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A B S T R A C T   

Sustainable forest management relies on good knowledge of forest structure obtained from ground surveys 
combined with remote sensing. Capable of detecting both the forest floor and canopy elements, airborne LiDAR 
can estimate forest structure parameters with accuracy and precision, but is still difficult to acquire due to the 
lake of service provider in remote regions of developing countries. Alternatively if ground surface elevations are 
known (e.g., from LiDAR), they can be tied to a canopy surface model derived from stereo photogrammetry using 
RGB images from unmanned aerial vehicles (UAV). Here we assessed whether such photogrammetric canopy 
measurements offer aboveground biomass (AGB) and disturbance impact estimates from logging that are com
parable to LiDAR, and whether the use of both in sequence can provide an efficient post-harvest monitoring 
system. Specifically, through a combination of forest inventory ground plots, airborne LiDAR data, and a UAV- 
RGB camera system we (i) automatically located and measured canopy disturbance caused by logging, (ii) 
compared AGB models produced by LiDAR alone and the combination of LiDAR (for terrain elevation model) and 
RGB-photogrammetry (for forest surface model), and (iii) estimated the AGB stock loss from logging. The study 
was carried out in the Antimary State forest located in the southwestern Brazilian Amazon. Our results 
demonstrate that the use of RGB-photogrammetry in regions where the terrain elevation has already been 
estimated can be an effective way to rapidly identify selective logging and to accurately monitor its impact.   

1. Introduction 

The capacity of tropical forests to be sustainably managed for timber 
is an important question for the conservation of biodiversity and 
ecosystem services such as carbon sequestration (Asner et al., 2005). 
Sustainable production of tropical forests, however, is questionable due 
to inadequate regeneration potential of valuable timber species and slow 
ecological recovery times (Zimmerman and Kormos, 2012). Recent 
studies also provide strong evidence that rates of tree mortality are 

increasing in tropical forests due to climate change (McDowell et al., 
2018). In the Amazon, forest carbon sinks are declining (Brienen et al., 
2015), while the time required for managed forests to recover com
mercial timber stocks has been longer than expected (Macpherson et al., 
2010; Piponiot et al., 2019), which may be linked to broad decreases in 
tree demographic performance. On the other hand, forest management, 
when practiced according to reduced impact logging prescriptions (Sist 
and Ferreira, 2007; Putz et al., 2008), is considered a desirable economic 
land use due to low carbon emissions and the conservation of forest 
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structure, biodiversity, and environmental services (Holmes et al., 2002; 
Bicknell et al., 2015; Griscom et al., 2019). To evaluate the effectiveness 
and sustainability of tropical forest timber management reliably, cost 
effective and scalable approaches for forest canopy structure monitoring 
are critically needed. 

Developing sustainable forest management depends on consistent 
knowledge of forest structure and species composition, traditionally 
obtained from ground-based surveys and forest inventories, but now 
increasingly relying on these surveys in combination with remote 
sensing tools (Prandi et al., 2016). In forest management plans this in
formation is used to select species for logging and those for preservation, 
determine logging intensity, locate permanent conservation areas and, 
from the target tree locations and topographical information obtained 
from field surveys, to plan a minimal impact infrastructure layout: 
roads, log landings and skid trails (Figueiredo et al., 2007). Assessing the 
outcome of logging in terms of reduction of biomass and increase in 
disturbance, and monitoring forest recovery and regrowth dynamics is 
essential. Such assessments can ensure that forest operations were 
consistently executed in the field and allow monitoring of timber stocks 
for subsequent harvest cycles (Griscom et al., 2019). Accurate moni
toring is essential for long-term forest production prognoses and 
improved understanding of tropical forest ecosystems under harvesting 
regimes. In addition, accurate aboveground biomass (AGB) estimates 
are crucial to monitoring carbon stocks to implement and verify REDD+
(Reducing Emissions from Deforestation and Forest Degradation-plus) 
and for broader global forest management targets and programs (Phua 
et al., 2016; Kronseder et al., 2012). Therefore, quantifying the impact of 
logging on canopy structure is important to understand the effects of 
forest management on forest fauna, micro-climates and regeneration 
processes (Pereira et al., 2002). Ground-based forest inventories, 
including permanent survey plots, are difficult to establish and main
tain. These plots are expensive, labor intensive, and often suffer from 
seasonal and other access limitations specially in the tropics. Further
more, due to low sample intensity, field plots may fail to accurately 
estimate forest structural parameters and their variation throughout the 
landscape, highlighting the need for remote sensing to better assess 
forest change, particularly after the impact of natural and anthropogenic 
disturbance events (Espírito-Santo et al., 2014). 

The use of LiDAR (Light Detection and Range) is well established as a 
remote sensing tool for estimating forest structural parameters and 
monitoring forest disturbance and regeneration in boreal, temperate, 
and tropical forests (Wulder et al., 2008). Practical and efficient, 
airborne LiDAR is the preeminent tool to estimate forest structural pa
rameters related to biomass and biomass turnover (Drake et al., 2002; 
Asner et al., 2011; Huang et al., 2013; Palace et al., 2015; Ferraz et al., 
2016; Jarron et al., 2020) and for forest monitoring and management, 
including assessment of logging impact (Dandois and Ellis, 2010; Réjou- 
Méchain et al., 2015; Silva et al., 2017; Griscom et al., 2019; Pinagé 
et al., 2019). However, LiDAR coverage are still difficult to hire espe
cially in remote regions of developing countries due to the lack of 
established LiDAR vendors in these regions (Melendy et al., 2018, Ota 
et al., 2019). As an alternative, the need for LiDAR survey for forest 
monitoring may be reduced to a single survey, if biomass (AGB stock) 
resurveys can be adequately accomplished with unmanned aerial vehi
cles (UAV) carrying light-weight and low cost camera systems for 
photogrammetric structure reconstruction (Zahawi et al., 2015; Jaya
thunga et al., 2018). 

The last decade, in particular, has witnessed an increase in the use of 
3D remote sensing techniques (Valbuena et al., 2020): both passive (e.g. 
RGB and multispectral cameras) and active LiDAR (Almeida et al., 2019) 
sensors have been coupled to UAVs to perform forest surveys and as
sessments (Colomina and Molina, 2014). The rapid expansion of UAVs in 
forest research has been prompted by low acquisition and maintenance 
costs and ease of use. In addition, the rapid development of UAV plat
forms including long-distance radio control range, high-resolution RGB, 
multispectral cameras and automatic processing algorithms of stereo 

imagery facilitate the application of UAVs in the acquisition of stereo 
imagery (Ni et al., 2019). 

The stereo imagery acquired by optical sensors onboard UAVs, 
photogrammetrically processed by 3D reconstruction software to 
generate digital terrain (DTM) and surface models (DSM) similar to 
those from LiDAR (Wallace et al., 2016). Moreover, while LiDAR sensors 
mounted on UAVs show potential (Almeida et al., 2019; d’Oliveira et al., 
2020; Prata et al., 2020), due to weight, sensor range (limiting flight 
height) and battery limitations only photogrammetric drones can 
currently survey relatively large areas (e.g. Bourgoin et al., 2020). For 
these reasons, 3D remote sensing from photogrammetric UAVs has 
become a relatively cost-effective option for measuring forest spatial 
structures and aboveground biomass stocks. The key limitation of this 
passive remote sensing approach to vegetation height estimation is the 
inability to identify the ground below the canopy. Active sensing in the 
form of LiDAR laser ranging pulses pass through the canopy to reflect off 
the ground surface offering statistical algorithmic approaches for terrain 
estimation (Axelsson, 1999). In contrast, photogrammetric surface 
height estimation has a very limited capacity to reach the ground for 
terrain estimation particularly in closed-canopy forest. For this reason, 
in forests, passive photogrammetric canopy height estimation is most 
effective when paired with preexisting accurate digital terrain modeling, 
for instance derived from LiDAR. To produce accurate DTMs under 
dense forest canopy, LiDAR is currently the most reliable approach 
(Crespo-Peremarch et al., 2020). Particularly when topographic varia
tion is high, DTMs are essential to produce accurate AGB models and 3D 
analyses (e.g. gap fraction and height profile analyses) because the true 
height of the trees must be known to capture these variables related to 
wood and leaf mass. 

To overcome combined limitations of LiDAR acquisition and terrain 
estimation, a few trail-blazing studies have combined optical and LiDAR 
sensors in forests in Sweden and Italy, with accurate results (Bohlin 
et al., 2012; Prandi et al., 2016). This approach appears particularly 
successful and cost-effective in studies that demand multi-temporal 
surveys for recovery / impact response assessment, (Mendes de Moura 
et al., 2020), reducing the need for an LiDAR survey to only the first 
‘baseline’ observation time point, with passive optical drone-based 
thereafter. 

There are a considerable number of studies involving the use of 
LiDAR data to assess logging impact (e.g. Kronseder et al., 2012; Kent 
et al., 2015; Rex et al., 2020; Nunes et al., 2021), but very few have 
assessed selectively logged tropical forests through the combination of 
photogrammetry and LiDAR (e.g. Ota et al., 2019). Here, we expand this 
new research domain, studying the impacts of selective logging in the 
Antimary State Forest in the southwestern Brazilian Amazon with a 
photogrammetry-derived DSM and a LiDAR-derived DTM. 

The aim of this paper was to verify the potential of combining a 
multitemporal sequence of ground data, airborne LiDAR, and 3D 
photogrammetry, to monitor forest disturbance after reduced-impact 
selective logging. Our specific objectives were to (i) estimate struc
tural changes in the forest canopy produced by logging operations 
(roads, log landings, felled tree gaps and skid trails), (ii) develop and 
verify the consistency of two AGB models, one produced by height 
metrics derived from LiDAR data alone, and the second by a combina
tion of the LiDAR-derived DTM and a photogrammetry-derived DSM, 
and (iii) to upscale the developed AGB models from plot to local level to 
estimate the AGB stocks before and after logging, and infer subsequent 
AGB loss. 

2. Methodology 

2.1. Study site 

The Antimary State Forest (ASF) is located between Rio Branco and 
Sena Madureira in Acre State, Western Brazilian Amazon (68◦ 01′ to 
68◦23′ W; 9◦ 13′ to 9◦ 31′ S). The ASF covers an area of 45,490 ha 
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(Fig. 1). The climate is classified as Awi (Köppen) with an annual pre
cipitation of around 2,000 mm and an average temperature of 25 ◦C. 
There are distinct wet and dry seasons. The dry season occurs from June 
to September. This season is used to prepare the land for crops and for all 
operations related to forest management (Carvalho et al., 2017). In the 
ASF there are three types of forest: dense tropical forest with uniform 
canopy and emergent trees; open tropical forest with frequent occur
rence of lianas and palm trees; and an open forest, called Tabocal, which 
is dominated by semi-climbing Guadua bamboo species locally known as 
Tabocas. The area has gentle topography with a maximum elevation 
range of around 300 m. The predominant soils are dystrophic yellow 
latosols with high clay content. The ASF is administered by the Acre 
State Government through a forest management plan for sustainable 
timber production (Funtac, 1990). 

The total area under forest management is 37,687 ha, divided into 14 
Annual Production Units (APU) and one “absolute” forest reserve (area 
in the forest management plans designated for preservation only, Fig. 1). 
In 2012, a forest concession system was adopted to regulate the execu
tion of forest operations by logging companies, following the Modeflora 
methodology (Figueiredo et al., 2007). Our study was carried out in the 
APU3 (3,835 ha), which was selectively logged in 2013 and 2017. For 
the study, we selected an area of 42 ha logged in 2013 and another of 
182 ha logged in 2017 (Fig. 1C, (Fig. S1 in the Supplementary Material). 
In both cases the logging intensity was around 10–15 m3∙ ha− 1 (Car
valho et al., 2017). 

In 2013, before forest logging, 10 1-ha (100 × 100 m) permanent 
sample plots (PSP) were established, systematically distributed in the 
1,000 ha portion of the APU3 covered by airborne LiDAR (Fig. 1). 
Immediately after PSP establishment, the area was partially logged, 
affecting five PSPs. After 2013, there were no additional interventions in 
the PSPs, which were re-measured in 2015. In this paper, we used this 
measurement (2015) to build LiDAR and photogrammetry-LiDAR AGB 
models. In these plots, all trees with DBH ≥ 10 cm were tagged, species 
identified and measured. For each tree, oven-dry aboveground biomass 
in Mg (AGB) was estimated with Eq. (1), specifically developed for the 
ASF (Melo, 2017). 

AGB = AGB =
(
(DBH)

2.671⋅0.064
)/

1000 (1) 

Plot locations (corners) were mapped using survey-grade, dual fre
quency (L1 and L2), dual-constellation (GPS and GLONASS) global 
navigation satellite system (GNSS) receivers. One-second epoch GNSS 
data were collected for 20–30 min at each plot corner (d’Oliveira et al., 

2012). The GNSS receiver used in this study was a TechGeo Zenite II. For 
the GNSS field survey campaign, rover receiver data were post- 
processed using the Rio Branco base station (RIOB 93911, reference 
station of the Brazilian Network for Continuous Monitoring – RBMC), 
located at Acre Federal University, 90 km from the study site. 

2.2. LiDAR data acquisition and processing 

Discrete return airborne LiDAR data were collected in September 
2015 after UPA3 was partially logged, using a Trimble Harrier 68i sensor 
set to 300 kHz, installed in a Cessna 206 aircraft, flying at 600 m above 
ground level (AGL), with an average speed of 198 km∙h− 1. LiDAR 
sidelap was 50%, resulting in a point cloud with an average density of 14 
returns∙m− 2 (Table S1, Fig. S2 in the Supplementary Material), covering 
an area of 1,000 ha. 

The FUSION LiDAR package (USDA Forest Service) was used for 
processing LiDAR data. LiDAR returns that occurred within each of the 
10 PSPs were extracted from the acquisition datasets to create an all- 
returns point cloud file for each PSP. The ground surface elevation 
(interpolated from the LiDAR ground returns) was then subtracted from 
each return to height above ground, removing topographic variation 
within the plot. Descriptive statistics of the LiDAR point cloud vertical 
structure, using all returns above 1 m, were computed for each plot. The 
one-meter minimum height above ground was used to reduce noise 
within the near-ground point cloud caused by low vegetation and im
perfections in the ground point filtering (McGaughey, 2018). 

The following layers were produced at a 1 × 1 m spatial resolution: 
DTM, DSM, and a subsequent canopy height model (CHM = DSM - 
DTM), which was used to locate the forest logging operations carried out 
in 2013 (Fig. 1). Raster layers of forest canopy metrics (Table 1) 
(McGaughey, 2018) were created using FUSION, following the same 
methodology used by d’Oliveira et al. (2012). PSP-level LiDAR metrics 
were merged with the summarized field plot data (collected in 2015) for 
regression modeling. We then created from the LiDAR point clouds, at a 
100 × 100 m resolution, raster layers for the forest structure metrics 
selected as predictor variables for the AGB models. The raster cell res
olution was equal to the nominal ground plot size and the AGB model 
was applied over the entire 224 ha study area. 

2.3. UAV-RGB image acquisition and processing 

The photogrammetric mapping was carried out in two flight 

Fig. 1. A. Antimary State Forest (ASF) loca
tion; B. forest management annual produc
tion units (APU) and absolute forest reserve 
area (AFR); C. the Study area showing: (i) 
1,000 ha covered by LiDAR flight in 2015 
(white polygon); (ii) the 182 ha area logged 
in 2017 (red polygon) and the 42 ha area 
logged in 2013 (red hatched polygon) 
covered by the UAV flight; and (iii) the per
manent sample plots (black squares). (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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campaigns. The first in September 2016, over the 10 PSP and the second 
in September 2017, covering the 182 ha (logged in 2017) and 42 ha 
(logged in 2013), shown in Fig. 1. The flights were performed with a 
unmanned aerial vehicle (UAV), model Phantom 4 PRO. The UAV was 
equipped with a high-grade GNSS system, barometer, accelerometer, 
gyroscope, compass and 20-megapixel Sony EXMOR RGB camera, with a 
lens system of focal distance equivalent to 35 mm, coupled with a 3-axis 
electronic gimbal. Flights were performed autonomously, with a con
stant speed of 12 m∙sec-1, 160 m above the ground and 80% frontal and 
lateral overlap. The ground sample distance (GSD) was 4.39 cm and the 
point cloud average returns density was 112.5 m− 2 (Fig. 2). 

We used the structure from motion (SfM) process to generate point 
clouds. The RGB images were mosaicked and orthorectified with Pix4D 
Mapper software through the SIFT (Scale-Invariant Feature Transform) 
procedure (Supplementary material Table S2, Lowe, 2004). The prod
ucts generated were an orthophoto mosaic, and a digital surface model 
(DSM) for both the ground plots and the areas logged in 2013 and 2017. 

As LiDAR and UAV systems data are similar in nature and 
geographically coincident, rasters produced by photogrammetry 
(orthomosaic and digital terrain and surface models) were automatically 
aligned to the LiDAR products (RMSE < 0,3m, ESRI, 2019; Liu, 2013; 
d’Oliveira et al., 2020). As previously noted, DTMs produced by passive 
sensors over dense forest canopy are not accurate (Ni et al., 2019). Thus, 
to produce the UAV system Canopy Height Model (CHM), we used the 
LiDAR DTM as ground reference. This approach has been regularly used 
in similar studies (Bohlin et al., 2012; Jayathunga et al., 2019), by 

simply subtracting the LiDAR-DTM elevation from the UAV-DSM. The 
vegetation metrics were extracted following the same methodology 
applied to the LiDAR data. 

2.4. Logging gaps and canopy cover loss 

The detection of areas damaged by logging was carried by three 
methods: (i) post-disturbance automatic gap detection, (ii) manual 
vectorization of visually detected disturbance and infrastructure fea
tures and (iii) automatic detection of the removed crowns taller than 30 
m. Automatic gap detection was by a time-static analysis of the post- 
disturbance CHM derived from the UAV point cloud normalized to the 
LiDAR DTM. 

To automatically detect forest canopy gap (method i), we adapted a 
gap definition similar to Brokaw and Scheiner (1989), in which, in a 
classical sense, canopy gaps are openings in the forest canopy extending 
down to an average height ≤ 2 m aboveground (Asner et al., 2013a,b). 
Logging gaps were defined by a low height threshold (CHM < 3 m) and 
by a minimum 20 m2 area, to exclude small gaps that were more likely 
produced by natural causes. The 3 m threshold was used to allow the 
inclusion of the felled trees crowns on the ground as gaps. 

We quantified the visual vectorization of disturbances in the entire 
area covered by UAV flights and compared results to method (i). The 
vectorization was performed using the high-resolution RGB orthophoto 
mosaic to identify all logging operation features (roads, landings, felled 
tree gaps and skid trails). The overlapping area of agreement between 
the two methods was found by the spatial intersection of their respective 
logging damage polygons. 

We assessed felling of tall trees, whether logged or from ancillary 
damage. To quantify disturbance, we subtracted pre- and post-logging 
CHM, but only for points above 30 m height (adapted from Andersen, 
et al., 2014). To avoid including small gaps produced by natural causes 
(e.g. broken branches, inter-crown spaces, differences in UAV and 
LiDAR system crown delineations), we used a minimum crown projec
tion area patch (CPA) of 100 m2 (Figueiredo et al., 2016). The number of 
felled tall trees was estimated by counting the resulting “lost tree crown” 
polygons. All polygons were visually validated in the 2017 orthomosaic 
to confirm the CPA loss. 

2.5. LiDAR and UAV systems data regression modeling of aboveground 
biomass 

Multiple linear regression was used to develop relationships between 

Table 1 
LiDAR-and RGB point clouds derived forest structure metrics used to compose 
the AGB models.  

Metric abbreviation Metric description 

HMEAN Mean height above ground 
HMEDIAN Median height above ground 
HMODE Mode height above ground 
HSD Standard deviation of height above ground 
HVAR Variance of height above ground 
HCV Coefficient of variation of height above ground 
HIQ Interquartile distance of height above ground 
HSKEW Skewness of height above ground 
HKURT Height kurtosis of height above ground 
H. % (e.g., H05TH – 

H99TH) 
Percentiles of height above the ground (AGL): 5th, 10th, 
20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 
95th, 99th 

CCR Canopy relief ratio (CCR = ((MEAN - MIN) / (MAX – 
MIN)))  

Fig. 2. Canopy height model and logging gaps (CHM < 3 m, area >20 m2) before 2017 logging (LiDAR flight in 2015). In the south part of the study area, it is 
possible to observe traces (roads and tree felling gaps) from the logging carried out in 2013. 
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plot-level metrics derived from LiDAR and UAV point clouds, and the 
field measured AGB of the same plots. This was done for the 2015 
LiDAR-only point cloud and the 2016 UAV hybrid point clouds that were 
normalized to LiDAR DTM. Predictor variables (Table 1) from both the 
LiDAR and the UAV-hybrid point clouds were selected, using the best- 
subsets approach. Variance inflation factor (VIF) statistics were used 
to eliminate highly collinear predictor variables (Fox & Monette, 1992). 
If VIF exceeded 5.0 for a candidate predictor variable, it was dropped 
from the regression model. 

To contrast AGB estimates from LiDAR and UAV systems , we esti
mated AGB across the 224 ha area covered by LiDAR in 2015 before 
logging and by UAV in 2017 after logging, at 100 × 100 m resolution 
(Dandois and Ellis, 2013; Jayathunga et al., 2018; Ota et al., 2019). To 
avoid the differences in AGB stocks produced by selective logging in the 
studied area, the consistency of the produced models was tested only in 
the area logged before the LiDAR flight in 2015 (42 ha area, Fig. 1). An 
estimate of the AGB loss was performed by the subtraction of the AGB 
stocks estimated by the models before (LiDAR-System) and after (UAV- 
System) logging. 

3. Results 

3.1. Canopy disturbed by logging areas 

Gaps of less than 3 m height and larger than 20 m2 were infrequent in 
the study site before logging, with most located in the southern portion, 
which was logged in 2013 (Fig. 2). Areas disturbed by logging in 2017 
(roads, landings, skid trails and felled tree gaps) were easily distin
guishable in the high-resolution September 2017 UAV orthomosaic 
(Fig. 3A and 3). The hybrid CHM height break of 3 m effectively iden
tified the gaps produced by logging operations (Fig. 4C). The total gap 
area detectably produced by logging operations on the ground was 
calculated as 15.5 ha out of the total 182 ha covered by the UAV flights 
performed immediately after logging in 2017 (Table 2). This area rep
resents 8.5 % of the mapped logged area. The logging damage manual 
vectorization (Fig. 3C) identified a total logging impact of 17.4 ha, 
distributed in roads (5.5 ha), log landings (1.2 ha) and felled tree gaps 
and skid trails (10.7 ha). Skid trails and felled tree gaps were classified 
together, due to the difficulty in separating them close to tree gaps and 
in properly identifying skid trail fragments covered by the forest 

understory. Differences observed in roads and felled tree gaps were 
mainly promoted by automatic detection underestimation of road areas 
due to tree crown projections over the roads and the overestimation of 
the felled tree gaps by visual detection. Outside the intersection area, 
automatic detection was able to identify logging gaps, skid trails and 
roads and landings that had been partially missed by manual vectori
zation. Some natural gaps, low vegetation areas and deciduous trees 
were also automatically detected as logging damage gaps (Table 2). 

Gap area determined by manual vectorization in general produced 
gaps that encompassed larger border areas, included standing trees and 
residual vegetation inside the gap as part of the impacted area (Fig. 4); 
furthermore, this vectorization connected a second gap not clearly 
associated with the felled tree that was not found by automatic gap 
detection. The logging-impacted area that was automatically detected 
produced two gaps, separated by residual vegetation: a small area 
located on the left branch (black triangle over the felled tree crown) 
extrapolated the elevation difference between DSM and DTM that had 
been established for logging impact classification (3 m) and was clas
sified as non-logged area. The differences observed in this figure sum
marize the main differences observed between the two methods. 

The canopy cover area above 30 m height (minimum CPA 100 m2) 
was 47.7 ha before (Fig. 5A) and 31.0 ha after logging (Fig. 6B). The 
estimated tall tree crown canopy loss produced by logging was 11.3 ha 
(307 trees) or 23.7% of the original canopy cover (Fig. 5B). A consid
erable number (134) of deciduous trees were misclassified as removed 
trees, representing a canopy cover of 2.4 ha. These trees were not 
computed as logging impact and were classified as part of the post- 
disturbance standing crown projection area (Fig. 5C and D). Small 
gaps, broken branches, small tree crowns (CPA < 100 m2), inter-crown 
spaces, differences in UAV and LiDAR system crown delineations, 
resulted in an canopy area of 5.4 ha. The applied method to canopy 
cover loss automatic detection allowed the identification of individual 
logged trees crowns (Fig. 7). The automatic detection of canopy cover 
loss allowed the identification of individual logged trees crowns (Fig. 6). 

3.2. LiDAR and photogrammetry metrics-derived AGB models 

The mean tree density and AGB in the plots were 346 ± 16 trees∙ha− 1 

and 239.9 ± 25.4 Mg∙ha− 1 respectively. From the point cloud metrics, 
two parsimonious aboveground biomass (AGB) regression models were 

Fig. 3. Area covered by the UAV flight (224 ha) in 2017 immediately after logging, presenting: A. The high-resolution (4 cm) orthomosaic; B. The orthomosaic with 
the areas automatically identified as disturbed by logging (DSM ≈ DTM, area ≥ 20 m2) and C. The manual vectorization of roads, landings and felled tree gaps. 
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developed. A single predictor metric was selected, 95th percentile of 
point heights, for both LiDAR and UAV derived point clouds. The 
explained variances of UAV and LiDAR models were respectively R2 =

0.74 (residual standard error RSE = 42.8 Mg∙ha− 1) and R2 = 0.57 (RSE 
= 56.0 Mg∙ha− 1) (Fig. 7). The mean AGB estimates by the airborne 
LiDAR and UAV systems were 240.0 ± 21.9 Mg∙. ha− 1 and 239.8 ± 19.7 
Mg∙ha− 1, respectively. 

3.3. Landscape analyses 

The mean AGB estimated for the 182 ha area logged in 2017 was 
251.9 ± 55.8 Mg∙ha− 1 before logging (LiDAR system AGB model) and 
226.4 ± 73.7 Mg∙ha− 1 after logging (UAV system AGB model). The 
lower mean AGB estimated by the UAV model is the expected AGB loss 
(25.5 Mg∙ ha− 1), produced by logging (Fig. 8A and B). Considering only 
the area logged in 2013 (south part of the studied area − 42.0 ha), the 
AGB estimates were 213.3 ± 63.7 Mg∙ha− 1 (LiDAR) and 213.4 ± 63.9 
Mg∙ha− 1 (UAV). The correlation between the UAV and LiDAR AGB 
models in this area was highly significant (R2 = 0.93, SE = 17.3, p <
0,001, N = 48, Figure S3 in the Supplementary Material), attesting to the 

compatibility of the models. 

4. Discussion 

Our analysis clearly demonstrated that photogrammetric UAV-based 
canopy structural estimation can be used to develop cost-effective time 
series of canopy structural impacts and recovery of logging in tropical 
forest. The essential requirement for this method is a high accuracy 
terrain model, which is not available from photogrammetry alone in 
closed canopy forest. In addition, the fusion of LiDAR and RGB- 
photogrammetry produced a reliable AGB model similar to the one 
produced by LiDAR alone. Specifically, our analyses found that (i) the 
area directly and heavily impacted by logging operations was 8.2% of 
the total study area, (ii) the tree cutting produced a canopy cover (above 
30 m) loss of 22.7% and (iii) selective logging produced a mean AGB loss 
of 27.8 Mg∙ha-1. 

4.1. Canopy disturbed by logging areas 

Besides estimates of forest structural parameters, LiDAR data is also 
recognized as a key tool in identifying past logging impacts on the forest 
understory (Kent et al., 2015; Ellis et al., 2016; Griscom et al., 2019). In 
this study, we could observe traces from the 2013 logging in the 
southern part of the study area in both LiDAR and UAV systems flights. 
The traces identified by LiDAR through gap analyses were similar to 
those observed in a previous study with the use of a relative vegetation 
density (RDM) model (Pantoja, 2017) in the same site. RDM is calculated 
through an algorithm used to create raster layers of a relative percentage 
of LiDAR returns within a user-specified above ground height stratum 
(d’Oliveira et al., 2012). While we should expect correspondence since 
the studies differed in methodologies but not data sources, that these 
logging impacts were still possible to detect four years after logging by 
the UAV system reveals the great potential of this approach for forest 

Fig. 4. Felled tree gaps determination by A. visual interpretation and B. automatic detection (CHM ≤ 3 m, gap area ≥ 20 m2) in a felled tree gap. Highlighted green 
square represents zoomed-in tree fall gap. In the orthomosaic red polygons represent the removed tree crowns and the black ones the automatically detected felled 
tree gaps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Areas impacted by logging (ha) automatically identified and manually vector
ized in the UAV flight of area logged in 2017 (182.9 ha). The areas identified as 
‘other’ are natural gaps, low vegetation and deciduous trees.  

Method Roads 
(ha) 

Logs 
landing 
(ha) 

Felled tree gaps 
and skid trails 
(ha) 

Other 
(ha) 

Total 
(ha) 

Vectorization  5.5  1.2  10.7   17.4 
Automatic 

detection  
4.4  1.1  9.6  0.5  15.5 

Intersection  3.4  1.1  6.1   10.1  
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management monitoring. We found no other study in the literature that 
specifically demonstrated that UAV based photogrammetry combined 
with pre-existing LiDAR could identify canopy loss in selectively logged 
tropical forests. The three-meter height break and minimum contiguous 
area of 20 m2 adopted in our study, allowed the detection of all landings, 
logs and felled tree crowns on the ground visually identified. In a similar 
study (Pinagé et al., 2019), the authors used a greater (10 m) height 
break and a smaller area (10 m2) to define gaps. In our case, as the UAV- 
system flight was carried out immediately after logging, vegetation 
higher than 3 m as well as smaller than 20 m2 would be more likely to 
belong to a natural gap than a logging gap. In addition, the use of a 
higher threshold in a forest with moderate to high occurrence of Guadua 
spp, which often does not reach 10 m, all patches of dense Guadua spp 
would be classified as gaps. The result we obtained by using of a hybrid 
(LiDAR + photogrammetry) CHM to determine impact in logging areas 
was similar to that obtained by the LiDAR-derived relative vegetation 
density model (RDM) used by Carvalho et al. (2017) in the Antimary 
State Forest, where areas impacted by logging were estimated as 7 to 8.6 
% of the total managed area, but below the 15.4 % and 17.1 % estimated 

by d’Oliveira et al. (2012) and Andersen et al. (2014), respectively. 
Although it was limited by the passive nature of the sensor, the method 
was sufficient to identify the visible disturbed areas. Similar method
ology applied to photogrammetric products was used to identify the soil 
displacement produced by logging in a clear cutting harvesting in a 
temperate forest in Norway (Pierzchała et al., 2014). 

Disturbed areas covered by tree crowns could not be properly clas
sified by the hybrid photogrammetric automatic detection, producing an 
underestimation of the overall logged area assessment. The logging 
impact assessed by both methods was relatively low and can be seen as a 
consequence of the low harvesting rate applied in APU3, which was the 
result of the utilization of reduced impact logging (RIL) practices. 
Although the automatic detection and the visual vectorization methods 
presented similar areas, their locations presented some differences, due 
to the nature of the UAV sensor and the human error associated with 
vectorization. Large areas disturbed by logging were easily detected by 
both methods, but areas covered by vegetation, such as skid trails, were 
difficult to detect, leading to likely inaccuracies. Skid trails are difficult 
to identify even through the use of LiDAR because the drivers of logging 

Fig. 5. Canopy cover above 30 m (crown projection area patch ≥ 100 m2): A. Before logging (2015 – 47.7 ha); B. After Logging (2017 – 31.0 ha); C. Canopy cover 
loss (11.0 ha) and D misclassified deciduous trees (2.4 ha). Green polygons (A, B and C) represent alive tree crowns and red polygons (D) removed tree crowns. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Zoomed tree fall gap presenting: i. the CHM LiDAR before logging (2015); ii. CHM UAV-LiDAR (hybrid) after logging (2017) and iii. the automatically 
detected tall canopy cover loss (CHM ≥ 30 m and CPA ≥ 100 m2.In the orthomosaic red polygons represent the removed tree crowns and the black ones the 
automatically detected felled tree gaps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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vehicles naturally avoid felling trees (Araujo et al., 2013). In the case of 
our study, the main source of divergence between visual and automatic 
identification methods was the determination of the roads under tree 
crowns, which could not be identified by automatic detection. On the 
other hand, the visual vectorization of road borders and standing trees 
inside the gaps would not only be tedious and labor-intensive, but would 
also involve interpretation errors and impose limits on its accuracy. 

Canopy loss above 30 m was much higher than that observed by 
Andersen et al (2014) in an adjacent annual production unit in the ASF, 
and by Pereira et al. (2002) when RIL techniques were applied. In the 
Andersen et al (2014) work, using repeated LiDAR flights, the canopy 
cover loss above 30 m was only 4.1%. Although high, the estimated 
canopy loss in this study seems to be accurate. The two potential sources 
of error, deciduous trees and canopy cover fragments (CPA < 100 m2), 
were not computed as canopy loss. Deciduous trees produced a small 
effect on the impacted area classification. Although the ASF presented a 
considerable number of leafless trees, most of them could be properly 
identified as different from logging gaps because the understory vege
tation below them usually exceeded the 3 m height threshold for 

defining a gap, but it was an issue for the extracted trees identification. 
Deciduous trees interfere with the 3D photogrammetric analyses (e.g. Ni 
et al., 2019) and, to some extent, also for LiDAR (i.e., by reducing the 
number of returns of big leafless crowns). However, while LiDAR can fly 
in both leafless and leafy seasons, allowing a possible solution in 
avoiding periods with the most leaf off deciduous crowns, this is not 
available for the UAV method. This is because the leafy season coincides 
with the rainy season, during which UAV flights and access to tropical 
forest study areas are limited, as is the case with our site. 

Although we recognize that the used UAV-System has flight limita
tions, UAV use to forest monitoring must consider that even when we 
use LiDAR to monitor logging we do not cover the entire area but rather 
cover sampling areas large enough to represent the different treatments 
(dates in the case of this study). Furthermore, there is greatly increasing 
interest in how forests impacted by disturbances like logging may be 
further impacted by increasing droughts, surface fires, and other dis
turbances on the rise due to human impacts since interactions between 
disturbances can promote destructive forest loss tipping points (Bour
goin, et al., 2020; Stark et al., 2020). 

Fig. 7. Predicted versus observed (ground plot) values for aboveground biomass (AGB - Mg. ha-1), for models produced by the (A) LiDAR system and (B) UAV 
system. Numbers in parentheses are the standard errors for each coefficient. 
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4.2. LiDAR and UAV system AGB models 

The AGB model developed from LiDAR data estimated the ASF UPA3 
mean AGB stock before logging as 231.3 Mg∙ha− 1. This value is almost 
the same as that obtained by d’Oliveira et al. (2012, 232 Mg∙ha− 1) in an 
adjacent APU in the ASF logged in 2010-1011. This was expected, 
because the areas are only 8 km apart and have a similar forest structure, 
but emphasizes LiDAR data consistency in relation to tropical forest AGB 
estimates. The R2 (0.57) and RMSE (52.05–23.2 %) were also similar to 
values in other tropical forests in Borneo (Phua et al., 2016; Kronseder 
et al., 2012), Eastern Brazilian Amazon (Mendes de Moura et al., 2020; 
Rex et al., 2020), and Sierra Leone (Kent et al., 2015), all of which, 
confirm, once more, the accuracy of LiDAR data to estimate forest 
structural parameters. 

Although the use of models produced by stereo photogrammetry are 
becoming common to estimate AGB in forest areas, the use of this 
method use in dense closed-canopy forest, is still limited by the need of 
ground position and elevation measurements to build an accurate high 
resolution DTM (Dandois and Ellis, 2010; Bohlin et al., 2012). Passive 
sensors only identify these ground references when gaps of sufficient 
size are present and afford sufficient illumination for oblique angle 
views needed in positional triangulation (Swinfield et al., 2019). Digital 
earth models derived from space-based altimetry data are globally 
available, but they still offer limited canopy height accuracy in forest 
areas (e.g. SRTM, Farr et al., 2007). Attempts to globally correct an 
SRTM derived DEM have been made using LiDAR data as reference, but 
the uneven distribution or absence of LiDAR cover (e.g. over rain forests) 
decreases the accuracy of the model (Zhao et al., 2018). Thus, the use of 
image-based point clouds to produce AGB models in dense forests de
mands the availability of a high spatial resolution and vertical accuracy 

LiDAR DTM (White et al., 2013; Ota et al., 2015; Salach et al., 2018). 
One exception is the work of Ota et al. (2019) in Myanmar, who also did 
not use a DTM. Their vegetation metrics were obtained by subtraction 
from the DSM elevations derived from the photogrammetric point cloud 
to estimate AGB changes produced by selective logging at a 0.25 ha 
scale. The accuracy obtained by them (R2 = 0.77 and RMSE = 9.32) was 
close to the obtained by our UAV-LiDAR AGB model. They also used 
normalized green–red bands before and after logging to estimate AGB 
changes at a 0.25 ha scale. Furthermore, we point out that the UAV- 
system can capture only the upper canopy surface, which may be a 
problem when assessing dense forest canopy. 

The point clouds generated by the UAV and LiDAR systems were 
characterized by two main differences, in return density, and in canopy 
penetration. The denser point cloud of the UAV system allows a better 
delineation of the crowns and the creation of a high-resolution ortho
mosaic (Dandois and Ellis, 2010). On the other hand, the higher canopy 
penetration provided by the LiDAR system allowed a much better ver
tical forest structure description (van Leeuwen and Nieuwenhuis, 2010). 
Despite these differences, both AGB models developed in this work 
selected the same top canopy metric as the best predictor variable 
(H95TH). Relevant to expanding UAV system photogrammetric 
research, Meyer et al. (2018), demonstrated that the relationship be
tween a new LiDAR-derived index LCA (Large Canopy Trees) and AGB 
was linear and remained unique across forest types (R2 = 0.78, RMSE =
46.02 Mg∙ha− 1). The LCA method is based on the most exposed tree 
crowns, hence UAV system AGB models may be a good complement 
since these trees are well represented by photogrammetry point clouds 
(White et al., 2013). The UAV model’s accuracy was similar to that in 
other studies as well as the correlation of LiDAR vs UAV models (Dan
dois and Ellis, 2010; Jensen and Mathews, 2016; Ni et al., 2019; 

Fig. 8. Aboveground biomass (AGB; Mg∙ha− 1) estimates from the (A) airborne LiDAR and (B) UAV RGB camera systems’ predictive equations, at a 100 × 100 m 
resolution. The area covered by the UAV is divided into two polygons: the top polygon is the area logged in 2017 (182 ha) and the bottom red polygon (42.0 ha) 
logged in 2013. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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González-Jaramillo et al., 2019). We believe that the statistical corre
spondence between models would be higher with flights carried out in a 
shorter interval, but the agreement between the models (R2 = 0.93 and 
RMSE = 17.19) was similar to that produced by d’Oliveira et al. (2020) 
using two LiDAR systems, a regular airborne system (similar to the one 
used in this study) and an UAV-LiDAR system in similar conditions. 
Considering the different nature of the RGB camera and LiDAR, the re
sults obtained when comparing the AGB models produced are a strong 
indicator of the photogrammetry-LiDAR hybrid model’s accuracy. Silva 
et al. (2017) demonstrated that an acceptable AGB estimation can be 
achieved with low-pulse-density LiDAR surveys if a high-quality DTM is 
available from at least one LiDAR survey. In our study, we demonstrate 
that, when a high quality DTM is available, it can also be achieved from 
a UAV-RGB system. 

4.3. Local analysis 

The upscaling of the AGB models from plot to landscape level, to 
produce an AGB map for the study area, is the typical way to assess AGB 
stocks and AGB changes. This procedure, oftening employing data 
sources at multiple scales including from orbital platforms, has been 
applied to produce high resolution AGB maps from focal areas of 
particular interest (e.g. Bispo et al., 2020), to regional scales (Longo 
et al., 2016), or even country and global scales (Asner et al., 2013b; 
Saatchi et al., 2017). Since LiDAR data were available for the area 
selected to this study area, it was possible to map LiDAR estimates of 
AGB at 100 m resolution, which, along with the CHM, provides forest 
planners with more spatially accurate and detailed planning information 
than is possible via ground data collection methods (d’Oliveira et al., 
2012). We also upscaled our models to the entire study area to assess 
AGB loss produced by logging. AGB LiDAR models can be generalized 
(Asner et al., 2011) or applied in different regions (Drake et al., 2002). In 
our extrapolation, AGB maps produced by both LiDAR and 
photogrammetric-LiDAR DTM hybrid models were highly correlated. 
Although the models were produced by two different sensors, in the 
areas not disturbed by logging the mean AGB values that we estimated 
were very similar and the models effectively estimated the original and 
remaining biomass stock, as well as the AGB loss produced by logging. 

5. Conclusions 

The results of our study are of practical use to scientists, forest 
managers and technicians from governmental environmental control 
agencies; the UAV system was accurate when compared with repeated 
LiDAR flights over the same area. The use of LiDAR to monitor AGB 
change under selective logging practices in the Brazilian Amazon is 
becoming frequent, especially in public forests. In our study, we track 
the location of forest logging operation impacts and changes in AGB 
stocks after logging. These parameters can be used to assess the quality 
of forest practices and monitor forest recovery, and are strong indicators 
of forest management sustainability. 
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