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Abstract. Due to the absence of a biological marker for Autism Spectrum Disor-
der (ASD), most of recent research attempts to uncover the neurological patterns
of ASD using Deep Learning, and these patterns, hidden in the latent feature
space of neural networks, have to be interpreted with the use of Explainable AI.
However, although many of the models proposed for the problem report results
of explainability, they are not evaluated with any metric, so their reliability is
unknown. The objective of this paper is to propose an evaluation framework to
fill this gap, and here, we focus on a detailed analysis of a well-known model
from the literature, BrainGNN. We trained BrainGNN in varying hyperparame-
ter settings that influence explainability and analyzed our findings for each case.

1. Introduction
ASD (Autism Spectrum Disorder) is characterized by communication im-
pairments and repetitive behavior patterns, in different contexts, since child-
hood [American Psychiatric Association 2013]. Individuals with ASD are
more likely to experience depression and other conditions of psychic suffering
[American Psychiatric Association 2013], and ASD is legally recognized as a disability
[Brazil 2012]. Therefore, it is crucial to ensure quality of life for autistic individuals
through adequate therapeutic support and disability rights.

These benefits can only be accessed with formal medical diagnosis. However,
ASD does not have any biomarker known to science, and has to be diagnosed through
a clinical evaluation with psychological tests and interviews with the patient and their
close relatives [American Psychiatric Association 2013]. This method is flawed, being
susceptible to delayed diagnosis and misdiagnosis [Huang et al. 2020].

The problem has recently prompted the search for biomarkers of ASD in different
forms of biological data, and one of the most investigated forms of data is fMRI (Func-
tional Magnetic Resonance Imaging [Zhang and Chiang-shan 2012]). An fMRI exam is a
three-dimensional filming of the BOLD (Blood-Oxygen-Level-Dependend) signal, map-
ping brain activity through the flow of blood in the brain.

Since this data format is highly complex and difficult to manually investigate,
researchers often rely on the use of deep neural networks trained by deep learning, usu-
ally GNNs (Graph Neural Networks [Zhang et al. 2023a]. These algorithms are used to
induce predictive models able to automatically extract patterns associated with the func-
tional connectivity of the brain. These models can be later deployed to classify a new
fMRI image as either presenting or not presenting a pattern associated with ASD, pro-
viding support for the diagnosis by a specialist. The use of GNNs has been part of many



breakthroughs in recent life science research [Wang et al. 2023]. These previous contri-
butions show that they can be a promising tool to support the investigation of neurological
aspects associated with ASD, as well as other mental disorders.

Despite of their potential, a major challenge that need to be overcome for their
validation and acceptance is the lack of interpretability in these models. This deficiency
undermines the transparency of the model’s decision process, compromising the trustwor-
thiness needed for their deployment in the public healthcare system.

To deal with this limitation, the scientific community has been investing in the
creation of explainability methods [Yuan et al. 2022], as well as self-explainable neural
networks that have built-in interpretable mechanisms, out of which it is expected to derive
explanations that are more faithful [Dai et al. 2024]. Scientists seek to not only create ma-
chine learning models that are highly precise, but also to create tools that are informative
to the diagnostic process and can be leveraged to gain new insights into the etiology of
the health conditions that undergo their investigation.

Within the scope of this problem, although extensive literature has been developed
in explainability, a key aspect is generally neglected: the evaluation of explanations. It is
not a standard practice to provide metrics of explainability along with the lists of impor-
tant brain regions, so biomarker suggestions are not guaranteed to be reliable. Such is the
case of BrainGNN, the most popular GNN model in our application domain.

In this paper, we investigate the use of BrainGNN and evaluate its explainability,
using metrics that could be extended to other models in a future comparative analysis. The
code was directly sourced from the BrainGNN repository, with changes made to include
functions for explainability along with the results of our experiments, and it is available
on GitHub1.

1.1. Related Work
1.1.1. Explainability in GNNs

Explainability approaches in GNNs are divided into two types: self-explainable GNNs
and post-hoc explainability [Dai et al. 2024].

Self-explainable GNNs are designed for explainability and make predictions using
interpretable internal mechanisms. Generally, this is done by creating a separate model to
filter only the relevant parts of the graph before making predictions [Wu et al. 2020] or by
generating prototypes for each class and making predictions through direct comparisons
with these prototypes [Zheng et al. 2024a].

On the other hand, post-hoc explainability involves applying ready-made methods
after the GNN has been trained [Yuan et al. 2022]. Initially, these methods are subdivided
into instance-level methods, which explain a specific prediction, and global-level meth-
ods, which explain the GNN’s decision-making as a whole. Global-level methods may
involve generating prototypes for each class based on the GNN’s behavior or aggregating
instance-level results. Meanwhile, instance-level methods can rely on computing the gra-
dient of the input with respect to the output (Gradients/Features), decomposing the output
through the GNN’s weights (Decomposition), searching for minimal changes in the graph

1https://github.com/matheo-angelo/BrainGNN_Pytorch



that affect the model’s output (Perturbation), or creating simple interpretable models that
approximate the local decision boundary for a specific instance (Surrogate).

1.1.2. GNN Explainability for ASD diagnosis from fMRI data

Systematic literature reviews on the topic [Luo et al. 2024, Zhang et al. 2023b] show that
there are two distinct data pipelines for predicting ASD (Autism Spectrum Disorder)
diagnosis using GNNs and fMRI scans. The first, which is the focus of this research
[Li et al. 2021], represents each individual’s brain as a graph, where each node corre-
sponds to a Region of Interest (ROI) according to a brain atlas, and each edge rep-
resents a pair of ROIs with strong positive correlation in their BOLD (Blood-Oxygen-
Level-Dependent) time series from the fMRI scan [Zhang and Chiang-shan 2012]; some
variations might combine fMRI data with other modalities, such as Diffusion Tensor
Imaging (DTI) [Yang et al. 2023], or model the fMRI exam as a dynamic graph and ap-
ply Spatio-Temporal Graph Neural Networks [Yan et al. 2022]. The second approach
[Lin et al. 2022] combines each patient’s brain connectivity representation into a popu-
lation graph, where each node represents an individual and each edge encodes feature
similarity (e.g., brain connectivity, genetic data, and demographic information).

Regarding explainability (at least restricting our scope to static subject graphs
constructed from fMRI data only), current studies focus on implementing novel self-
explainable architectures tailored to the specific application or using ad-hoc methods
specific to the model architecture, rather than applying post-hoc methods or even using
off-the-shelf self-explainable models. This explainability can operate at the node level,
to infer critical brain regions [Li et al. 2021], or at the edge level, to highlight signifi-
cant brain connections [Zheng et al. 2024b]. In both cases, model-level explainability is
achieved by aggregating instance-level results, aiming to uncover neurological features
common to all autistic individuals that could later be cataloged as biological markers.
Biomarker suggestions are generally trusted based on the model accuracy and how well
they match prior knowledge on the neurology of autism, but they lack the use of specific
metrics to assess the reliability of these suggestions, such as Fidelity [Yuan et al. 2022].

2. Methodology
This section describes the main steps followed for the experiments carried out in this
study.

2.1. Dataset
For this study, we use the ABIDE I dataset, which has fMRI exams from 539 autistic
individuals and 573 typical controls, sampled from several sites in the United States and
Europe. It was obtained from the ABIDE I Preprocessed Connectomes Project (PCP)2,
which has several download options with the exams pre-processed using different brain
atlases, as will be explained in the next section.

2.2. Pipeline overview
To make a prediction for one instance, the fMRI exam is first parceled into several regions,
called Regions Of Interest (ROI), using a brain atlas (here, we chose the Harvard-Oxford

2http://preprocessed-connectomes-project.org/abide/



Figure 1. Illustration of the BrainGNN model pipeline [Li et al. 2021].

atlas [Smith et al. 2004], with 110 labeled ROIs). We then average the intensity of the
BOLD signal in each ROI, obtaining a time series for each ROI. We then calculate the
correlation matrix of all ROI fMRI series X and use it as the feature matrix of the graph,
and apply a threshold to X to obtain the adjacency matrix A, with edge weights cor-
responding to the pairwise correlation value. These matrices are then fed into a Graph
Neural Network f(X,A) which outputs a label for either Autistic or Typical Control and
provides explainability by pointing to ROIs that were relevant for the decision of the
model. The full pipeline was executed on Google Colab for this paper, and it is illustrated
in Figure 1.

2.3. BrainGNN
The model is composed of two stacked message-passing layers, each followed by a node
pooling layer, and after those, we have a global pooling layer that obtains a vector repre-
sentation of the whole graph and feeds it into a MLP (Multi-Layer Perceptron) classifier.
The code used3 was directly resourced from the original BrainGNN repository, with mod-
ifications to implement the specific evaluative experiments of this paper.

2.3.1. Ra-GConv Layer

The ROI-Aware Graph Convolutional Layer (Ra-GConv) is a heterogeneous graph
message-passing layer with 8 basis transformations [Schlichtkrull et al. 2018], where dif-
ferent ROIs are assigned different weight matrices, to avoid the node permutation invari-
ance that applies to traditional graph neural networks [Bronstein et al. 2017]. It follows
the scheme in the equation:

h̃
(l+1)
i = ReLU

W
(l)
i h

(l)
i +

∑
j∈N(l)

i

eijW
(l)
j h

(l)
j


Where W (l)

i is the weight matrix associated with node i in the l-th message passing
layer, h(l)

i is the hidden embedding of node i in the l-th layer, N (l)
i is the neighborhood of

3https://github.com/matheo-angelo/BrainGNN_Pytorch



node i in the l-th layer, and eij is the edge weight between nodes i and j, normalized such
that

∑
j∈N(l)

i
eij = 1 for every node i.

2.3.2. TopK Pooling Layer

TopK Pooling [Gao and Ji 2019] [Cangea et al. 2018] uses a learnable projection vector
p(l) to drop all nodes in the graph except for the ones that are the most similar to p(l).

s(l) = H̃(l+1)p(l) / ∥ p(l) ∥
i = topk(s

(l))

H(l+1) = (H̃(l+1) ⊙ sigmoid(s(l)) )i

A(l+1) = A
(l)
i,i

Where topk returns the indices of the k highest values in the vector, ⊙ is the
Hadamard broadcasting product, Xi is the X matrix using only the rows whose indices
belong to i, and Ai,i is the adjacency matrix A using only the rows and columns in i.

2.3.3. Global Pooling Layer

After all message-passing layers, we use the node embeddings of all layers to obtain a
graph-level representation:

z(l) = meanH(l) ∥maxH(l)

z = z(1) ∥ z(2) ∥ ... ∥ z(L)

Where ∥ denotes concatenation and L is the number of layers in the GNN.

2.3.4. Loss function

The loss function of BrainGNN is composed of several functions, that may be targeted at
optimizing classification or explainability:

Classification loss - We optimize model classification on the binary cross entropy loss:

Lclassification = − 1

M

M∑
m=1

C∑
c=1

ym,c log(ŷm,c)

Where M is the number of instances, C is the number of classes (here, C = 2),
ym,c is a binary value that represents whether instance m belongs to class c, and ŷm,c is
the probability output of the model for estimating ym,c.



Group-level consistency loss - In order to enhance model-level interpretability, we may
want to force the model to always select similar node pooling sets for graphs of the same
class, in order to achieve coherent biomarker suggestions. The loss function is calculated
as following:

Lconsistency =
C∑
c=1

∑
m,n∈Fc

∥s(1)m − s(1)n ∥2

Where Fc is the set of graphs belonging to class c in the current batch and s
(1)
m is

the vector of pooling scores in the first TopK Pooling layer for instance m.

TopK Pooling loss - Optimizes the model to give high pooling scores to nodes that are
selected in the pooling layers and, likewise, low scores to nodes that are dropped, using
cross entropy. We optimize it to approximate a binary value that indicates whether a node
will be pooled.

L
(l)
pooling = − 1

M

M∑
m=1

1

N (l)

N(l)∑
i=1

ρ
(l)
m,i log(s

(l)
m,i)


Where N (l) is the number of nodes in layer l, ρ(l)m,i indicates whether node i in

graph m was pooled in layer l, and s
(l)
m,i is the pooling score of that node.

The total loss function, therefore, is:

Ltotal = Lclassification + λ1

L∑
l=1

L
(l)
pooling + λ2 Lconsistency

Where λ1 and λ2 are hyperparameters.

2.3.5. Explainability

Individual-level explainability comes in the form of a node mask, provided by the last set
of pooled nodes remaining before the Global Pooling layer of the GNN, and model-level
explainability is constructed from counting the occurrences of each ROI in individual-
level explanations and selecting the most frequent ROIs. We create biomarker suggestions
for ASD by looking at the frequency of each ROI in the explanation masks of the model
for each sample of the test set assigned as autistic by the model, and the 10 most frequent
ones are suggested as biomarkers.

Although it is not the target explanation modality of this paper, BrainGNN
also has an implicit community detection mechanism. As a heterogeneous GNN
[Schlichtkrull et al. 2018], it composes the weight matrix of each node type (hereby, the
weight matrix W

(l)
i associated with each ROI i) from a linear combination of basis trans-

formations (B
(l)
1 , B

(l)
2 , ..., B

(l)
K ). The weight α(l)

iu of basis u for node i in layer l can be



understood as the intensity of the relation between the node i and the ROI community u.
Here, we use K = 8 and therefore we have 8 implicit communities in every graph.

2.3.6. Hyperparameters

We tested different combinations for the hyperparameter values, to study their effects in
explainability, adjusting them with the following values:

• Pooling ratio: The fraction of nodes that remain in the graph after each TopK
Pooling layer. Default: 0.5.

• TopK Pooling regularization: Value of λ1 in the TopK Pooling loss. Default:
0.1.

• Group consistency regularization: Value of λ2 in the group consistency loss.
Default: 0.1.

The other hyperparameters of the model were set to their default value, which can
be found in the source code.

2.4. Explainability metrics

We applied different statistics to evaluate the quality of explanations, including estab-
lished metrics from the literature and ad-hoc metrics.

Sparsity [Yuan et al. 2022]: explanations must be efficient in summarizing the
decision of the model using only a small portion of the whole graph. Here, N is the
number of explanations to be evaluated, mi is the node mask explanation for instance i
and Mi is the set of nodes in the graph indexed by i. Sparsity is the average portion of the
graph left out of the explanations.

Sparsity =
1

N

N∑
i=1

(
1− |mi|

|Mi|

)

Fidelity+ and Fidelity− [Yuan et al. 2022]: explanations must be faithful to the
model. Fidelity+ measures if the model includes relevant information in the explanation,
by perturbating the nodes in the explanation mask and measuring the change in the model
output. Fidelity−, on the other hand, measures if no information is lost by ignoring nodes
out of the explanation mask.

In the notation presented next, f(Gi) is the probability output of the model for
graph Gi, Gmi

i is the graph Gi with the node features assigned as 0 for all nodes, except
for those in the mask mi, and 1 −mi is the complementary set to mi with respect to the
full node set of Gi.

Fidelity+ =
1

N

N∑
i=1

|f(Gi)− f(G1−mi
i )|

Fidelity− = 1− 1

N

N∑
i=1

|f(Gi)− f(Gmi
i )|



Biomarker consistency: to have reliable model-level explanations, besides hav-
ing faithful instance-level explanations, they must consistently point to the ROIs that will
be assigned as a biomarker suggestion. In the Consistency equation, M is the amount of
ROIs in our brain atlas, B is the number of ROIs to be chosen as biomarkers and ni is the
amount of occurrences of the i-th ROI in explanation masks.

Consistency =

∑B
i=1 ni∑M
i=1 ni

3. Experimental results

The experimental results obtained by the model trained for each hyperparameter combi-
nation are shown in Table 1.

It must be observed thar the training accuracy in the table is the highest training
accuracy of all epochs, and it might not correspond to the model applied to the test set,
which was selected based on validation accuracy.

The accuracy of the models in the test set, although demonstrating capacity to
capture patterns in autistic neurology, was relatively low, while the accuracy in the training
set was much higher, suggesting that more data is necessary to avoid overfitting and enable
the successful application of Deep Learning in the problem. It is also lower than the 79.8%
accuracy reported in the original BrainGNN paper [Li et al. 2021], which used a task-
fMRI dataset, and possibly had an experimental setting where external stimuli triggered
more evident neurological manifestations of ASD.

The low accuracy impacted the fidelity measures: Fidelity+ was very low while
Fidelity− was high, meaning that the model generally fails to leverage positional infor-
mation and therefore ROI explanations are not informative. Consistency was also low,
as the node mask explanations were scattered across brain ROIs. Sparsity, however, was
satisfyingly high across all trained models; for this specific architecture, it a function of
the Pooling Ratio hyperparameter, where slightly decreasing its value did not seem to
decrease the model’s accuracy while also increasing sparsity.

As for the influence of hyperparameter choice in explainability, group-level regu-
larization did not influence biomarker consistency, while increasing explanation sparsity
slightly improved it. TopK-Pooling regularization also did not have any influence.

4. Conclusions and Future research directions

This work investigated the use of GNNs, in particular the BrainGNN neural network
architecture based on graphs, as classification models to support ASD diagnosis. For such,
we used a public domain dataset, ABIDE, for the experiments. Given the importance
of explaining the decisions made by the model for its acceptance in public healthcare,
we also investigated how these explanations can be evaluated. The experimental results
obtained show that, although the models seem reasonably capable of extracting patterns,
more research should focus on making model results more reproductible and accurate, and
with that, be able to extract reliable biomarkers from accurate and faithful explanations.



Table 1. Results from BrainGNN experiments. Each column represents a hyperpa-
rameter combination, and each row corresponds to a performance metric.

DEFAULT Ratio = 0.3 Ratio=0.3,
TopK=0.5

Group = 0.5

Accuracy (training) 0.82 0.87 0.82 0.83
Accuracy (testing) 0.51 0.57 0.59 0.56

Fidelity+ 0.050 0.025 0.032 0.078
Fidelity− 0.79 0.85 0.88 0.85
Sparsity 0.75 0.90 0.90 0.75

Consistency 0.23 0.34 0.26 0.19
Biomarker

• Left Parahip-
pocampal
Gyrus;
posterior
division

• Left Heschl’s
Gyrus (includes
H1 and H2)

• Left Frontal
Orbital Cortex

• Right Temporal
Fusiform
Cortex; anterior
division

• Right Lingual
Gyrus

• Right Planum
Temporale

• Right
Supracalcarine
Cortex

• Left
Intracalcarine
Cortex

• Left Temporal
Fusiform
Cortex;
posterior
division

• Left Putamen

• Left
Supramarginal
Gyrus;
posterior
division

• Left Frontal
Medial Cortex

• Left Superior
Parietal Lobule

• Right Thalamus
• Left

Juxtapositional
Lobule Cortex
(formerly
Supplementary
Motor Cortex)

• Left Angular
Gyrus

• Right
Juxtapositional
Lobule Cortex
(formerly
Supplementary
Motor Cortex)

• Left Planum
Temporale

• Left Inferior
Frontal Gyrus;
pars
triangularis

• Right
Amygdala

• Left
Supramarginal
Gyrus;
posterior
division

• Right Angular
Gyrus

• Left Frontal
Medial Cortex

• Right
Subcallosal
Cortex

• Right Superior
Temporal
Gyrus; anterior
division

• Right
Amygdala

• Right
Paracingulate
Gyrus

• Left Planum
Temporale

• Left Superior
Parietal Lobule

• Left
Juxtapositional
Lobule Cortex
(formerly
Supplementary
Motor Cortex)

• Left
Supramarginal
Gyrus;
posterior
division

• Right Angular
Gyrus

• Left Planum
Temporale

• Left Superior
Parietal Lobule

• Right Occipital
Pole

• Right
Subcallosal
Cortex

• Left Frontal
Medial Cortex

• Right Thalamus
• Right

Juxtapositional
Lobule Cortex
(formerly
Supplementary
Motor Cortex)

• Right
Amygdala

As future work to expand this study and improve the results of related studies, we
understand that further research could be carried out in the following directions:

• Investigate different varieties of the BrainGNN self-explainability (e. g. using
the set of pooled nodes from the first TopK Pooling layers rather than the final
remaining node set);

• Test other hyperparameter combinations;
• Evaluate the community detection mechanism in BrainGNN;



• Apply the same explainability metrics to other self-explainable models;
• Compare the results of self-explainable mechanisms with state-of-the-art post-hoc

explainers such as SubgraphX [Yuan et al. 2021].
• Test hyperparameter variations with more robust statistical evaluations (such as

hypothesis testing and cross-validation).

5. Acknowledgements
This paper is part of a project supported by a scholarship from Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP), through the grant of number 24/09181-2.
The project, called "Explainability in Graph Neural Networks for Autism Assessment
Using fMRI Analysis", is advised by professor André Carlos Ponce de Leon Ferreira de
Carvalho (ICMC-USP).

References
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental

Disorders, 5th Edition. American Psychiatric Publishing, Washington, D.C., 5 edition.

Brazil (2012). Law no. 12,764, of december 27, 2012. establishes the national policy
for the protection of the rights of persons with autism spectrum disorder. Known
as "Berenice Piana Law" or "Brazilian Autism Law". It recognizes autism spectrum
disorder as a disability for all legal purposes in Brazil.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geo-
metric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42.
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