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ABSTRACT

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles
(SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a
dystrophic red latosol (oxysol). Herein, 500 ppm of UA or SPIONs-framework carrying UA
were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the
soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of
80% and a 16 h/8 h light-dark cycle (600 lux light intensity) for 30 days. Sterile ultrapure
deionized water was used as the negative control, uncapped and oleic acid ( ed SPIONs

.

were also tested to assess their potential effects. Magnetic nanostmct(N synthesized by
coprecipitation method and characterized by scanning and tra ion electron microscopy
(SEM and TEM), X-ray diffraction (XRD), Fourier-trans infrared spectroscopy (FTIR),

Qand release kinetics of chemical

ot significantly affect soil microbial

zeta potential, hydrodynamic diameter, magnetic

cargo. Uncapped and OA-capped SPIO
community. Our results showed an impaifiment iff the soil microbial community exposed to free
UA, leading to a general decrease i 1ve effects on soil-based parameters when bioactive
was loaded into the nanosc etic carrier. Besides, compared to control, the free UA
caused a significant de @1 icrobial biomass C (39 %), on the activity of acid protease
(59 %), and acid p@ ase (23 %) enzymes, respectively. Free UA also reduced eukaryotic
18S rRNA gengfabundance, suggesting a major impact on fungi. Our findings indicate that
SPIONS as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nano-
enabled biocides may improve agricultural productivity, which is important for food security
due to the need of increasing food production.

Keywords: Nanobiopesticide, Soil microbiology, Usnic acid, Enzymatic activity, Toxicity,

Safe-by-Design, Nano-Enabled Products
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1. INTRODUCTION

The global population is predicted to reach close to 9.1 billion in 2050, necessitating an
increase in food production of approximately 70%. ' The use of pesticides plays an important
role in agriculture by controlling crop pests and, consequently, their use have increased along
with the rise in global demand for food. Nevertheless, an indiscriminate growth in the use
pesticides has been linked to environment and human health risks. Thus, a technological
revolution in agriculture is needed to expand crop production in an environmentally safe way.
The development of efficient, precise, and sustainable pesticide formul x;o minimize

.

hazardous residues is essential to ensure food safety and environn‘(&urity. 2 In this
scenario, nano-enabled products have attracted great attention j tg)st decades due to their
enhanced performance in agricultural applications, main@g the action, improving the
effectiveness, and controlling the release of pestiei ctive ingredients. > The current
development of nano-enabled agrochemicadg w ocus on decreasing the environmental
footprint of agriculture has been shown \literature. %’ Nonetheless, the development of safe-
by-design nanoformulations usi products (biocides) as active ingredients capable to
replace commercial agroched increase food security is still scarce.

Pesticide nanoc s dire expected to grow rapidly in the coming years. % However,
the use of nano-€na agrochemical products will inevitably release them into the
environment, Wliich can potentially impact non-target organisms. '®'2 The discovery and
development of nano-enabled products depend heavily on studies about the effects of
nanoformulations, such as nanopesticides and nanobiopesticides, on agricultural soils.
Understanding the environmental fate and behavior of nano-enabled products in soil systems is
required to promote the development of safe-by-design nanopesticides. A common drawback
of conventional synthetic pesticide applications is their lower efficiency and higher

environmental losses. !> Therefore, it is highly desirable in pest management systems to deliver
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pesticides to the exact target site and accurate cargo release without losing effectiveness. '*

Nano-enabled herbicides provide enhanced biocidal performance against weeds compared to
active ingredients. !> Nevertheless, there are still concerns about their use, which may be
harmful to living organisms such as soil microbial communities. '® For instance, polymeric
nanopesticide damage the activity of acid phosphatase in soil, !” and also change the rhizosphere
bacterial communities. '8 The effects of azoxystrobin-loaded silica nanoparticles have been
studied, revealing a lower impact on soil microbiota. !° The authors demonstrated that
nanopesticide formulation was less phytotoxic for Solanum lycopersj lants, even
.

presenting a pesticide uptake of 10-fold higher than the conventional pﬁ idSN° Among these,
biopesticides have emerged as attractive alternatives to syntheg g’;hemicals. Despite the
growing interest on the impact of nanopesticides on soil 20@(6 is still a lack of knowledge
on the harmful potential of nanobiopesticides or na sticides based-nanoformulations on
the soil environment.

Biological systems are natural rces of several active compounds with pesticidal
activities. For instance, seconda&@ ftes could be used as natural pesticides, 2* especially

due to high biodegradability, pedes their accumulation in the environment. Usnic acid
(UA)  [2,6-diacetyl-7 -@ko y-8-9b-dimethyl-1,3 (2H, 9b/aH)-dibenzofurandione;
Ci1sHi1607] is consiflered a research priority of this area because of its abundance in diverse
lichen species afid promising herbicidal properties. UA inhibits chlorophylls and carotenoids

23 promotes the

biosynthesis via inhibition of 4-hydroxyphenyl pyruvate dioxygenase,
photodegradation of chlorophylls, ?* and inhibits PSII electron transfer at the quinone B (Qg)
catalytic domain. »> Similar effects on the Qg domain have been reported for commercial
herbicides such as atrazine, diuron, linuron, and others. #?*2” Additionally, UA is a promising

compound to be loaded into a nanocarrier to development of nano-enabled products for

sustainable weed control.
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Due to the enhanced performance of nano-enabled materials, there is a growing interest
in the development of engineered nanosystems, aiming to deliver a variety of active compounds
to enhance crop productivity. Literature reports that nanopesticides are around c.a. 31.5% more
effective than their conventional analogues (free pesticides). 2® In addition, nanoscale
formulations can be used as a strategy to improve the fate, mobility, sorption, and degradation
of an active ingredient in the environment. 2° Several studies using organic and inorganic
nanomaterials as nanocarriers have been indicating that they may be potentially safer for non-
target organisms. 2%2°3% Nonetheless, gaps on the fate of nanobiopesticides nvironment
indicate the need for further investigations. Superparamagnetic 1&& nanoparticles
(SPIONs) have been developed and applied for delivery applic carrier systems. >! To
best of our knowledge, the application of SPIONSs as nanoa@%or biopesticide delivery has
not yet been reported. Moreover, the SPIONs can re em1ca1 cargo in agricultural systems
mainly due to their lower toxicity. ** Also, rov1de several benefits for agriculture.
For instance, they can direct deliver the ive compound to target sites in cellular organelles,
can be removed from the enviro @ magnetic collectability behavior, and also could serve
as a “trigger” for smart CQ case by magnetic induction application. >} Magnetic
nanostructures are att r 'nanorobotic manipulation, cargo transport, drug/pesticide
diffusion, and attac@@emoval 3435 Finally, it is also important to point out that the use of
SPIONs is als§fbased on their scalable production by different synthesis routes. **37 For
instance, Hammed et al. >’ demonstrated that SPIONSs can be scalable produced using a tubular
electrochemical system, which they obtained a yield of production of 8.3 mg mol™! Fe and a
productivity of 163 pg mol! Fe min™'.

In this study, the potential impacts and the fate of SPIONs and oleic acid capped SPIONs
(SPIONs@OA) were designed using a simple co-precipitation method as a nanoplatform to

carry usnic acid as bioherbicide (SPIONs:UA and SPIONs:UA@OA). The obtained
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nanostructures were characterized roundly, and the fate on soil microbial community were
investigated in detail. These aspects could be key to the further development and

implementation of nano-enabled sustainable and precision agricultural strategies.

RESULTS AND DISCUSSION

Characterization of nanocomposite. The SEM (Figures 1b-e) and TEM (Figures 1f-i)
micrographs of SPIONs, SPIONs@OA, SPIONs:UA, and SPIONs@OA:UA showed a mean
particle size of c.a. 5.21 + 0.13, 7.80 = 0.20 nm, 5.63 £+ 0.16 nm,‘ andmy 38, 0.25 nm,
respectively. These results suggest that two different particle size ﬁ% were observed
depending on the presence of OA as a capping agent. SPION IONs:UA presented a

smaller particle size when compared with SPIONs@OA 4gn IONs@OA:UA. The TEM

micrographs reveal a slight hint of aggregation of thea idual SPIONSs coated with oleic acid.

Additionally, the unimodal behavior of pagticle distribution was observed in the TEM
micrograph. Similar particle size was a@ose ed by Forini et al. *¢ using SPIONs@OA to
induce magnetic collectability ir@ icles as a delivery system for atrazine. On the other

hand, SEM images reveal a t e aggregation of particles; these results are confirmed by
hydrodynamic diamete ?igure S1). However, SPIONs, SPIONs@OA, SPIONs:UA,
and SPIONs OA@ owed PDI values around c.qa. 0.515, 0.387, 0.293, and 0.406,
respectively (Fi€ure S1 in the Supporting Information).). Zeta potential (ZP) is a physical
property of nanostructures that controls electrostatic interactions in particle dispersions and is
an essential property to understanding the stability of colloidal dispersion. *® The ZP of SPIONSs,
SPIONs@OA, SPIONs:UA, and SPIONs:UA@OA is highly influenced by pH (Figure S2 in
the Supporting Information).); positive surface charges are presented at low pH and negative at
high pH. The isoelectric point for SPIONs, SPIONs, SPIONs@OA, SPIONs:UA, and

SPIONs:UA@OA is 4.31 £0.05,4.79+0.03,5.35+0.01, and 8.91 £ 0.05, respectively (Figure
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S2 in the Supporting Information). Additionally, the magnetization curves as function of the
applied magnetic field have not shown any hysteresis, i.e., zero coercivity, corroborating that
the samples are in a superparamagnetic state at room temperature (Figure S3 in the Supporting
Information). This magnetic behavior is essential for environmental applications since the

particles will only be magnetized in the presence of an external magnetic field. *°
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Figure 1. Characterization of the nanocomposite samples: (a) Schematic representation of
synthesis of the uncoated and oleic acid-coated nanoarchitectured system; SEM images of the
(b) SPIONS, (¢) SPIONs@OA, (d) SPIONs:UA, and (e) SPIONs:UA@OA; TEM images of
the (f) SPIONSs, (g) SPIONs@OA, (h) SPIONs:UA, and (i) SPIONs:UA@OA; and (j-m) their
respective size distribution histograms. (n) schematic representation of SPIONs, SPIONs@OA,
SPIONs:UA, and SPIONs@OA:UA. Scale bar: (b-e¢) 100 nm and (f-i) 20 nm. n=100.
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Fourier-transform infrared (FTIR) spectra demonstrated that the characteristic peaks of
the UA fingerprint region (c.a. 1750 - 876 cm™) could be observed for SPIONs:UA and
SPIONs@OA:UA (Figures 2a,b). The characteristic IR absorption peaks of UA are observed,
for instance, at 1630 cm™ (the stretching vibration mode of the O-H bond), due to the
intramolecular hydrogen bond, thus confirming the presence of UA on the magnetic
nanoparticle (Figure 2b). ***! The acid-base complex formation between NaOH and OA during
SPIONs@OA synthesis suggests that deprotonated OA can easily be adsorbed by the SPIONs
surface. This insight was previously observed via molecular mec dynamics
modeling. ** The infrared absorption peak at c.a. ~1280 cm™ can be o & SPIONs@OA
and SPIONs:UA@OA reveals the -C-OH stretching V1brat10n% OA. * The OA also
showed the C-H stretching vibration modes observed at @nd 2860 cm’!. The infrared-

Q. ~570 and 549 cm™'. ** In Figure

t has been shifted to 1710 cm™, related

specific absorption peaks of Fe-O bonding are regar

2¢, a vibrational peak at 1632 cm™! canbe o

to C=0 bending symmetric vibration in c&ci due to the deprotonation of the -COOH group.

45 These results suggest that O%@

with oxygen atoms of the h ic usnic acid molecule (carbonyl and/or furan groups,

ydrogen bond formation via their carboxyl group

respectively). The -CO roups of oleic acid when associated with Fe atoms, which render a
partial single- bond vior of the C=0 bond to weaken the bond and, consequently, shift the
stretching freqiighcy to a lower value. ¢ Literature reports usnic acid as a Fe?* chelating agent,
capable of capturing Fe?" ions as a metal-binding agent. *’ Additionally, DFT reactivity
descriptors calculations were applied to discuss the UA interactions with Fe*" (see Table S1
and Figure S4 in the Support Information for details). Due to the addition of UA before
nanostructure synthesis, the UA may be linked during the co-precipitation with Fe>" ions,

consequently attached to the nanoparticle structure.
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Figure 2. Charaﬁ?g)n of the nanocomposite samples: a-b) Results from FTIR
spectroscopy; ederid derivative of FTIR spectroscopy; d) X-ray diffraction patterns; e)
crystallographi@#Structure, f) crystallite size, and g) dislocation density behavior of SPIONS,
SPIONs@OA, SPIONSs:UA, and SPIONs:UA@OA. Significant differences are indicated by
different letters shown above the error bars (p < 0.05).

The X-ray diffraction (XRD) analysis results of our nanocomposite are shown in Figure
2d. Our data also confirmed the single-phase crystal formation, in which all the reflection peaks
were identified according to the crystallographic structure of a magnetite pattern. 3! The

observed XRD powder diffraction was in good agreement with the Crystallographic Open

Database (COD 96-900-2318). The diffraction pattern of the product was (220), (311), (222),
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(400), (511), and (440). The average crystallite sizes were calculated by using the Scherrer
equation as D = 5.96 nm, 7.73 nm, 8.33 nm, and 7.51 nm, for SPIONs, SPIONs@OA,
SPION:UA, and SPION@OA:UA, respectively (Figure 2f). In general, the TEM results agreed
with those of XRD measurements for narrow grain-size distributions. On the other hand,
SPIONs:UA exhibited large particle sizes in XRD compared with TEM values. It is important
to note that the TEM measures the particles’ diameter size, including the nucleus and cover
generated during synthesis, ** whereas XRD measures the SPIONs’ crystallite size. *° The

observed values for dislocation density (in nm?) are also shown in Flgu Q icating that

the presence of OA and UA on SPIONs reduced dislocation denmt;&\ anocomposites,
most likely due to the association of UA and OA molecules PION structure. Also,
according to Rietveld refinement, the crystallite structare SPIONs presents a cubic

diffraction plane (Figure 2e). @Q

Release kinetics. The in vitro release tics 6f UA were studied by fitting the cumulative
release data (Figure 3a,e). The rgle A from SPIONs:UA was evaluated and the time for
nanostructures releasing 50% K{TA release (tso) was c.a. 859 minutes (Figure 3b). The
release profile of UA s UA@OA showed that c.a. 1086 minutes was the tsov
(Figure 3f). Seve athematical models have been used to interpret the chemical cargo
release kmetlc ata w1th their associated release mechanisms. >° Thus, the best four different
mathematical models such as Zero order, Hill, Weibull, and Korsmeyer-Peppas were used to
fit the experimental released profile of UA. The model which fitted best with the release profile
data was identified by a high correlation coefficient (R?). In both cases, the release profile of
UA from SPIONs:UA and SPION@OA:UA nanocomposites have shown the best fits with

Weibull’s and Korsmeyer-Peppas’ equations (Figure 3cd and Figure 3gh). The SPIONs:UA

and SPION@OA:UA presented a R? values of 0.999 in both cases Weibull’s and Korsmeyer-



234 Peppas’ model, respectively. (Figure 3bc and Figure 3gh). Obtained fitting parameters for the

235  tested models are mentioned in Table S2 (Supporting Information).
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238  Figure 3. (a) Schematic illustration of in vitro cumulative cargo release kinetics of usnic acid
239  from SPIONs:UA in deionized water (25 °C) donor and the other an acceptor compartments of
240  assay, (b) cumulative release kinetics of usnic acid from SPIONs:UA, (¢) Weibull mathematical
241  model obtained from the cumulative cargo release kinetics curve of usnic acid from
242  SPIONs:UA, and (d) Korsmeyer-Peppas mathematical model obtained from the cumulative
243 cargo release kinetics curve acid from SPIONs:UA, (e) Schematic illustration of in vitro
244  cumulative cargo release kinetics of usnic acid from SPIONs:UA@QOA in deionized water (25
245  °C) donor and the other an acceptor compartments of assay, (f) cumulative release kinetics of
246 usnic acid from SPIONs:UA@OA, (g) Weibull mathematical model obtained from the
247  cumulative cargo release kinetics curve of usnic acid from SPIONs:UA@OA, and (h)
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Korsmeyer-Peppas mathematical model obtained from the cumulative cargo release kinetics
curve acid from SPIONs:UA@OA. (n =5).

The b values of the Weibull function (b = -6.7251 and - 6.9928) were observed for
SPIONs:UA and SPIONs:UA@OA, respectively, when b > 1 suggests that complex
mechanisms govern the release process of UA in both nanostructures. The Weibull dissolution
constant rate (Kw) observed were 833.12 min®3 and 1088.76 min™>. The n value (Korsmeyer-

Peppas model) observed was 0.896 + 0.006 for SPIONs:UA, and 0.888 + 0.007 for

SPIONs:UA@OA, when the values of n were greater than 0.5 but less than
release occurred via anomalous diffusion in both forms of nano-enable@
of dissolution efficiency (DE) was 42.12 % and 37.9 or SPIONs:UA and

SPIONs:UA@OA, and the mean dissolution time (MDT)@& computed were 847.69 and

639.58 minutes, respectively. ®Q

Soil microbial community activity. S icrobial biomass C was significantly affected by
magnetic nanoparticles treatments. er values of microbial biomass C were observed for
UA and SPIONs:UA treatm@ ucing around 38% and 14% of the microbial biomass,
respectively, when co @ith control soil. In contrast, microbial biomass for SPIONs@OA
and SPIONS:UA%r atments was not significantly different from that of control samples
(Figure 4a). general, the microbial biomass trend to decrease steadily with magnetic
nanoparticles-carrying UA, whereas the addition of uncoated SPIONs significantly increased
the microbial biomass in the soil, suggesting a potential consumption by microorganisms of Fe
ions released from uncoated SPIONS. 2

Notably, the enzymatic activities of the soil microbial community were also affected by
magnetic nanocarrier treatments. The activity of -glucosidase showed in Figure 4b, presented

maximum values for control and SPIONs@OA treated soils, respectively. All other treatments
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lead to a decrease in B-glucosidase activity and give rise to a more pronounced decrease in
activity in the presence of UA and SPIONs:UA@OA. Additionally, f-glucosidases are
expressed by a wide range of microorganisms and are composed of a heterogeneous group of
phylogenetically conserved and hydrolytic enzymes (plant biomass). >* The interaction between
soil and nano-enabled products may result in altered microorganism-driven biochemical
processes. %3436 In the current study, the results of acid protease activity revealed that there
UA, SPIONS:UA and SPIONs:UA@OA was decreased, equal to approximately ~55%

*

decrease with UA treatment and ~45% for SPIONs:UA, respectively & 4c). These
findings indicate that UA can act as a biocide in soil, especially in th@

ommunity. The
enzyme is responsible for hydrolyzing proteins into amino aci eby promoting fungal

growth in soil. °” Further evaluation of acid phosphat@wity showed that only UA

significantly inhibits their activity (Figure 4d), e findings also indicate that the

SPIONs:UA and SPIONs:UA@OA may de 0 toxicity on non-target organisms. Acid
phosphatase in soil microorganisms plays, an important role in transforming phosphorus (P)

compounds into a species that can irectly utilized by plants. > The decreased toxicity

behavior of our nano-enableh icide on soil microorganisms is similar to a series of

nanopesticides previot))@lie compared to conventional pesticides. !> A schematic

procedure of soil s@mples studied and nanoparticles are presented in Figure 4e.
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Soil g})mmunity maintenance depends on their homeostatic ability to face the

60,61 sych as nano-enabled

complexity of eRogenous environmental changes and disturbances,
pesticides and biopesticides. '#%* The effect of these materials on soil microbiota can be
evaluated by the strength of connectivity among elements interacting in a biological network
such as the approach proposed by Amzallag. ¢>%* A systemic approach was used to evaluate the
global connectance of the soil microbial community (Cgrotal). The Cgrotal results revealed a

decline in the stability of the microbial community, as can be seen, by the reduction in

connection strength among the evaluated parameters (Figure 5). Figures 5a—f displays the
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Pearson’s correlation coefficients () between each paired variable investigated in the systemic
network. Our results revealed differences in the strength of the relationships between paired
variables as shown in the correlogram plots (Fig. 5a—f), confirming that the bioherbicide and

their nanoformulation changed the modulation of microbial community functioning.
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Figure 5. A cdgrelogram depicting the Pearson's correlation coefficients of soil microbial
community activity (microbial biomass and enzyme activity), (a) control — untreated soil, (b)
SPIONSs, (¢) SPIONs@OA, (d) usnic acid (UA), (e) SPIONs:UA, and (f) SPIONs:UA@OA
treated soil. (g) Global network connectance values observed in this study.

According to global connectance values, considerable modifications were observed in
the system’s network mainly for SPIONs, UA-treated soil and SPIONs:UA@OA carrying

bioherbicide (Figure 5g). Biological systems show emergent properties (i.e., nonlinear

interactions among the network of their components) that define their adjusted state to regular
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environmental conditions and evidence their destabilization under environmental stressors, %
modeling the complexity of living systems. ° Our data showed some differences among
treatments concerning how the microbial community adjusts their function to imposed soil
treatments. Consequently, it corroborates the idea that nano-enabled agrochemicals affect the
homeostatic dimension of living systems, such as the integration and organization of their parts
in a network. ® Our data showed a decrease in the connectance of microbiome network values
with the exposure of usnic acid, which is related to the homeostatic maintenance of microbial
fitness. On the other hand, SPIONs@OA and SPIONs:UA showed a gen asing in the
CgTowl, suggesting a higher modulation (homeostatic adjustment) of so&&ota According
to Bertolli et al., ©’ this increased connectance value 1ndlcates% stem stability, up to a

critical threshold. Additionally, further studies and more e@are needed to understand the

effects of nano-enabled pesticides on the homeostat % nsion level in biological systems.

Quantitative analysis of soil bacterial eukiryotic abundance by qPCR. Our experiment
found high amplification efficienc @ o to 107%) in PCR samples, with a high consistency
(R? = 0.981-0.989). The abug - f the soil bacterial and eukaryotic community, based on
the 16S and 18S rR @1 copy and their changes under UA, SPIONs:UA, and
SPIONs:UA@OA xp ure as well as the untreated soil sample used as control, are presented
in Figure 6. ARfflough the soil bacterial community showed susceptibility to UA and all tested
nanoformulations tested (Figure 6a), our results suggest a strong decrease in the abundance of
the soil bacterial and eukaryotic communities when the soil was treated with UA (Figure 6a,b).
On the other hand, the soil bacterial community did not show any significant differences
compared with nanocomposites carrying UA (SPIONs:UA and SPIONs:UA@OA). UA has
been shown to have greater antibacterial and antifungal activity. °*% According to Maciag-

Dorszynska et al., "° the main routes of UA’s antimicrobial action are probably related to the
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inhibition of RNA synthesis and elongation of DNA replication. The evidence that ionic UA
and UA-loaded nanocomposites reduce the abundance of 16S rRNA gene copies related to the
bacterial community compared to untreated soil samples highlights the risks to these groups of
soil microbiota. For 18S rRNA gene copies related to the eukaryotic community, UA and
SPIONs:UA@OA presented a major impact on the eukaryotic community abundance. These
results reinforce our previous findings on acid protease results showing that the fungal
community was less tolerant to UA and SPIONs:UA@OA. Furthermore, our findings show a
direct relationship between the toxic behavior and the potential fate of the &,—framework
on soil microbial communities as observed for Cu(OH);-based nanop&\ ! Additionally,
our general results suggest that the sustained release of UA fro IONs-framework may
be a key factor in minimizing the harmful impact of UA& icrobiota as illustrated in

Figure 6, especially on the fungal community.
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Figure 6. Shifts in copy numbers of (Agdpacterial 16S rRNA genes and (B) eukaryotic 18S
rRNA genes in response to UA, and ‘@ -framework carrying UA. Data are expressed as

the means with standard deviatio - S1gnificant differences are indicated by different letters
shown above the error bars (P < 0 d mean separation was assessed by Student t test.
Additionally, t A"and carried as SPIONs:UA and SPIONs:UA@OA showed

herbicidal activity @t forms, the fully inhibition of PSII electron transport were observed
within 72 h as s§own in Supporting Information. Figure S10 shows the chlorophyll fluorescence
data, these results reveal that nano-enabled usnic acid are more effective than equivalent free
UA at similar dose to inhibit PSII. Our result strongly corroborates with the efficiency of
nanostructured UA when compared with free UA, by the inhibition of PSII electron transport
flux from Qa to Qg (herbicide-D1 binding niche). A number of strategies have been proposed
to control and manage agricultural pests in the last decades. "> Nowadays, nanotechnology has

been notable development of nanomaterials and nano-enabled products to agri-food sector due
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to increased food demand. The nanopesticides based on biomaterials are promising, * and
representing a direction for sustainable agriculture development, a safe-by-design strategy to
ensure successful scalability, and able to increase food production. ”>7* However, at the long
term, replacing conventional pesticides seems far from reality, since several nanoformulations
present difficulties in scaling up, and little is known about the mechanisms of action and impact
against non-target organisms, ’> which difficult its regulatory aspects and consequently a good
consumer perception. However, according to IUPAC,”® nano-enabled pesticides were named
as one of ten “chemical innovations” that will change the world in a ble way.

Therefore, further studies are needed since changes induced on non- taﬁ&usms may play
a key role in its environmental fate. Thus, our findings contrib etter understanding of
the impact of nanobiopesticides, indicating a possible wa@eate a more environmentally
safe agricultural pest management. Our strategy alsoz tes a “from nature-to-nature” effort,
ideal for a circular bioeconomy landscape. Addi y, nanobiopesticides may be more cost-

effective and safer than traditional agro@hemicdls, and also can be an important part of the

emerging concept of circular bigec , as they can provide a wide range of benefits, from

improved efficiency to enhanQ egradability. 777
CONCLUSION ()

The rest@lts reported in this work provide important information concerning the use of
nanostructured systems with usnic acid. Usnic acid-loaded SPIONs demonstrate good
physicochemical properties, effectively stable lower sizes, possess well-defined structural
features, and release over time governed by diffusion processes. These excellent properties
allow for its potential agricultural application. In the present study, the soil microbial
community impact of uncoated and oleic acid-coated AU-loaded SPIONs was investigated in

a dystrophic red latosol (oxysol). In both exposure treatments (UA, SPIONs:UA, and
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SPIONs:UA@OA), nano-enabled usnic acid showed less toxicity than the soluble usnic acid
compound. These results suggest that the gradual release of UA from nanostructures may affect
the toxicity behavior on soil microbiota. The enzymatic activity of acid protease and acid
phosphatase was significantly affected by soluble UA. Additionally, the PCR results showed
that eukaryotic 18S rRNA genes are affected by UA, suggesting a major susceptibility of the
fungi community to UA and SPIONs:UA@OA. Global network connectance analysis suggests
that SPIONS are able to modulate the homeostatic behavior of UA on soil microbiota especially
es on the soil

uncoated UA-loaded SPIONs. In summary, our present findings sug Q SPIONSs as

nanocarriers can potentially reduce the environmental impact of b(\

microbiota. 6
EXPERIMENTAL PROCEDURE Q
Synthesis and characterization of SPI OA SPIONs were prepared by the

coprecipitation method using iron salts @kahne medium. 2%3! FeCl3.6H20 (7.4 x 10 mol
L) and FeCl».4H,0 (1.7 x 107 were solubilized in 200 mL of the aqueous medium,
then 8 mL of sodium hydrox aOH 9.46875 mol) with and without 500 mg of UA (1.4 x
10 mol) were added @d for 10 minutes at 50 °C. Next, 2.5 mL of oleic acid (OA at 5.3
x 10~ mol) w. ad@l)and the mixture was heated at 80 °C for 1 h. Then, consecutive washes
with water ankol were performed. Finally, the SPIONs, SPIONs:UA, SPIONs@OA, and
SPIONs@OA:UA were dried.

The morphology and size of SPIONs, SPIONs@OA, SPIONs:UA, and
SPIONs@OA:UA were determined by scanning electron microscopy with a field emission gun
(SEM, JSM-7500F, JEOL), and 200 kV transmission electron microscopy (TEM, CM200,
Philips). X-ray diffraction (XRD) patterns were obtained using a Rigaku MiniFlex 600 W X-

ray diffractometer with Bragg-Brentano geometry and Cu K radiation (1.54056) and a detector
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HPAD (HyPix-400 MF 2D) (Rigaku Corp, Tokyo, Japan). The average crystallite size (D) and
dislocation density (3) values of the SPIONs, SPIONs@OA, SPIONs:UA, and
SPIONs@OA:UA were estimated from Debye-Scherrer’s and Williamson-Hall’s equations

[eq. 01 and eq. 02]:

K2
~ Bcoso

[eq.01]

N
5= ’\Q [eq. 02]
&)

where, K is the Scherrer constant, A is the wavelength of X %@1056 A), B is the full width
at half maximum of the diffraction peak (in radians), @s the Bragg angle. 7° The § is the
dislocation density value. %

The surface chemical charactergtics Were studied by a Fourier-transform infrared
photoacoustic spectrometer (FTIR P rmo Nicolet 6700) in the spectral range from 4000
to 400 cm!. The zeta po as measured by analyzing SPIONs, SPIONS@OA,
SPIONs:UA, and SPION QA using the Zetasizer Nano ZS (Malvern). Briefly, 0.2 g of
nanoparticles were g gd in 200 mL of 1 mmol/L NaCl solution and sonicated for 10 min
at a power se 80 W. The pH of the dispersion was adjusted to the desired value in the
pH range 2-10 with 0.1 mol/L HCI or NaOH. The dispersion was then allowed to settle for 24

h and the supernatant was used for zeta-potential measurement. Figure S2 in the Supporting

Information displays data.

Release kinetics assay. The release of UA from magnetic nanocarriers was investigated based
on a release test using two compartments (one donor and the other acceptor) separated by a

dialysis membrane with 10 kDa molecular exclusion pores, using 0.1 g of SPIONs:UA@OA at
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room temperature under a magnetic stirrer. 26 The amount of released UA from a certain amount
of magnetic nanocarrier was measured according to Chircov et al. ! by following equation [eq.

03] using a UV-Vis spectrometry:
M;
Cargo release (%) = T 100% [eq. 03]
t

where, M; is the concentration of usnic acid released at time i and M, is the inch'oncentration
of usnic acid added to the magnetic nanocarrier solution. ’\Q

The mechanism of release profile of SPIONs:UA@OA Wéﬂted by Zero-order,
First-order, Korsmeyer-Peppas, Weibull, and Hill mathem '®Jodels using the software

KinetDS. * Detailed information is presented in TalleNS2”and Figure S5 in Supporting

Information. § @

Soil sampling. For the soil test, a dys @ed latosol (oxysol) was collected from the top 20
cm of surface soil from an a |1 land located at Rio Brilhante city (Figure S6 at
Supporting Information) Grosso do Sul State, Brazil (54°33°28.037" S and
21°46°33.442" W) e Boil pH and soil organic matter (SOM) are 5.06 and 7.43%,
respectively. ected soil samples were air dried and sieved through a 2 mm mesh
followed by homogenization, and stored in the dark at room temperature until used. The
physicochemical characterizations of dystrophic red latosol (oxysol) are presented in Tables
S3 and S4 in the Supporting Information. The dystrophic red latosol used was collected without
environmental contamination.

Approximately 500 g of dry soil was weighted into each polyethylene container (1000
mL). Ultrapure deionized water was added into the soil to reach a moisture content of 60% of

the maximum water holding capacity. Before the application of treatments, the soils were
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allowed to equilibrate for 1 week in the laboratory (20 °C, 80% humidity, and 24h dark). Herein,
500 ppm of UA or SPIONs-framework carrying UA were diluted in sterile deionized water to
achieve the selected dose and applied by hand sprayer on the top of the soil. The experiment
was conducted in a growth chamber at 25 °C, 80% humidity, and a 16 h/8 h light-dark cycle
(600 lux light intensity) for 30 days. During the experimental time, the moisture content of the

soil samples was maintained at 60% of the maximum water holding capacity by replenishing

N

.
Microbial biomass C. Microbial biomass C was determined in tripl@ is expressed in

the weight loss with ultrapure deionized water.

milligrams C per kilogram of dry soil (mg C kg™ dry soil). Mic i@)mass C was measured
using the chloroform fumigation-extraction method. > Firs@of soil samples were weighed

and fumigated with ethanol-free chloroform for 24 vC under dark conditions. Fumigated

and non-fumigated samples from each tr ntreated, UA, SPIONs, SPIONs@OA,
SPIONs:UA, and SPIONs:UA@OA) w&tr cted with 50 mL of 0.5 M K>SOs4 on a rotary

shaker at 300 rpm for 30 min. The s ple solutions were filtered and stored at -15 °C prior

to analysis on a TOC/TN an@ imadzu Corp., Kyoto, Japan). See details in Figure S7

(in the Supporting Infoc) 0

Microbial en%ctivity. The S-glucosidase activity was measured according to Hamidat
and co-authors. 3 Fresh soil samples (10 g) were incubated for 1 h at 37 °C with 40 mL of 0.05
M modified universal buffer (pH 6.0) and 10 mL of 25 mM 4-nitrophenyl 5-D-glucopyranoside.
The reaction was terminated by adding 5 mL of 0.5 M CaCl, and 20 mL of 0.1 M tris-
hydroxymethyl. The f-glucosidase activity was determined by absorbance at A 408 nm in

triplicate and expressed as mg of p-nitrophenol kg™! dry soil within 1 h.
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The acid protease activity was determined as described by Ge et al., ** according to a
standard procedure using casein as a substrate. Fresh soil samples (200 mg) were incubated for
2 hours at 50 °C with 500 pL 0.2 M Tris buffer pH 8.0 and 500 pL of 20 g.L"! casein solution
under agitation with a magnetic stirrer. The reaction solution was stopped by adding 500 pL of
30% trichloroacetic acid, followed by centrifugation at 5,000 g for 12 min. 100 pL of
supernatant was mixed with 200 pL of 500 mM Na>COj3 and 100 pL of 3-fold diluted Folin and

Ciocalteu’s phenol reagent. Then, the mixture was incubated for 1 hour at room temperature,

and the absorbance was measured at A = 700 nm. As a standard, L-tyrosi
calibration curve and the released L-tyrosine concentration was detelﬁ
is expressed as mg of tyrosine kg'! dry soil within 1 h. C)
The acid phosphatase activity was analyzed using p@?enyl phosphate according to
the protocol by Tabatabai. % Five g of air-dried soil uspended in 1 mL of toluene, 5 mL
of p-nitrophenyl phosphate, and 5 mL of if1 %sal buffer (pH 5.0), and incubated at
37 °C for 24 hours. After incubation, sa:&w e filtered and the absorbance of p-nitrophenol
(pNP) was measured at 410 nm. 1@:1 phosphatase activity was expressed as mg of p-

nitrophenol kg™! dry soil withj . Standard curves are presented in the Figure S8 and Table

S5 (in the Supporting L&on .

Real-time qu%taive PCR of bacterial 16S rRNA genes and eukaryotic 18S rRNA genes.
The abundance of bacterial 16S rRNA genes (519F and 907R primer set) and eukaryotic 18S
rRNA genes (EuklA and Euk516R primer set) was evaluated as previously described by Feng
et al. % The primers used in this study are presented in Table S6 in the Supporting Information.
The abundance quantification of bacterial 16S rRNA and eukaryotic 18S rRNA genes was
measured by real-time qPCR using an iTaq Universal SYBR Green PCR master mix equipped

with a CFX96Tm real-time PCR detection system (Bio-Rad) for each soil sample. First, a
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standard sample was prepared by growing a single clone containing the correct insert in the
Luria-Bertani medium. The plasmid DNA was extracted and purified using the MiniBEST
Plasmid Purification kit (Takara Bio Inc., Kusatsu, Shiga, Japan), and further quantified using
Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). The standard sample was
diluted in a 10-fold stepwise series and a standard curve was produced that covered a range of
102-108 copies of the template per assay. The assays were performed using the SYBR Premix
Ex Tag™ Kit (Takara Bio Inc., Kusatsu, Shiga, Japan) with a 25-puL reaction mixture containing
12.5 pLL of SYBR® Premix Ex Taq™, 1 pL of the primer set (initial co @Wn of 10 upM
each), 0.5 pL. of BSA at 20 mg/mL initial concentration, and 1.0 HIKN late containing
approximately 3—9 ng of DNA. The same procedure was carried blank using ultrapure
water instead of soil DNA extract as the template. The q@ation of bacterial 16S rRNA
genes and eukaryotic 18S rRNA genes was obtaine librating data against the total DNA
concentrations extracted and soil water conggnt. %e@ at Supporting Information shows

the detailed whole experimental proced@e n this study.

Data analysis. Statistical a@were conducted in R (http://www.r-project.org/). The
experiments were perf a‘completely randomized design, with three replicates. Two-
way analysis of Va@e ANOVA) was performed. The mean values were compared by the
Kruskal-Wallis@est (p<0.05). Data are presented as means or medians with standard error bars
(S.E.) or as means or medians with standard deviation bars (S.D.). The real-time quantitative
PCR was compared by the Student’s t-test (p < 0.05). To assess changes in the soil microbial
community system network, we evaluated the occurrence of system modulation under untreated
and treated soil samples via measurement of global network connectance (Cgrotal) related to
selected microbial biomass and enzymatic activity traits as homeostatic signals. A systemic

network connectance analysis was performed according to Amzallag, ® allowing us to assess
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the homeostatic dimension (modulation and stability behavior) of the soil microbial
community. Soil microbial community biomass and enzyme activity are indicators of soil
quality, and these data are suitable to be analyzed as a network. Network theory has been used
for analyzing data in ecology and plant physiology. 37 Network connectance was estimated
using the correlation network model by assessing the normalized Person’s correlation
coefficient () among the selected parameters of soil microbial community biomass and enzyme

activity followed by z transformation of r values according to equation [eq. 04):5

1—|rl

. < ?
1+ |r
7= 0.5ln< | l) C}\ [eq. 04]
Finally, we determine the global network co@ (Cgrotal) of selected paired

parameters as the average of absolute z values '@ ng. 6
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' Supporting Information \

The Supporting Il’l@tl is Available online.

Additional g&pefimtental methods, chemicals, characterization, hydrodynamic diameter,
zeta potential%tic characterization, DFT calculations, mathematical modeling of release
kinetics, soil characterization, and primers used in this study are available on Supporting
Information. Additionally, the herbicidal activity was evaluated by the inhibition of
photosystem II electron transport using a handheld chlorophyll fluorometer (Hansatech

Instruments, UK). See Figure S10 in the Supporting Information.
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