

REVISÃO SISTEMÁTICA SOBRE AS ESTRATÉGIAS DE TRATAMENTOS PARA A DEGRADAÇÃO DE FILMES DE POLIETILENO DE BAIXA DENSIDADE

Maria Eduarda Kiihl

Marcia Cristina Branciforti

Departamento de Engenharia de Materiais – Escola de Engenharia de São Carlos – Universidade de São Paulo

mariakiihl@usp.br

Objetivos

A presente revisão sistemática visa mapear e relatar os processos de degradação acelerada, combinada com fotodegradação e degradação enzimática do polietileno de baixa densidade (PEBD), destacando os mecanismos e a eficiência das técnicas atualmente empregadas. Além disso, o artigo busca identificar as condições favoráveis à degradação, enfatizando as alterações físico-químicas na estrutura do polímero.

Métodos e Procedimentos

Para a realização da revisão sistemática de forma precisa e justa, foram adotados alguns critérios de triagem e análise dos dados. Primordialmente, a Web of Science foi a base de dados escolhida como fonte primária de dados para a busca dos artigos, uma vez que centrase na indexação dos periódicos mais influentes em cada área. A busca inicial foi realizada por da terminologia "Degradation polyethylene", e através dela, utilizou-se as palavras-chaves "Degradation of polyethylene", "Low density polyethylene", "Photodegradation", "Microbial degradation" e "Degradation of low density polyethylene". Os operadores booleanos "and" e "or" foram usados para combinar as palavras-chaves. Foram aplicadas duas etapas de triagem. A primeira envolveu a

busca por informações nos títulos, resumos e conclusões dos artigos, enquanto a segunda consistiu na leitura integral e minuciosa dos artigos, com o objetivo de mapear e selecionar os trabalhos a serem incluídos. Além disso, todos os artigos citados como referência nos artigos selecionados também foram analisados e, quando os critérios foram seguidos, esses artigos também foram incluídos no estudo.

Resultados

Dos trabalhos acadêmicos selecionados, 37 artigos foram identificados e enquadrados nos critérios definidos, para um total de 486 publicações identificadas e analisadas na base de dados Web of Science. A análise da pesquisa acadêmica sugeriu uma tendência, nos últimos 30 anos, a concentrar-se em investigar a degradação microbiana do PEBD, conforme indicado na Figura 1. Esse interesse crescente é impulsionado pela necessidade de encontrar soluções sustentáveis para o acúmulo de resíduos plásticos no meio ambiente e suas implicações nos ecossistemas. Além disso, a concentração das pesquisas nesse campo também reflete a busca por alternativas aos métodos tradicionais de tratamento de resíduos plásticos, como a incineração e a disposição em aterro sanitário, que apresentam desvantagens significativas, incluindo a emissão de gases tóxicos.Tais circunstâncias. atreladas

eficiência e otimização da biodegradação por processos que ocorrem naturalmente, tornam o estudo da degradação microbiana imprescindível.

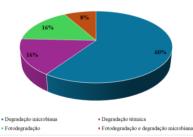


Figura 1: Tendências dos estudos investigados.

Ademais, os estudos evidenciaram que a integração dos mecanismos de degradação foto, térmica e microbiana representa uma abordagem promissora para melhorar a eficiência global na decomposição de polímeros como o PEBD. A degradação fotoguímica ocorre quando o plástico é exposto à luz solar, que desencadeia reações fotoquímicas na superfície do material [1,2]. Essas reações resultam na fragmentação do plástico em fragmentos menores e mais reativos, que tornam o polímero mais acessível à ação microbiana subsequente. Por sua vez, a degradação térmica induz o processo de pirólise que quebram as cadeias poliméricas em compostos de menor massa molecular. Esse pré-tratamento térmico pode preparar o plástico para uma decomposição mais eficiente por microrganismos, aumentando a taxa de biodegradação [3]. A degradação microbiana, por sua vez, é realizada por bactérias e fungos que secretam enzimas capazes de quebrar as ligações do polímero, metabolizando-o obter para energia nutrientes. A integração desses métodos não apenas acelera a decomposição do PEBD, mas também aproveita suas vantagens abordagem complementares Essa [4,5].integrada não só oferece uma maneira mais eficaz de lidar com resíduos plásticos, mas também pode ser adaptada às condições ambientais variáveis, aproveitando vantagens de cada método sob diferentes circunstâncias.

Conclusões

A presente revisão revela diversas metodologias globais para a degradação eficaz do PEBD, a importância de enfatizando combinar processos fotoquímicos, térmicos microbianos. A exposição inicial do polímero a temperatura e radiação UV facilita fragmentação das cadeias poliméricas, preparando-as para a ação microbiana. Os estudos revisados demonstraram a degradação progressiva do material, destacando complexidade dos mecanismos envolvidos. A integração dos processos de degradação fotoquímica, térmica e microbiana é uma estratégia promissora para enfrentar a gestão resíduos plásticos, acelerando decomposição dos polímeros e contribuindo para a economia circular, mitigando impactos ambientais e promovendo a gestão sustentável dos recursos naturais.

Agradecimentos

Os autores agradecem à EESC/USP e ao Departamento de Engenharia de Materiais pela oportunidade proporcionada para a realização da pesquisa e o apoio financeiro do Programa Unificado de Bolsas (PUB) pela concessão de bolsa de pesquisa.

Referências

- [1] Asmatulu *et al.*,(2011). *Langmuir* , v.27, p. 504.
- [2] Kim *et al.*,(2014). Acs Nano,v. 8, n. 3, p. 2986.
- [3] Hakkarainen et al.,(2004). Long term properties of polyolefins, p. 177.
- [4] Santo et al. (2013). International Biodeterioration & Biodegradation, v.84, p. 204.
- [5] Jim et al., (2017). International Biodeterioration & Biodegradation, v.118, p. 27.