₁	P_{PAC}	F.O.		
1	0,97	0,97	1,49E-05	1,50E-03		
2	0,96	0,96	4,00E-02	4,30E-02		
3	0,99	0,99	-1,11E-06	4,55E-04		
4	0.98	0.98	-3.85E-05	5.76E-04		

A Figura 2 apresenta as tensões das barras 3 (PAC), 6, 7 e 11 sem baterias e a variação percentual após a alocação na MR. Ao analisála, percebe-se que as baterias provocaram um aumento do nível de tensão nas barras e uma suavização na queda de tensão das linhas de distribuição. Ademais, a maior variação de tensão ocorreu no caso 2, uma vez que a potência do banco de baterias foi máxima e a potência das GDs, mínima. Além disso, no caso 3, as variações de tensão foram negativas, pois as baterias alocadas absorveram a potência excedente e os níveis de tensão caíram. Apesar disso, a potência no PAC para esse caso foi a

menor dentre as outras, garantindo ainda a minimização da função objetivo.

(a) Tensões sem a alocação das baterias.

(b) Variação porcentual após a alocação.

Figura 2. Contribuição da alocação das baterias nas tensões das barras 3, 6, 7 e 11.

Conclusões

O presente estudo tratou da alocação ótima de baterias por meio de AGs. Os resultados de simulação mostraram que a alocação otimizada ocorreu principalmente nos terminais da MR, onde as quedas de tensão foram maiores. Ademais, o algoritmo foi capaz de reduzir a potência no PAC e otimizar o perfil de tensão dos barramentos.

Referências

- [1] HATZIARGYRIOU, N.; ASANO, H.; IRAVANI, R.; MARNAY, C. Microgrids. IEEE Power and Energy Magazine, v. 5, n. 4, p. 78–94, 2007.
- [2] DAS, Choton K. et al. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. **Renewable and Sustainable Energy Reviews**, v. 91, p. 1205-1230, 2018.
- [3] Kai Strunz et al. "Benchmark systems for network integration of renewable and distributed energy re-sources". Em: Cigre Task Force C 6.04-02 (2014),p. 78.

