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This study applies the Gaussian Analytical Hierarchy Process (Gaussian AHP) to landslide susceptibility 
mapping and demonstrates its superior methodological rigor and predictive performance relative 
to the traditional AHP method. Susceptibility maps produced by Gaussian AHP allocated 26.31% of 
the study area to the very high susceptibility class, outperforming the traditional AHP’s estimated 
share (23.52%), and achieved a more balanced distribution across all five classes. Validation against 
a high resolution inventory of 97,742 landslide samples collected during the February 2023 São 
Sebastião event—divided into 70% training and 30% validation subsets—yielded improved metrics: 
ROC area under the curve of 0.6360 versus 0.6220; overall accuracy of 0.6364 versus 0.6229, balanced 
accuracy of 0.6356 versus 0.6221; and sensitivity of 0.3585 versus 0.3116, for the Gaussian and 
traditional AHP methods respectively. An uncertainty analysis quantified a 56.16% disagreement 
between the two methods, revealing that Gaussian AHP reduced classification ambiguity in critical 
classes. A complementary density-based assessment, comparing observed landslide crown points 
and scar polygons against susceptibility class areas, showed that Gaussian AHP produced a gradual, 
coherent increase in normalized landslide density from very low to very high susceptibility, whereas 
traditional AHP displayed sharp breaks in intermediate classes. These findings confirm that Gaussian 
AHP enhances objectivity, spatial coherence, and operational reliability, better aligning high density 
landslide clusters with the highest susceptibility zones. By leveraging statistical weighting, Gaussian 
AHP streamlines data preprocessing and reduces the need for expert calibration, making it well 
suited for assessments in data rich environments. The statistical weighting procedure facilitates the 
integration of diverse geospatial datasets and supports robust, reproducible multicriteria decision 
analysis. Its integration with accurate machine learning-derived land use/land cover data and refined 
climate data is recommended to further improve predictive accuracy and support proactive landslide 
risk management strategies. The proposed approach can additionally meet operational purposes, 
provided that near real-time climate data, updated geospatial databases, and massive computing 
resources are available.

Since the early 21st century, landslides have increasingly been recognized as a significant threat to human 
settlements, particularly in urban areas experiencing heavy rainfall1. This increased risk is largely attributed 
to the growing vulnerability of fast urbanization, which transforms landscapes and disrupts drainage systems, 
increasing the susceptibility to such geological hazards2. In 2024, this threat materialized in various regions 
worldwide, including Nepal3, the United States - where Hurricane Helena triggered widespread landslides4 – and 
Taiwan5. In South America, more than 30% of recorded landslides occurred in Brazil6, predominantly impacting 
the South and Southeast regions7.
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Although landslides are natural phenomena triggered by extreme precipitation events, seismic activity, 
volcanic eruptions, wildfires and other environmental processes8, besides anthropogenic activities are affecting 
slope stability6. For instance, deforestation, construction works, and abandonment of farming areas affect 
hillslope stability, changing natural stress state and force equilibrium9. As a result, landslides have become a 
pressing issue in urban policy development, requiring their integration into comprehensive strategies to mitigate 
climate change10.

The significant impacts of landslide events have led to the development of numerous methods for assessing 
landslide susceptibility11–13. These methodologies follow diverse approaches, such as heuristic, physically-based, 
and statistical modeling techniques14. Among the semi-quantitative models,15 used the Analytical Hierarchy 
Process (AHP) to assess landslide susceptibility. One commonly used approach relies on the multi-criteria 
decision analysis, off which AHP is particularly prominent16, especially in Brazilian research17. This method 
effectively identifies and prioritizes the factors contributing to landslide occurrences18, creating a pairwise 
comparison matrix that weights each factor based on its relative influence on landslide risk. This mathematical 
framework serves as a structured decision-making tool that organizes complex problems into a hierarchy of 
criteria, sub-criteria, and alternatives19. Researchers perform pairwise comparisons to evaluate the relative 
importance of elements within each hierarchy level. This comparison results in a matrix from which the principal 
eigenvector is derived, representing the normalized priorities of each component. Furthermore, this approach 
integrates quantitative data with expert judgment, supporting nuanced decisions in complex scenarios20, such as 
evaluating landslide susceptibility.

Despite considerable advancements in deep learning models applied in various fields over the past 
decade21, the AHP technique continues to hold significance in the literature on landslides22,23. Huang et al. 
(2020) conducted a comparative study of AHP, statistical, and machine learning-based models for predicting 
and mapping landslide susceptibility in Shicheng, China24. Sonker, Tripathi, and Singh (2021) combined 
remote sensing data, geographical information system (GIS), and AHP to create landslide susceptibility 
maps for Sikkim Himalaya, India25. Panchal and Shrivastava (2022)26 used AHP to evaluate landslide hazards 
along a highway in India. Zhou et al. (2023) applied the method to assess landslide disaster susceptibility at a 
photovoltaic power generation construction site in Yunxian County, China27. Kucuker (2024) evaluated the 
landslide risk potential for forest roads in Trabzon, Turkey, using AHP28. Liu, Shao, and Shao (2024) applied 
AHP for landslide susceptibility zonation in the Greater Xi’an Region, China29. Ou, Huang, and Cao (2024) 
introduced multiple rainfall indexes to optimize a landslide model based on AHP30. Gulbet and Getahun (2024) 
compared susceptibility mapping techniques using frequency ratio and the AHP method in Awabel Woreda, 
Ethiopia31. Mengstie et al. (2024) integrated remote sensing and GIS data to assess landslide susceptibility in 
Addi Arkay, Ethiopia, using AHP32. Singh et al. (2024) employed the method for detailed landslide susceptibility 
index (LSI) mapping from remotely sensed data in the Beas River basin, Himalaya33. Dahmani et al. (2024) 
analyzed landslide dynamics in the Chefchaouen province, Morocco, adopting a multi-criteria spatial approach 
and GIS, using AHP34. Kshetrimayum, Ramesh, and Goyal (2024) explored various approaches, including AHP, 
for zonation mapping of landslide susceptibility in Manipur, India35.

However, the AHP method has significant limitations36, such as its dependence on subjective expert 
evaluations, which can introduce biases and complicate the analysis of processes involving multiple criteria. 
To address these challenges, the Analytical Hierarchy Process – Gaussian (Gaussian AHP) approach37 was 
developed, replacing traditional pairwise comparisons with a framework based on statistical measures, and 
employing the normal distribution to build the comparison matrix. This technique employs the mean (as an 
estimate) and the standard deviation (as a measure of uncertainty) of the relative importance of each variable, 
incorporating the Gaussian factor as a mechanism for ranking the alternatives. By reducing the subjectivity 
inherent in judgments and enabling the analysis of many criteria, Gaussian AHP provides greater rigor and 
precision, as shown by sensitivity analyses that bolster the reliability of the results38. In this context, this study 
aims to evaluate the performance of the Gaussian AHP method in integrating GIS and remote sensing data for 
landslide susceptibility assessment compared to the traditional AHP approach. This innovative methodology 
was tested in a case study in Brazil, demonstrating its potential to improve precision in multi-criteria analysis 
applied to susceptibility assessment.

Materials and methods
Study area
The landslide susceptibility map of Brazil7, published by the Brazilian Institute of Geography and Statistics 
(IBGE) in 2019, revealed that cities in the southeastern and southern regions are more prone to this hazard than 
those in other regions. This case involves the municipality of São Sebastião (Fig. 1), a coastal city in the state of 
São Paulo, known for its landscape dominated by mountains, escarpments, and high hills.

Among the São Paulo municipalities with extremely high vulnerability to natural disasters related to 
landslides—i.e., the fragility degree to which the municipality is exposed — São Sebastião ranks 7th out of 26 
municipalities42. Furthermore, when calculating the vulnerability index to natural disasters related to landslides 
(Índice de Vulnerabilidade aos Desastres Naturais relacionados com Deslizamento de Terra - IVDDT), the author 
identified São Sebastião as the most vulnerable municipality among those classified as having extremely high 
vulnerability to landslides. This vulnerability was confirmed during the landslide event of February 2023, 
triggered by intense rainfall, which resulted in significant socioeconomic damage and casualties. This event 
has been widely investigated in various studies41,43–47 due to its relevance in understanding the determinants 
of socio-environmental vulnerability and in formulating mitigation and adaptation strategies for disasters 
associated with landslides.
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Methods
The methodology of this study was structured into four subsections: data acquisition and generation, AHP and 
Gaussian AHP analyses, susceptibility map generation, and model validation.

Data acquisition
Since there is no universal consensus in the literature regarding the selection of variables for assessing landslide 
susceptibility48, many studies explore different landslide conditioning factors9. For instance, recent studies 
highlight the significance of factors such as morphometric factors, which include slope, aspect, terrain curvature, 
and elevation, in landslide susceptibility modeling49,50. Based on these findings, we considered a total of 16 
landslide conditioning factors (Table 1) to model susceptibility in São Sebastiao municipality.

Before using the DTM to derive morphometric factors, preprocessing was conducted to identify and fill 
in pixels with missing information within the study area, thus to guarantee a hydrological corrected DTM. 
For this purpose, the algorithm proposed by Wang and Liu (2006)83 was employed, which identifies and fills 
surface depressions in digital elevation models. This method ensures the topographic continuity needed for 
more accurate morphometric analyses. Subsequently, the slope, relative slope position, aspect, curvature (plan 
and profile), convergence index, and topographic wetness index84 variables were derived using the Basic Terrain 
Analysis tool, while the Terrain Ruggedness Index was generated using the Terrain Ruggedness Index tool85, 
both implemented in the SAGA GIS software. The proximity factors (distance to rivers and distance to roads) 
represent the distance between the center of each pixel and the center of the nearest pixel, generated using the 
GDAL proximity tool86. The land cover map corresponds to a classification of a CBERS-4A satellite image, 
employing data mining, image segmentation, and the random forest algorithm71. The other variables were 

Fig. 1.  Study area map: (a) Brazil in the world39, (b) Study area in relation to the state of São Paulo and 
Brazil39, (c) Sentinel-2 true color composite40 from February 22, 2023, of the study area, (d) Area affected 
by landslides during the February 2023 disaster41. (The data for Fig. a and b is sourced from an IBGE public 
repository availabe at https:​​​//w​ww.i​bge​.g​ov.br/geoci​encias/do​wnl​oads-geo​ciencias.html. The data for Fig. c is 
sourced from a public Sentinel-2 image available at https://apps.sentinel-hub.com/eo-browser/. The data for 
Fig. d is sourced from a public repository available at https://zenodo.org/records/11120078. The processing 
software used is QGIS version 3.40.8, available at https://qgis.org/en/site/).
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sourced directly from the Geological Survey of Brazil (SGB) geospatial database, whereby the vectors underwent 
a rasterization process. Fig. 2 presents all the variables used, highlighting their interdependence with the 
occurrence of the most recent landslide event in 2023.

The validation of the susceptibility map was fully supported by the landslide inventory compiled by Coelho et 
al. (2024)41 for the February 2023 event in São Sebastião, used here without any reinterpretation of the original 
data. The inventory was created through manual digitization of 10 cm-resolution aerial imagery from the São 
Paulo State Spatial Data Infrastructure (Infraestrutura de Dados Espaciais de São Paulo - IDE-SP), supplemented 
by historical orthophotos from Google Earth and PlanetScope scenes. The dataset includes 983 landslide crown 
points — locations indicating the undisturbed material adjacent to the head of scars — and 1,070 landslide 
scar polygons outlining the displaced material area. Each feature contains planar geometric attributes (area, 
perimeter, length, and width) and volumetric estimates based on average failure depth (0.5 m to 2.8 m), along 
with geological context and land-cover information. It is worth mentioning that another inventory of landslides 
crowns and scars was recently released for the 2023 extreme event in São Sebastião87. Nevertheless, we adopted 
the one produced by41, for it was grounded on extensive field work, and hence, presents a greater level of detail 
and comprehensiveness.

To characterize crowns and scars in detail, the authors extracted geomorphometric parameters — elevation 
(3.00 m to 458.10 m), slope (0.82◦ to 63.08◦), aspect, and profile curvature — sampled at crown locations. The 
scars show a strongly right-skewed distribution of polygon area (mostly under 5,000 m2), with shapes ranging 
from small triangular features to large bodies exceeding tens of thousands of square meters. Crowns, represented 
as points at the start of each landslide, mainly cluster between 50 m and 100 m elevation, with slope values 
peaking around 30◦.

Variables Definition Source

Slope The measure of surface inclination, typically expressed in degrees or percentages. It is derived from the DTM and is used to classify topographic 
parameters and identify areas with a higher frequency of landslides, playing a crucial role in assessing terrain stability and landslide risks51–53. DTM54

Aspect The azimuthal orientation of the slope influences the incidence of exogenous factors such as sunlight, wind, and rainfall. This variable directly 
affects weathering, vegetation cover, and the hydrological dynamics of the slope, conditioning its susceptibility to mass movements55. DTM54

Elevation
This represents the altitude of a point in relation to sea level (topographic elevation) or the difference in altitude between relief features (relative 
elevation). This variable affects water pressure in the soil, surface runoff, and gravitational potential energy, consequently affecting slope stability 
and the likelihood of landslides56.

DTM54

Plan curvature
This refers to the rate of change of the flow direction (φ + π) along the direction of the vector 

(
∇⊥f

S

)
, i.e., following a contour line. In the 

context of landslides, this curvature indicates how the terrain curves laterally, affecting the dispersion of surface flow and soil stability56.
DTM54

Profile curvature
The rate of change of the surface slope along the direction of the unit vector (−∇/S), i.e., following the flow line in a downward direction. In 
the context of landslides, this measure indicates how the terrain curves towards the flow, affecting the accumulation and dynamics of water and 
sediment57.

DTM54

Convergence 
Index

This metric assesses the slope curvature by calculating the average of the slope directions of neighboring pixels in relation to the direction of the 
central pixel. In the context of landslides, negative values indicate convergent areas favoring the accumulation of water and materials, while positive 
values represent divergent areas, where surface flow is dispersed, influencing the potential for soil instability58–60.

DTM54

Relative slope 
position

This represents the ratio the slope height to the elevation difference, measured from the ridge or summit to the valley floor, and describes the 
topographical position of the terrain. This variable is crucial for landslide analysis, as it helps to identify areas of greater susceptibility based on the 
terrain’s relative position, influencing processes such as water accumulation, sediment dynamics, and soil stability61,62.

DTM54

Terrain 
Ruggedness Index 
(TRI)

This measures of the variation in elevation between a cell and its neighbors in a DTM, reflecting topographic roughness. This index is crucial for 
landslide analysis, as areas with greater roughness tend to have a higher risk of instability63,64. DTM54

Topographic 
Wetness Index 
(TWI)

This quantifies soil moisture variation by integrating upstream water supply and downstream runoff in a DTM. It combines the slope gradient with 
the specific catchment area. TWI is crucial for landslide analysis, as areas with higher soil moisture face a greater risk of instability65,66. DTM54

Distance to rivers
This refers to the Euclidean (straight-line) distance to water bodies. It is a critical factor for landslide analysis, as proximity to water bodies can 
increase the risk of slope erosion and soil saturation. Most landslides occur in areas close to rivers, particularly within a 200-meter radius. This 
variable should be incorporated into risk models to accurately identify high-risk zones67,68.

IBGE69

Land cover
The physical characteristics of the Earth’s surface, such as vegetation, water bodies, and built structures. It describes the natural and human-made 
features that occupy a specific area. Land cover plays an important role in landslide analysis, as it influences soil stability, water retention, and slope 
stability, helping to identify areas at higher risk for landslides9,70.

Marques-
Carvalho 
et al. 
(2025)71

Lithology
This refers to physical and mineralogical characteristics of sediments and rock types within the Earth’s stratigraphy. It is crucial in landslide studies, 
as it influences spatial variation in landslide prevalence, type, and depth by affecting properties such as porosity, permeability, and water saturation, 
which determine soil and rock stability72,73.

SGB 
(2017)74

Geomorphology
Land relief is the shape and structure of the earth’s surface resulting from geomorphological processes involving endogenous forces (such as faults 
and folds) and exogenous forces (such as climate, gravity, water, wind and ice), which are responsible for the continuous shaping and transformation 
of the terrain75,76.

SGB 
(2017)74

Pedology This influences slope stability and is determined by texture and clay content. Clay soils, such as andosols, latosols, and organosols, tend to retain 
more water, increasing the risk of landslides, whereas sandy soils, such as regosols, are more permeable, reducing this risk77,78.

SGB 
(2017)74

Rainfall Heavy rainfall alters the dynamics of surface and groundwater, reducing soil stability and triggering landslides. This occurs due to increased soil 
saturation and a decrease in particle cohesion79,80.

SGB 
(2017)74

Distance to roads Influences landslide susceptibility due to soil disturbances caused by cut-and-fill works, changes in drainage, and unplanned human activities. 
Traffic vibrations can weaken slope materials, compact the soil, and increase the risk of instability81.

DataGEO 
(2013)82

Table 1.  Predictor variables.
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Analytical hierarchy process method
The AHP is a multi-criteria analysis approach introduced by Saaty (1977)19. It offers a structured approach 
for evaluating complex decision problems by performing pairwise comparisons to determine the relative 
importance of criteria and alternatives, aiming to assign weights that reflect their hierarchical significance. 
AHP employs Saaty’s 1-9 Scale of Pairwise Comparisons19, where a value of 1 denotes equal importance and 9 
indicates extreme importance, with intermediate values representing gradual levels of relative importance. This 
scale allows experts to assign numerical values based on their domain knowledge of the relative importance of 
one variable compared to another in explaining the analyzed phenomenon. Saaty’s scale simplifies the judgment 
process by providing clear definitions for each level of comparison (Table 2).

The traditional AHP method is based on a pairwise matrix and was implemented in R language within the 
RStudio environment (version 4.2.3, 2023-03-15 UCRT)88, using the raster, sp, and magrittr packages for spatial 
data processing. The pairwise matrix (Eq. 1) must be developed based on reciprocal logic, i.e., if variable x is 
more important than variable y, the relationship of importance between x and y must be symmetrically reflected, 

Fig. 2.  Spatial distribution of landslide occurrences superimposed on each explanatory variable layer: (a) 
Slope, (b) Elevation, (c) Profile Curvature, (d) Relative Slope Position, (e) Aspect, (f) Plan Curvature, (g) 
Convergence Index, (h) Terrain Ruggedness Index. (i) Topographic Wetness Index, (j) Land Cover, (k) 
Geomorphology, (l) Average Annual Precipitation, (m) Distance to Rivers, (n) Lithology, (o) Pedology, (p) 
Distance to Roads.
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that is, the comparison of y relative to x must be inverted (x > y implies y < x). Furthermore, if variable z is 
more important than y, but not necessarily more important than x, reciprocal consistency must be maintained 
to ensure that the comparison hierarchy remains logical and coherent89. This systematization is essential for 
ensuring that the relationships assigned in the pairwise matrix are consistent, allowing the weight calculations 
to be valid and faithfully represent the decision maker’s preferences. The weights of the traditional AHP method 
were defined according to a consensus reached among experts from the field of environmental management, 
disaster monitoring and management, geography, and urban planning.

Fig. 2.  (continued)

 

Scientific Reports |        (2025) 15:38191 6| https://doi.org/10.1038/s41598-025-22136-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

M =


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1 a12 a13 · · · a1n

a21 1 a23 · · · a2n

a31 a32 1 · · · a3n

...
...

...
. . .

...
an1 an2 · · · · · · 1


� (1)

The matrix was normalized according to Eq. 2 to enable a proper comparison between the criteria. This 
normalization process converts the original values of the comparison matrix into relative proportions, ensuring 
that the weights assigned to each criterion are consistent and comparable. Normalization is performed by 
dividing each element of the matrix by the sum of its respective column, thereby adjusting the values of each 
criterion to a common scale.

	
nij = aij∑

aij
� (2)

where nij  is the normalized importance of the criterion, ranging between 0 and 1; aij  is the value assigned to the 
importance of the criterion; 

∑
aij  is the sum of the importance values of the criteria by column.

Finally, the analysis of consistency was performed using the consistency ratio (CR), which is derived from 
Eq. 3. This index assesses the consistency of comparisons made in a pairwise matrix, which evaluates the relative 
importance of different criteria or alternatives90. The CR is calculated by taking the ratio between the consistency 
index (CI) of matrix and the random consistency index (RI), which varies depending on the matrix size. 
When the CR is less than 0.1, it indicates that the comparisons are consistent, meaning there are no significant 
contradictions between them. If the CR is greater than 0.1, the comparisons should be reviewed, as this suggests 
inconsistencies that could compromise the analysis.

	
CR = λmax − n

n − 1 · 1
RI

� (3)

where λmax is the maximum eigenvalue of the pairwise matrix, n is the maximum number of factors, and RI is 
the random consistency index91.

Gaussian AHP method
The Gaussian AHP37 offers a novel approach to the original AHP method by incorporating sensitivity analysis 
through the Gaussian factor. This methodology enables the determination of attribute weights based on 
quantitative inputs of the alternatives within their respective attributes without requiring pairwise comparisons 
of alternatives and criteria37. This innovative approach has been widely applied in various studies in operational 
research and is used as an efficient tool for addressing complex decision-making challenges. By incorporating 
quantitative factors and sensitivity analysis, it proves particularly valuable in scenarios requiring technical 
rigor and methodological consistency. As a result, it has gained increasing recognition among experts in the 
field38,92–96.

This method37 was adapted for applications to geospatial data, following a series of key procedures. Initially, 
the input variables (raster data) were imported, and their minimum and maximum values were explicitly defined. 
This step ensures that only valid pixel values are considered, preserving the quality of the data used to build the 
decision matrix. For each raster layer, pixel values were extracted and stored in vectors. Moreover, dummy values 
were removed to avoid interference in subsequent calculations. Each extracted vector was then normalized by 
dividing each value by the sum of the vector, ensuring that the total sum equaled 1. Normalization is essential for 
standardizing the data, allowing all variables to be compared on the same scale. Subsequently, the mean of the 
normalized values for each variable was computed to capture the central tendency of the data for each variable 
(Eq. 4). The standard deviation of the normalized values was also calculated to assess the dispersion of the data 
around the mean, providing information on the variability of each variable (Eq. 5).

Intensity of importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective.

3 Weak importance of one over another Experience and judgment slightly favor one activity over another.

5 Essential or strong importance Experience and judgment strongly favor one activity over another.

7 Demonstrated importance An activity is strongly favored and its dominance is demonstrated in practice.

9 Absolute importance The evidence favoring one activity over another is of the highest possible order 
of affirmation.

2,4,6,8 Intermediate values between the two adjacent judgments When compromise is needed.

Reciprocals Inverse comparison If activity i has one of the above nonzero numbers assigned to it when 
compared with activity j, then j has the reciprocal value when compared with i .

Table 2.  Saaty’s 1-9 Scale of Pairwise Comparisons19.
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µvariable = 1

n

n∑
i=1

normalized pixel value � (4)

	

σvariable =

√√√√ 1
n − 1

n∑
i=1

(normalized pixel value − µvariable)2 � (5)

where n is the number of pixels in each raster.
The Gaussian factor for each variable quantifies its variability and is calculated by dividing the standard 

deviation by the mean (Eq. 6), which quantifies the variability of each variable. The Gaussian factors are then 
normalized (Eq. 7), ensuring that each variable contributes in a balanced manner to the final inference. The 
Gaussian AHP inference is obtained by weighting the input rasters, following Eq. 8, with the normalized 
Gaussian factors, integrating all the variables into a single raster layer. Finally, the inference result is saved in a 
new raster file, facilitating geospatial analysis and visualization.

	
fgaussian, variable = σvariable

µvariable
� (6)

where
fgaussian, variable = Gaussian factor for each variable
σvariable = Standard deviation of the normalized values for the variable
µvariable = Mean of the normalized values for the variable

	
fgaussian, normalized, variable = fgaussian, variable∑n

i=1 fgaussian, variable
� (7)

where
fgaussian, normalized, variable = Normalized Gaussian factor for each variable
n = Total number of variables
i = Index of the variable in the summation

	
InferenceAHP, Gaussian =

n∑
i=1

(rasteri × fgaussian, normalized, variablei
)� (8)

where
InferenceAHP, Gaussian = Final Gaussian AHP inference
rasteri = Raster values of each variable
fgaussian, normalized, variablei

 = Normalized Gaussian factor for each variable i
The Gaussian AHP method was also implemented within the R Studio environment, using the same version 

adopted for the traditional method and employing the same spatial data processing packages. Initially, each 
raster layer (variables) was imported with the raster function, and its minimum and maximum values were 
adjusted by applying setMinMax to ensure consistency in internal metadata for validation. Then, pixel values 
were extracted with the values function, and NA (dummy) values were removed to avoid biases in the statistical 
analysis. Each pixel vector was normalized so that the sum of its elements equaled one. This step allowed for 
comparability across attributes with different units and scales.

For each normalized vector, the mean and standard deviation were calculated. The Gaussian factor for each 
variable was then defined as the ratio of the standard deviation to the mean, providing a quantitative measure 
of the spatial variability relative to central tendency. These Gaussian factors were normalized by the sum of all 
factors, yielding a set of weights that add up to one. The final Gaussian AHP output was produced by performing 
a weighted linear combination of the original raster layers, where each layer was multiplied by its corresponding 
normalized Gaussian weight. The resulting composite raster was assigned a UTM Zone 23S (WGS84) coordinate 
reference system and a spatial resolution of 5 m. This final product was exported in GeoTIFF format, enabling 
integration and visualization in standard GIS platforms, such as QGIS, in the particular case of this study.

Regarding variable types, the method applies the same statistical preprocessing to both continuous and 
categorical data. For nominal rasters (e.g., land use or lithology), class values are numerically encoded solely 
to facilitate computational processing. These numeric codes do not imply any inherent order or weighting. 
The weights are derived solely from the statistical relationship between the mean and standard deviation of 
normalized values, thus representing the intrinsic spatial variability of each layer. This approach ensures 
methodological rigor and supports the integration of diverse variables into a unified multi-criteria framework 
without introducing subjective or preconceived biases. Additionally, this approach allows future replications to 
use nominal variables without restrictions. Fig. 3 shows the flowchart of the methodological workflow used for 
implementing the Gaussian AHP model. The diagram illustrates each step of the process, from initially inputting 
raster variables to creating the final susceptibility map. Key steps include data normalization, calculation of 
Gaussian factors, assigning weights, and combining layers with weights. This schematic figure provides a clear 
overview of the analysis sequence, promoting transparency and reproducibility of the approach.
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Results
Traditional AHP method
In the traditional AHP method, 120 pairwise comparisons were performed among 16 variables, resulting in a 
weighted decision matrix (Table 3). The variable slope emerged as the highest priority, with a relative weight 
of 18.2%, followed by relative slope position, TRI and geomorphology with 10.6%, and pedology with 8.60%, 
reflecting their considerable importance in the analyzed context. The consistency ratio obtained was 5.55%, 
indicating strong coherence in the preferences established during the comparison process. Priorities were 
determined using the principal eigenvector of the matrix, with a calculated eigenvalue of 17.332. Fig. 4 presents 
a graphical representation of the relative importance of all variables.

The susceptibility map was generated by multiplying each geospatial variable (raster) by its corresponding 
normalized weight. This process adjusts each variable’s contribution based on its relevance, as determined 
in the previous calculation. Finally, the weighted results are summed pixel by pixel, resulting in a final layer 
that represents the integrated susceptibility, categorized into five classes: very low (14.19%), low (16.86%), 
moderate (28.76%), high (16.67%), and very high (23.52%). These results are consistent with findings from 
other studies74,97, which have reported similar distributions of susceptibility classes in areas with comparable 
environmental and geological conditions. Fig. 5 presents the susceptibility map generated using the traditional 
AHP method. Among the five most relevant variables, areas classified with high or very high susceptibility are 
primarily located in regions with a slope between 23% and 46%, a relative slope position covering the entire 
range, and a TRI above 2.0. These areas are mainly found in terrains characterized as mountain ranges and 
escarpments, followed by high hills, low hills, and hills, where cambisol is the predominant soil type.

Fig. 3.  Methodological flowchart.
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Gaussian AHP method
According to the Gaussian AHP method, the most relevant variables for the event studied were geomorphology 
(18.22%), distance to rivers (15.65%), distance to roads (12.93%), elevation (9.26%), and land cover (8.32%). 
These values, derived from the normalized Gaussian factors, correspond to the normalized weights in the 
traditional AHP method. Fig. 6 illustrates the relevance assigned to each variable.

The susceptibility map generated using the Gaussian AHP method exhibited the following class distributions: 
very low (20.21%), low (15.55%), moderate (21.74%), high (16.19%), and very high (26.31%). Fig. 7 presents the 
resulting map. High and very high susceptibility areas are mainly located around 600 m away from roads and 
160 m away from rivers, across all elevations, predominantly in mountain ranges and escarpments with cambisol 
soils, as well as in various hill terrains.

The susceptibility map was validated using two complementary approaches: the area under the ROC 
curve (AUC) and the analysis of landslide density across the susceptibility classes. For validation, a landslide 
inventory41 was used, which provided 97,742 samples divided into 70% for training and 30% for validation, 
as shown in close detail in Fig. 8. However, AUC, despite its widespread use in susceptibility studies, ignores 
the spatial distribution and density of events, potentially causing misleading results in areas with high spatial 
autocorrelation98,99.

To address this limitation, the validation was strengthened by analyzing landslide density per susceptibility 
class, comparing observed event frequencies against random expectations. The use of a single-event inventory is 
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Fig. 4.  Relative importance of variables according to the traditional AHP method.

 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 NW

Slope (V1) 1 6 6 6 6 4 2 2 4 4 6 6 2 2 6 6 0.184

Aspect (V2) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 4 1/4 1/4 1 1 0.032

Elevation (V3) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 1/4 1 1 0.027

Plan curvature (V4) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 4 1 1 0.041

Profile curvature (V5) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 4 1 1 0.041

Convergence Index (V6) 1/4 2 2 2 2 1 1/2 1/2 1 1 2 2 1/2 1/2 2 2 0.053

Relative slope position (V7) 1/2 4 4 4 4 2 1 1 2 2 4 4 1 1 4 4 0.106

TRI (V8) 1/2 4 4 4 4 2 1 1 2 2 4 4 1 1 4 4 0.053

TWI (V9) 1/4 2 2 2 2 1 1/2 1/2 1 1 2 2 1/2 1/2 2 2 0.106

Distance to rivers (V10) 1/4 2 2 2 2 1 1/2 1/2 1 1 2 2 1/2 1/2 2 2 0.027

Land cover (V11) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 1/4 1 1 0.053

Lithology (V12) 1/6 1/4 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 1/4 1 1 0.026

Geomorphology (V13) 1/2 4 4 4 4 2 1 1 2 2 4 4 1 1 4 4 0.106

Pedology (V14) 1/2 4 4 1/4 1/4 2 1 1 2 2 4 4 1 1 4 4 0.092

Rainfall (V15) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 1/4 1 1 0.027

Distance to roads (V16) 1/6 1 1 1 1 1/2 1/4 1/4 1/2 1/2 1 1 1/4 1/4 1 1 0.027

Table 3.  Normalized pairwise comparison matrix and normalized weights (NW). Vi corresponds to the i-th 
variable.
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justified by the exceptional magnitude, spatial extent, and quality of the 2023 São Sebastião disaster data, sourced 
from high-resolution aerial imagery and satellite scenes.

The comparative analysis between the traditional AHP and Gaussian AHP models indicates that the latter 
one demonstrated better overall performance across nearly all evaluated metrics. The ROC curve showed AUC 
values of 0.622 for traditional AHP and 0.636 for Gaussian AHP, indicating a slight edge of the improved model 
in distinguishing between areas with and without landslide occurrence. Although both values are below the 0.7 
threshold — generally considered a sign of good discrimination — the Gaussian AHP also performed better 
in accuracy (0.6364 vs. 0.6229), and balanced accuracy (0.6356 vs. 0.6221). Sensitivity was also higher in the 
Gaussian model (0.3585 versus 0.3116), reflecting a greater ability to correctly identify negative areas. On the 
other hand, specificity and positive predictive value (PPV) were slightly higher in the traditional model (0.9325 
vs. 0.9127, and 0.8212 vs. 0.8034, respectively), indicating its better accuracy in detecting positive areas (with 
landslides), as shown in Table 4. For all metrics, the p-values obtained through Mc Nemar’s101 test with a 95% 
confidence interval lay around 2 × 10−16, indicating that there is significant difference between the accuracy 
parameters extracted for both models.

The relatively low sensitivity values observed may be due to the spatial distribution of validation samples, 
which are concentrated in one part of the study area. This spatial limitation might restrict the representation of 
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Fig. 6.  Relative importance of variables according to the Gaussian AHP method.

 

Fig. 5.  Landslide susceptibility map by the traditional AHP method.
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the region’s environmental variability as a whole, affecting the model’s ability to accurately generalize to other 
areas. Additionally, the strong spatial autocorrelation typical of landslide inventories, if not properly controlled, 
can inflate performance metrics in areas near the samples while underestimating prediction capacity in other 
regions. This highlights the need for validation methods that account for the spatial distribution of data, such as 
analyzing landslide density within each susceptibility class.

Table 5 compares the distribution of landslide susceptibility classes obtained by the traditional AHP and 
Gaussian AHP methods, highlighting key differences in how both approaches. While the traditional method 
shows a strong concentration of samples in the “Moderate” (29.52% training; 29.28% testing) and “Very high” 
(40.43% training; 40.44% testing) classes, the Gaussian AHP promotes a more balanced distribution, with a focus 
on increasing samples in lower risk classes, such as “Very low” (2.88% training and 2.91% testing, compared to 
1.79% and 1.82% in the traditional method) and “Low” (5.92% training and 5.53% testing, compared to 4.75% 
and 4.51% in the traditional AHP). Additionally, the Gaussian approach slightly increases the representation of 

Fig. 8.  Spatial distribution of landslide samples41 over a true color composite satellite image from June, 
2025100. (The data is sourced from a public Google Earth image available at https://earth.google.com/web/. 
The landslides data is sourced from a public repository available at https://zenodo.org/records/11120078. The 
processing software used is QGIS version 3.40.8, available at https://qgis.org/en/site/).

 

Fig. 7.  Landslide susceptibility map by the Gaussian AHP method.
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the very high risk class (45.62% training and 46.17% testing), indicating a greater ability to identify critical areas. 
This behavior suggests that the Gaussian AHP approach can improve the spatial accuracy of the susceptibility 
classes, enhancing the performance of the model.

Figure 9 shows the analysis of normalized landslide density across the five susceptibility classes for both 
the traditional AHP and Gaussian AHP models, highlighting improvements in the Gaussian approach. The 
Gaussian AHP model displays a more balanced and distinctive distribution, with a curve showing smoother, 
more gradual transitions between low risk classes, unlike the sharper change seen in the traditional method. 
A key difference appears in the “moderate” class, where the Gaussian AHP demonstrates more stable and 
consistent behavior, whereas the traditional model shows a sharper increase followed by a slight decrease in 
the “high” class, creating an inflection point that indicates lower stability in distinguishing these intermediate 
categories. This suggests that the Gaussian AHP is more capable of capturing subtle variations in spatial risk, 
offering a more detailed and consistent classification of areas with intermediate susceptibility. Additionally, the 
Gaussian model yields slightly higher densities in the very low and low susceptibility classes, indicating better 
responsiveness in identifying transition zones and enhanced spatial representativeness. The smoother curve 
of the Gaussian AHP also suggests fewer artificial discontinuities in classification, leading to a more spatially 
coherent susceptibility map. The similarity between training and validation curves in both methods indicates 
no overfitting and good generalization ability, confirming the statistical robustness and operational reliability 
of the generated susceptibility maps. This underscores the improvements offered by the Gaussian AHP in risk 
management and land use planning.

Fig. 9.  Normalized landslide density distribution across susceptibility classes: (a) Traditional AHP, (b) 
Gaussian AHP.

 

Subregions Area (km2)

Traditional AHP Gaussian AHP

Training (%) Test (%) Training (%) Test (%)

Very low 56.80 1.79 1.82 2.88 2.91

Low 67.51 4.75 4.51 5.92 5.53

Moderate 115.16 29.52 29.28 26.52 26.32

High 66.71 23.52 23.94 19.07 19.06

Very high 94.18 40.43 40.44 45.62 46.17

Table 5.  Key information of LS maps generated using traditional AHP and Gaussian AHP methods.

 

Metric Traditional AHP Gaussian AHP

AUC 0.622 0.636

Accuracy 0.6229 0.6364

Balanced Accuracy 0.6221 0.6356

Sensitivity 0.3116 0.3585

Specificity 0.9325 0.9127

Positive Predictive Value (PPV) 0.8212 0.8034

Negative Predictive Value (NPV) 0.5766 0.5886

Table 4.  Comparison of performance metrics between the traditional AHP and Gaussian AHP models.
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In summary, both the traditional AHP and Gaussian AHP methods demonstrated consistent and coherent 
results, effectively highlighting areas with high and very high susceptibility to the studied event. While the 
traditional AHP method emphasized variables such as slope and relative slope position, the Gaussian AHP method 
prioritized geomorphology and proximity to rivers and roads, reflecting slight methodological differences in the 
weighting process. Despite these variations, the spatial distribution of susceptibility classes remained similar, 
with both methods identifying mountain ranges, escarpments, and cambisols as key contributing factors to high 
susceptibility. These findings underscore the robustness of the approaches and their potential applicability in 
similar environmental and geological contexts.

Discussion
The main difference noted between the results obtained from the two methods lies in the diverging importance 
assigned to the analyzed variables (Fig. 10). In the traditional AHP method, the first quartile of importance 
included the variables slope, relative slope position, TPI, and geomorphology. In contrast, in the Gaussian AHP 
method, these variables are not among the most relevant, except for geomorphology, which now holds the highest 
importance in the dataset. The variable slope, previously identified as the most relevant in the traditional AHP, 
was moved to the sixth position in the Gaussian AHP, while relative slope position also experienced a significant 
decrease, classified as the least relevant. This shift indicates that the Gaussian AHP’s focus on statistical variability 
prioritizes factors with greater spatial heterogeneity, while the traditional AHP’s dependence on expert-based 
pairwise judgments emphasizes geomorphic characteristics and slope gradient more heavily.

In addition to geomorphology, other variables gained prominence in the Gaussian AHP method, including 
distance to rivers, distance to roads, elevation, aspect, and land cover. Conversely, the variable pedology 
presented a slight reduction in its relative importance. Meanwhile, the variables TWI and rainfall maintained 
similar relevance across both methods, indicating a degree of consistency in their impact assessment. Notably, 
the prominence of proximity factors (rivers and roads) in the Gaussian AHP results matches the spatial clustering 
of landslide events near infrastructure and drainage lines, supporting the method’s ability to identify real-world 
triggers that may be underrepresented in subjective weightings.

The observed differences in the assignment of importance between the traditional AHP and Gaussian AHP 
methods can likely be attributed to the distinct ways these approaches handle variability and weighting. The 
traditional AHP relies on pairwise comparisons to derive weights, which are directly influenced by subjective 
judgments and the consistency of the decision-maker preferences. In contrast, the Gaussian AHP method 
incorporates statistical measures, such as the standard deviation and mean, to calculate normalized Gaussian 
factors, emphasizing the variability within the dataset. This statistical approach can lead to higher weights for 
variables with greater spatial heterogeneity, as seen with the distance to rivers and distance to roads, which 
gained prominence in the Gaussian AHP method. Additionally, the smoothing effect of Gaussian normalization 
might diminish the relative influence of variables that are more uniformly distributed across the study area, such 
as slope and relative slope position, which held higher importance in the traditional AHP. These methodological 
differences highlight the sensitivity of weighting processes to both subjective inputs and data-driven factors, 
ultimately shaping the prioritization of variables in distinct ways. Moreover, by reducing subjective bias, the 
Gaussian AHP method seems to improve the match between model-based weights and the actual spatial patterns 
of landslides, as shown by better AUC and balanced accuracy scores. This indicates that in areas with diverse 
terrain and complex land use interactions, data-driven weighting can produce more reliable susceptibility 
predictions.

Compared to the traditional AHP method, the very low class increased by 6.02%, while the low class 
decreased by 1.32% in the Gaussian AHP. The moderate and high classes experienced decreases of 7.02% and 
0.47%, respectively, whereas the very high class increased by 2.79%. These differences reflect adjustments in the 
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Fig. 10.  Relative importance of variables according to the methods.

 

Scientific Reports |        (2025) 15:38191 14| https://doi.org/10.1038/s41598-025-22136-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


weights assigned to the variables by the Gaussian AHP method, which incorporates normalized Gaussian factors 
in its weighting process. Despite these variations, both methods produce susceptibility maps with consistent 
overall distributions. The highest susceptibility classes (high and very high) remain relatively close in percentage 
terms, ensuring effective identification of the most vulnerable areas. Notably, the improvements in the very high 
class under Gaussian AHP align with its higher sensitivity, showing a clearer separation of critical zones without 
losing overall map coherence.

Furthermore, the overall uncertainty analysis (Fig. 11) between the two methods revealed a value of 
56.16%, with class-specific results distributed as follows: very low (53.20%), low (76.47%), moderate (76.42%), 
high (85.15%), and very high (65.34%). These metrics illustrate how the differences between the methods are 
reflected across classes, highlighting the unique characteristics of each approach in weight assignment and final 
classification. Nevertheless, the results confirm that both methods are capable of efficiently identifying areas of 
higher susceptibility, providing reliable support for decision-making in risk management contexts. The slightly 
lower uncertainty in the very high classes under Gaussian AHP indicates increased model confidence where it 
turns out to be crucially important for hazard mitigation.

When examining the outcomes of the susceptibility analysis limited to areas affected by landslides in 
2023 (Fig. 12), it was observed that in both models, the high and very high classes predominated, together 
accounting for nearly 70% of the analyzed area. In the traditional AHP method, the classes distributions were: 
very high (38.46%), high (28.78%), moderate (22.07%), low (7.39%), and very low (3.29%). With the Gaussian 
AHP method, the distributions were: very high (42.19%), high (26.46%), moderate (18.20%), low (7.30%), and 
very low (5.85%). A comparison of the results reveals that in the Gaussian AHP method, the very high class 
increased by 3.73%, followed by a 2.56% rise in the very low class. Conversely, the low, moderate, and high 
classes experienced decreases of 0.09%, 3.87%, and 2.32%, respectively. These variations highlight the distinct 
characteristics of the two methods in weighting and classification, while both consistently identify areas with 
higher susceptibility. The focus of this analysis highlights the practical importance of the Gaussian AHP method 
for post-event evaluations, precisely when capturing both extremes of vulnerability can help direct quick 
resource deployment for emergency response and infrastructure inspection.

The estimated 24-hour accumulated precipitation for the analyzed event ranged from 106.43 to 683 mm 
(Fig. 13), based on data from the São Paulo Weather Radar102 and the São Sebastião Civil Defense (pluviometric 
station). The highest rainfall concentration occurred in the western-central portion of the study area, which 
also registered the greatest number of landslides, indicating a strong correlation between extreme precipitation 
and slope instability. While some areas are inherently more susceptible due to geological and geomorphological 
factors, these findings reinforce the role of rainfall as the primary trigger for such events47. This highlights 
the importance of continuous precipitation monitoring in landslide-prone regions and the integration of 
meteorological data into risk assessment and early warning systems.

Despite significant precipitation levels exceeding 300 mm in some areas of the study’s western region, specific 
locations did not experience any landslides. This absence of mass movements could be attributed to several 
factors, including (i) a more advanced stormwater drainage system that effectively channels excess water and 
reduces soil saturation, (ii) engineered structures designed to reinforce slopes and mitigate the impacts of 
intense rainfall, and (iii) specific geomorphological characteristics, such as variations in soil-bearing capacity, 
lithology, vegetation cover, and terrain development, all of which influence the overall stability of the landscape. 
Additionally, differences in land use and human interventions, such as deforestation, construction practices, and 
slope modifications, may also play a role in preventing or intensify landslides under extreme rainfall conditions. 
It is important to mention that these factors were not included as input variables in the modeling approach, 
which primarily focuses on susceptibility assessments based on geospatial and environmental parameters. 
As a result, while the model effectively identifies high-risk areas, it may not fully capture localized resilience 
mechanisms that contribute to variations in landslide occurrence across the study area.

While the traditional AHP provides a familiar, expert-driven framework, the Gaussian AHP method delivers 
a more data-centric weighting scheme that better reflects observed landslide patterns and yields improvements in 

Fig. 11.  Uncertainty analysis: (A) Overall, (B) Very low, (C) Low, (D) Moderate, (E) High, and (F) Very high.
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predictive performance. These findings suggest that integrating statistical variability into multi-criteria decision 
processes can enhance the objectivity and operational usefulness of susceptibility models in heterogeneous 
landscapes.

Fig. 13.  The estimated 24-hour accumulated precipitation in São Sebastião on 19 February 2023.

 

Fig. 12.  Details of the susceptibility analysis related to the 2023 event, superimposed on the landslides assessed 
by41 and integrally shown in Figure 1d: Gaussian AHP results (above) and traditional AHP results (below).
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The Gaussian AHP model offers significant contributions by replacing the subjective paired comparisons 
of traditional AHP with a statistical approach using metrics such as mean and standard deviation to determine 
factor weights. This method reduces the subjectivity in expert judgments, emphasizes the spatial variability 
of data, and assigns greater importance to variables with greater heterogeneity, such as proximity to rivers 
and roads. This feature is especially useful in geologically complex contexts, where the spatial distribution of 
influencing factors can differ greatly. Moreover, the Gaussian AHP allows for scalable multi-criteria analysis, 
enabling the integration of large amounts of geospatial data without losing the model’s internal consistency and 
not demanding proportionally intensive computing infrastructure either in face of its low cost. These features 
make it a helpful tool for landslide susceptibility analysis in large, environmentally complex areas from an 
operational perspective.

However, the Gaussian AHP model has certain limitations that should be considered. One of them is its 
sensitivity to data distribution: variables with a uniform distribution, such as slope, may have their importance 
underestimated, while the presence of outliers or biases in data collection can distort the assigned weights. 
Additionally, its reliance on high-resolution quantitative data may restrict its applicability in cases with limited 
computational infrastructure or scarce data availability. Another limitation is the lack of dynamic validation, 
such as including human-related factors or drainage efficiency, which may affect the model’s ability to account 
for local resilience mechanisms, including engineering interventions that mitigate risks or efficient drainage 
systems. These gaps can lead to either an underestimation or overestimation of susceptibility in specific areas.

As mentioned earlier, the AHP method has been widely used for landslide susceptibility assessment22–35,47,97,103; 
however, to our knowledge, no research in the indexed literature has explored the application of Gaussian AHP 
for this purpose. Nonetheless, some studies have incorporated Gaussian processes into their methodology. 
Colkesen et al.104 explored the use of kernel-based Gaussian process regression and support vector regression 
(SVM) to create a landslide susceptibility map in a district of Trabzon, Turkey. Xie et al.105 proposed a landslide 
hazard assessment using an SVM as the main model and a Bayesian Optimization (BO) algorithm for parameter 
tuning; this parameter optimization technique was based on Gaussian process regression. On their turn, Gao 
et al.106 applied Gaussian process classification (GPC) and an improved weight-based generalized objective 
function to evaluate hazard, vulnerability, and risk of high-mountain landslides in Southwest China.

Despite differences in variable ranking between the traditional AHP and the Gaussian AHP, both methods 
have demonstrated consistency in identifying critical landslide susceptibility zones. To further enhance the 
model, integrating Gaussian AHP with machine learning techniques is recommended, as this would improve 
the ability to detect nonlinear relationships and complex data patterns, thereby increasing predictive accuracy. 
Additionally, incorporating real-time climate data, such as precipitation and soil moisture, could address gaps 
in modeling immediate triggers like extreme rainfall, which is often linked to landslide events. This integration 
would foster a more comprehensive and dynamic approach, increasing the model’s reliability in the face of 
climate change and rapid urbanization.

Finally, it is worth highlighting that other authors conducted landslides susceptibility analyses for the 
same study area of this research, but using either statistical or machine learning models. The work conducted 
by Coelho et al. (2025)107 ought to be mentioned, in which different environmental variables (slope, aspect, 
curvatures, digital elevation models - DEMs of varying spatial resolutions, and the Topographic Position Index 
- TPI) were combined through logistic regression. The authors used the same reference data of our study and 
attained accuracy values ranging from 0.6630 to 0.7067, and AUC values from 0.7101 to 0.7840, respectively for 
the 5-meter and 30-meter DEMs. Another work108 carried out for São Sebastião drove environmental (elevation, 
slope, aspect, geology, pedology, land use and land cover, normalized difference vegetation index - NDVI) and 
climatic (72-hour accumulated precipitation) variables in a multilayer perceptron neural network. The author 
obtained 1.00 for Precision, 0.86 for Recall, and 0.92 for F1-Score.

Alcântara et al. (2024)46 compared manifold machine learning models, namely random forest (RF), gradient 
boosting (GB), support vector machine (SVM), artificial neural network (ANN), and k-nearest neighbors (k-
NN), which were driven by input data like slope, soil saturation, relief dissection, geomorphology, geology, 
Topographic Position Index (TPI), Soil Moisture Index (SMI), land use and land cover (LULC) information 
extracted from Planet imagery, and the 72-hour accumulated precipitation. RF and GB reached the highest 
accuracy (0.996) and F1-Score (0.665) values, followed by ANN (accuracy of 0.993 and F1-Score of 0.663), k-NN 
(accuracy of 0.986 and F1-Score of 0.660) and SVM (accuracy of 0.597 and F1-Score of 0.344). The AUC in this 
study presented a diverging behavior in relation to these two previous accuracy metrics since GB was ranked 
first (AUC of 0.963), succeeded by ANN (AUC of 0.961), SVM (AUC of 0.930), RF (AUC of 0.911), and k-NN 
(AUC of 0.826).

We ought though to emphasize that addressing direct comparisons between our results and the results formerly 
presented specifically for São Sebastião is purposeless, since these works employed diverse sets of input variables, 
in some cases also different reference data, and/or used partially distinct accuracy metrics. The competitive 
advantage of the Gaussian AHP approach, explored in this work, lies on its operational straightforwardness. 
In other words, the Gaussian AHP method trades simplicity for performance. Refined statistical and machine 
learning models usually achieve better results. Nevertheless, they are complex and require a level of expertise 
commonly unavailable among the local government practitioners.

Conclusion
The comparative evaluation confirmed that both the traditional AHP and the Gaussian AHP approaches reliably 
delineate zones of high and very high landslide susceptibility, demonstrating their suitability for risk assessment. 
However, the Gaussian AHP method consistently outperformed the traditional AHP, achieving higher AUC 
(0.636 vs. 0.622), accuracy (0.6364 vs. 0.6229), balanced accuracy (0.6356 vs. 0.6221), as well as greater 
sensitivity (0.3585 vs. 0.3116), thereby showing superior discriminative power and reliability. While traditional 
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AHP placed greatest emphasis on slope and relative slope position, Gaussian AHP shifted weight values toward 
geomorphology and proximity to rivers and roads—variables exhibiting greater spatial heterogeneity—which 
more closely align with observed landslide clusters in São Sebastião.

Despite methodological differences, the overall spatial distribution of susceptibility classes remained 
coherent between models, with mountainous escarpments persistently identified as the most vulnerable areas. 
The uncertainty analysis showed that Gaussian AHP reduced classification ambiguity in the highest risk category 
(65.34% of ambiguity), indicating improved confidence where it is most critical for hazard mitigation. Rainfall 
emerged again as the predominant trigger, with 24-hour accumulations exceeding 300 mm in the western-
central sector correlating strongly with landslide occurrence—even though engineered drainage and slope 
reinforcements likely mitigated failures in some high-rainfall areas. This finding reinforces the necessity of 
integrating real-time meteorological monitoring into future susceptibility frameworks. Overall, the data-driven 
Gaussian enhancement reduces subjective bias and aligns model outputs more closely with empirical patterns, 
leading to improvements in predictive performance. As directions for future work, we recommend combining 
the Gaussian AHP weighting scheme with machine learning classifiers (e.g., random forests or gradient boosting) 
to capture nonlinear interactions among conditioning factors, and incorporating dynamic variables such as soil 
moisture and land use change to further refine temporal responsiveness and predictive accuracy.

Data availability
Data is provided within the manuscript or supplementary information files.
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