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Abstract
Neuronal avalanches and asynchronous irregular (AI) firing patterns have been thought to
represent distinct frameworks to understand the brain spontaneous activity. The former is typically
present in systems where there is a balance between the slow accumulation of tension and its fast
dissipation, whereas the latter is accompanied by the balance between synaptic excitation and
inhibition (E/I). Here, we develop a new theory of E/I balance that relies on two homeostatic
adaptation mechanisms: the short-term depression of inhibition and the spike-dependent
threshold increase. First, we turn off the adaptation and show that the so-called static system has a
typical critical point commonly attributed to self-organized critical models. Then, we turn on the
adaptation and show that the network evolves to a dynamic regime in which: (I) E/I synapses
balance for large recovery time scales; (II) an AI firing pattern emerges; and (III) neuronal
avalanches display power laws. This is the first time that these three phenomena appear
simultaneously in the same network activity. Thus, we show that AI activity and PL avalanches may
coexist into a single dynamics, provided that adaptation mechanisms are in place. In our model,
the AI firing pattern is a direct consequence of the hovering close to the critical line where external
inputs are compensated by threshold growth, creating synaptic balance for any E/I weight ratio.

Author summary

Two competing frameworks are employed to understand the brain spontaneous activity, both of which are
backed by computational and experimental evidence: globally asynchronous and locally irregular (AI) activ-
ity arises in excitatory/inhibitory balanced networks subjected to external stimuli, whereas avalanche activity
emerge in excitable systems on the critical point between active and inactive states. Here, we develop a new
theory for E/I networks and show that there is a state where synaptic balance coexists with AI firing and power-
law distributed neuronal avalanches. This regime is achieved through the introducing of short-term depression
of inhibitory synapses and spike-dependent threshold adaptation. Thus, the system self-organizes toward the
balance point, such that its AI activity arises from quasicritical fluctuations. The need for two independent
adaptive mechanisms explains why different dynamical states are observed in the brain.

1. Introduction

Self-organized quasicriticality (SOqC), as defined by Bonachela and Muñoz [1], appears in nonconservative
models for forest-fires, earthquakes and neuronal networks [2]. The self-organization consists of a local load-
dissipation homeostatic mechanism incorporated in a system that has an underlying critical point. In the
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context of neuroscience, this point is often a second-order absorbing state transition where neuronal avalanches
present apparent power law scaling. These adaptive networks frequently include only excitatory neurons, and
the homeostatic mechanism is implemented as short-term synaptic depression or, sometimes, as adaptation of
the firing probabilities or thresholds of the neurons (see [3, 4] for reviews). Due to the empirical observation
of neuronal avalanches [5, 6], these models are considered to be good representations of the spontaneous
activity of the healthy cortex [7]. For example, absorbing state models were employed to show the emer-
gence of the functional brain networks [8] and to determine how the hippocampus impairment affects brain
communication in epilepsy patients [9].

Alternatively, when inhibitory neurons are included in the model, a globally asynchronous and locally
irregular (also known as AI) regime of spontaneous firing emerges (see [10, 11] for reviews). Such activity
is generated by a dynamic balance of inhibitory and excitatory inputs to the cells [12], where the net synaptic
current tends to remain close to zero. The AI regime usually requires tuning of the parameters of the net-
work, such as the thresholds or the excitatory–inhibitory (E/I) synaptic weight ratio [13]. Although neuronal
avalanches were not found in synchronous-irregular (SI) states of E/I networks [14], we showed that synap-
tic balance may be achieved via the same homeostatic mechanisms that generate a quasicritical state [15]. In
addition, E/I networks with weak excitation and inhibition tend to show neuronal avalanches away from the
AI regime [16].

Here, we develop the theory of a self-organized E/I network, where inhibition homeostatically adapts
according to short-term synaptic depression and thresholds adapt by increasing after each neuronal firing.
We derive analytical expressions for the firing rates and compare them to simulations. Interestingly, our net-
work robustly evolves in time toward a state close to the critical point, where: (I) synapses are balanced, (II)
the firing pattern is AI; and (III) neuronal avalanches emerge and follow a power law. The regime where these
three distinct phenomena coexist has never been reported, and they emerge, in our framework, due to the
two independent mechanisms of homeostatic adaptation that leads to self-organized quasicritical fluctuations.
Specifically, synaptic balance occurs for any choice of parameters, i.e., regardless of any sort of parameter tun-
ing. Neuronal avalanches that obey power laws appear when the homeostatic adaptation time scales are large
enough (hundreds to a few thousands of milliseconds, hence biologically plausible).

We show that threshold adaptation plays a dominant role when compared to synaptic depression, even
when both are subjected to the same time scales. Thus, the self-organized system tends to hover in an AI state
where external inputs are dynamically compensated by the spike-dependent thresholds.

In a previous work [15], we showed that without the adaptation in synapses and thresholds, the E/I network
studied here presents a typical transition into an absorbing state typical of the contact process, causing the
different firing patterns (AI, SI, and critical avalanches) to be separated in the phase diagram. We also showed
that dynamic synaptic balance occur, but we did not prove it rigorously, and we did not test whether the AI
state generated by SOqC also displayed power law avalanches.

Thus, all of these developments are done in the current work: first, we introduce the E/I network and the
simulation details in the model and methods sections. Then, we present the results previously obtained for the
static model (i.e., constant inhibition and threshold) in the mean-field approximation section. This is followed
by the introduction of our novel results with the study of a mean-field three-dimensional map for the home-
ostatic system; we calculate the network firing rates, characterize the critical point, and analytically determine
the quasicritical self-organization conditions for the system (both for its firing rates and for its synaptic cur-
rents). Finally, we present the neuronal avalanches and scaling of the model and discuss its implications in the
last two sections.

2. The model

We study the excitatory/inhibitory network of [15], where each neuron is a stochastic leaky integrate-and-fire
unit with discrete time step equal to 1 ms, connected in an all-to-all graph. A binary variable indicates if the
neuron fired (X[t] = 1) or not (X[t] = 0). The membrane potential of each cell i in either the excitatory (E)
or inhibitory (I) population is given by

VE/I
i [t + 1] =

⎡
⎣μiV

E/I
i [t] + Iext

i [t] +
1

N

NE∑
j=1

JijX
E
j [t] − 1

N

NI∑
j=1

WijX
I
j [t]

⎤
⎦(

1 − XE/I
i [t]

)
, (1)

where μ is the leak time constant, and Iext
i [t] is an external current. The synaptic parameters are Jij (the

excitatory coupling strength), and Wij = gJij (the inhibitory coupling strength); g is the inhibition to exci-

tation coupling strength ratio. XE/I
i [t] is a stochastic variable that turns to 1 with a piecewise linear sigmoidal
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probability Φ(V),

Φ(V) ≡ P
(
X = 1|V

)
= (V − θ)Γ Θ(V − θ) Θ(VS − V) +Θ(V − VS), (2)

where θ is the firing threshold, Γ is the firing gain constant, VS = 1/Γ + θ is the saturation potential,
and Θ(x > 0) = 1 (zero otherwise) is the step function. The total number of neurons in the network is
N = NE + NI, where the fractions of excitatory and inhibitory neurons are kept fixed at p = NE/N = 0.8 and
q = NI/N = 0.2, respectively, as reported for cortical data [17]—although the values of p and q do not alter
the dynamics of the network [15].

Note that the membrane potential is reset to zero at the t + 1 instant if a spike occurred at t because of

the factor (1 − XE/I
i [t]). In addition, regardless of being part of the excitatory or inhibitory population, the

transition to Xi(t) = 1 in step t is always followed by Xi(t + 1) = 0. This is because at t + 1, Vi(t + 1) = 0
and Φ(0) = 0. The Xi variables are independently evaluated according to Φ(Vi) for each neuron i at each
time step t.

All parameters are assumed to be self-averaging (i.e., single-peaked distributions with small coefficients
of variation). Letting the excitatory synaptic current be IE

i [t] ≡ (1/N)
∑

j Jij XE
j [t] and the inhibitory be

II
i [t] ≡ −(1/N)

∑
jWijXI

j [t] (all the parameters are positively defined, hence the minus sign in front of the
inhibitory inputs), we define the net synaptic current,

ΔIE/I[t] = IE[t] + II[t]. (3)

Equation (1) is the same for both excitatory and inhibitory populations. This happens because the inhibitory
self-coupling and the inhibitory coupling to the excitatory population are both given by Wij, whereas the self-
coupling of the excitatory population and the coupling of the excitatory to the inhibitory population are both
given by Jij.

The average over neurons of equation (1) yields the mean-field of this network. We call this the static
version of the model, since the averages W = 1/N2

∑
ij Wij and θ = 1/N

∑
i θi are kept constant in time. It

presents a mean-field directed percolation (MF-DP) critical point [15, 18] at g = gc, such that g < gc is the
active excitation-dominated (supercritical) phase and g > gc corresponds to the inhibition-dominated absorb-
ing state (subcritical). The synapses in the critical point gc are dynamically balanced: fluctuations in excitation
are immediately followed by counter fluctuations in inhibition. The avalanche distributions are the typical
ones expected for a mean-field branching process [15, see also figure 1]. Moreover, the critical point can only
be reached when the average external stimulus is of the order of the average threshold, Iext ∼ θ. Thus, we define
the parameter h = Iext − (1 − μ)θ as the external suprathreshold current; it is analogous to an external field
acting on standard models for directed percolation [19, 20]. The critical point is then (gc, hc) with hc = 0. A
summary of the phase transitions undergone by the static model and its avalanches is given in figure 1.

While some authors hypothesized that the brain must be tuned to criticality by evolution [21], others claim
the it just needs to self-regulate [22]. One of the mechanisms for brain criticality relies on the need for self-
organization toward a phase transition [23], or, particularly, a critical point [2–4]. The typical critical point of
contact-process-like systems requires two constraints [19, 20], one for the coupling (in our work identified
with the E/I synaptic coupling g) and the other on the external field (here expressed by the balance between
external currents and the firing threshold). Previous works have never dealt with two adapting variables, so
we want to explore what are the consequences of having two competing homeostatic mechanisms in the same
system. We then introduce the homeostatic version of the model by letting W (the inhibitory coupling) and θ
vary with time:

Wij[t + 1] = Wij[t] +
1

τw

(
A − Wij[t]

)
− uwWij[t]XI

j [t], (4)

characterizing inhibitory depression plasticity, and threshold adaptation,

θi[t + 1] = θi[t] − 1

τθ
θi[t] + uθθi[t]Xi[t]. (5)

The parameters uθ and uw are the fractions of threshold increase and synaptic depression, respectively, τ θ
and τw should be moderately large decay time scales and A is the maximum inhibitory coupling strength (or
simply the inhibition amplitude). This type of firing threshold dynamics is known to generate spike frequency
adaptation by mimicking the slow inactivation of Na+ channels accumulated by successive spikes [24, 25].
Instead of inhibition, we could also homeostatically regulate the excitatory synapses [15], Jij, but experimental
evidence suggests that it is the inhibitory synapses that tend to adapt to the excitation level of the network, and
not the contrary [10]. Notice that the Wij are the weights from I → I and I → E, so depressing them decreases
the inhibition over inhibitory neurons. This, in turn, decreases network activity.
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Figure 1. Phase diagram and avalanches of the static model. (A) and (B) Phase diagram given by the solutions of equation (22)
with μ = 0, and W and θ constant in time. The axis parameters are given by: g = W/J and h = Iext − (1 − μ)θ. The labels refer
to the phases where the activity is: asynchronous regular (AR), asynchronous irregular (AI), and synchronous irregular (SI). The
ρ = 0 is a phase with zero average firing rate. (C) Avalanches on the critical point of the static model (constant W and θ)
correspond to the expected MF-DP phase transition, yielding P(s) ∼ s−3/2 and P(T) ∼ T−2 (equations (6) and (7)), with
〈s〉 ∼ T2, respecting the crackling noise scaling relation (equation (8)). The critical point (gc, hc) requires two fine-tunings, and it
is separated from the AI state. Threshold adaptation will self-organize the system along the h axis and synaptic depression, along
the g axis. In the text, we show that the addition of these homeostatic mechanisms are able to keep PL avalanches while generating
a synaptically balanced AI state.

3. Methods

MF-DP systems are known to generate a SOqC state when excitatory synapses are depressing through an
equation similar to the one above [2, 26]. Notwithstanding, here we have not only one, but two simultane-
ous homeostatic dynamics acting to self-organize the network. In a previous work, we concluded that this
homeostatic version of the model is capable of generating a SOqC state possessing synaptic balance [15], but
that conclusion relied only on numerical evidence. In the following sections, we will derive an analytical mean-
field approximation for both the static and homeostatic versions of the model, and we will study the conditions
for the emergence of the SOqC state in this network. Not only that, but we will also determine that the home-
ostatic model is always synaptically balanced for large enough recovery time scales. And finally, we will show
that the SOqC dynamics generates power law (PL) avalanches when the activity is AI.

The mechanism that generates this behavior works as follows: when inhibition and threshold are constant
in time (i.e., the static system), the network presents a true MF-DP critical point with scale-invariant avalanche
distributions that obey the crackling noise scaling relation [15, see also figure 1]. The activity in this system
needs to be sparked by external stimuli whenever the system falls into the absorbing state, as usual for any
contact-process-like dynamics [19]. Now, we let W and θ respond to network activity by growing through
negative and positive feedback, respectively. The resulting dynamical system fluctuates homeostatically around
the critical point that was present in the static system [3, see also figure 3]. This eliminates the requirement
for artificially inducing avalanches by external stimulus. However, the underlying critical point is approached
only to the O

[
1/τθ

]
, making the self-organizing system always slightly supercritical. As a consequence, the

avalanches of the adapting system will have PL shape within a restricted (although large) range of sizes and
duration.

3.1. Simulations
We ran simulations corresponding to equations (1)–(5), and compared them to the analytical results developed
in the forthcoming sections. Unless otherwise stated, we fixed the parameters p = 0.8 (fraction of excitatory
neurons), q = 0.2 (fraction of inhibitory neurons), Iext = 1 (external current), Γ = 0.2 (neuronal firing gain),
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Figure 2. Network steady state activity. Average network activity as a function of τ compared to the mean-field analytic solution,
equation (29) as a solid line. We ran simulations for different network sizes (N = 104, N = 105, N = 106) to check whether
increasing the number of sites would better approach the MF solution, but the results for different sizes are visually
indistinguishable. We compare two configurations: fine-tuned to the critical point, A = Ac = 30 from equation (32) (blue, filled
symbols), and in the supercritical regime, A = 73.5 > Ac (red, empty symbols). Symbols are the steady state averages of the
network activity given by equations (1)–(5); they fall on top of the MF approximation, except for W(t). The reason for this
discrepancy in W is given in the text. Dashed lines between symbols serve only as guides to the eye.

J = 10 (excitatory weight), and uw = uθ = u = 0.1 (the fraction of inhibition depression and threshold adap-
tation, respectively). The parameter μ is the leakage time scale, and we show in the mean-field approximation
section that using μ = 0 does not change the phase transition, and hence this value is used for simulations.
The remaining parameters, N (total number of neurons in the network), τw (recovery time constant of the
inhibitory synapses), τθ (recovery time of the threshold) and A (maximum dynamical inhibition) were sys-
tematically explored. Some simulations have τ ≡ τw = τθ . Figure 2 shows the average activity of the network
simulated as a function of τ for different N, compared to the analytical description derived in the next section.

All simulations were ran for a total of 1000 000 time steps, and averages were calculated after discarding the
first 10 000 time steps to avoid transient effects. We use the conversion factor of 1 time step = 1 millisecond,
since a spike of a neuron, here, takes 1 time step.

3.2. Avalanche computation and distributions
The simulation is the numerical solution of equations (1)–(5), and we measure the instantaneous firing rate
of the network with a total of N neurons, ρ[t] = (1/N)

∑N
1 Xi[t], where Xi[t] indicates a firing of neuron

i at instant t (in any of the E/I populations). The total number of firings is S[t] = Nρ[t], and we choose the
threshold Sth = r(maxt S[t] − mint S[t]), with r = 0.2 as the fraction of the activity to be discarded. The results
presented here are robust for a wide range of r values, provided that r is neither too close to zero nor to one.
Then, we calculate the avalanches using the new time series, S

′
[t] = S[t] − Sth: an avalanche of size sk and

duration Tk is defined as

sk =

tk+1∑
t=tk

S′[t], Tk = tk+1 − tk,

where tk and tk+1 are two consecutive moments of silence, i.e. S′[tk] = S′[tk+1] = 0 and S′[t]|tk+1
t=tk

> 0. This
method generates consistent scaling between 〈s〉 and T in the Ornstein–Uhlenbeck process [27], and also in
the MF-DP avalanches (see figure 1).

We compare the distributions to the PLs

P(s) ∼ sτ
′

, (6)

P(T) ∼ Tτ ′t , (7)

where we used a prime in the exponents to avoid confusion with the adaptation time scales, τ , τ θ and τw , and
keep consistent with the absorbing state phase transition literature [28]. When the system is critical, s and T are
correlated through 〈s〉 ∼ T1/(σν⊥z), so the exponents τ ′ and τ ′t must follow the crackling noise scaling relation
[28, 29]:

τ ′t − 1

τ ′ − 1
=

1

σν⊥z
, (8)

5
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where σ, ν⊥ and z are other critical exponents. If the equality in equation (8) still holds after both sides being
independently fitted, then it is a compelling evidence of a critical system. The left-hand side comes from the
distribution of avalanches, and the right-hand side, from the 〈s〉 (T) plot.

We used the censored maximum likelihood estimator (MLE) to obtain the exponents of the avalanches
using a discrete power law distribution as a candidate function [30],

f (x) =
x−α

kmax∑
k=kmin

x−α
k

, (9)

where α is the power law exponent (corresponding to τ ′ or τ ′t, depending on whether we are fitting the size s
or duration T distribution, respectively), and kmin and kmax are the indices of the lower and upper limits of the
x histogram data points to which the distribution will be fitted (again, for either s or T, independently of one
another). For convenience, we evaluated the log-likelihood function for this distribution as follows:

l(α) ≡ ln

(
n∏

k=1

f (xk)

)
(10)

= −n ln

⎛
⎝ kmax∑

k=kmin

x−α
k

⎞
⎠− α

n∑
k=1

ln(xk), (11)

where n is the total number of data points in the histogram. The α that maximizes l(α) is the fitted value; we
determined it numerically by sweeping α between 1 and 5 in 0.01 increments [31].

3.3. Network attractors and the asynchronous irregular state
We define the attractor of the system by the temporal average of the asymptotic network activity after discarding
an initial transient, 〈ρ〉 ≡ 1/Tsim

∑
t ρ[t], 〈W〉 ≡ 1/Tsim

∑
t W[t], 〈θ〉 ≡ 1/Tsim

∑
t θ[t], where Tsim is the total

simulation time, ρ[t] is the firing rate (fraction of firings in step t), and W[t] and θ[t] are the average over sites
of Wij[t] and θi[t], respectively.

The AI state could be visually identified by a spiking activity in which neither the network is synchronized
(i.e., there is no apparent global frequency in the ρ[t] variable), nor the neurons emit spikes regularly (with
a constant and homogeneous number of spikes per second) [13]. However, an easier and more quantitative
criterion is to assume that the activity is AI when the coefficient of variation (CV) of the interspike interval
(ISI) is greater than unity [32]. By dimensional analysis, we assume that the average instantaneous ISI of the
network is ISI[t] = 1/(Nρ[t]) (since Nρ[t] is the number of events in a time step). The coefficient of variation
is calculated over the time fluctuations of the ISI[t] as CV[1/(Nρ)] =

√
Var[1/(Nρ)]/ 〈1/(Nρ)〉, considering

only the time steps in which 1/(Nρ) is finite (i.e., ignoring ρ[t] = 0).

3.4. Mean-field approximation
The mean-field approximation is exact for our complete graph network with self-averaging parameters. Thus,
we define the synaptic couplings as J =

〈
Jij

〉
and W =

〈
Wij

〉
(such that g = W/J), Iext[t] = 〈Iext

i [t]〉 and
μ = 〈μi〉, where 〈.〉 means average over neurons. We also define the firing rates (the fraction of active sites per
time step) ρE[t] = 1/NE

∑
j XE

j [t] and ρI[t] = 1/NI
∑

j XI
j [t]. The fractions of excitatory and inhibitory neu-

rons are p = NE/N and q = 1 − p = NI/N, respectively. Under these conditions, we can average equation (1):

VE/I[t + 1] =
[
μVE/I[t] + Iext[t] + pJρE[t] − qWρI[t]

] (
1 − ρE/I[t]

)
. (12)

We may omit the E/I superscripts since this equation holds for both populations.
From the definition of the firing function,Φ(V) in equation (2), the model may have two types of stationary

states: the active state, such that the density of active sites is ρE = ρI ≡ ρ∗ > 0, and the quiescent state, where
ρE = ρI ≡ ρ0 = 0. At instant t + 1, the active population is simply given by

ρE/I[t + 1] =

∫ ∞

θ

Φ(V) PE/I
t (V) dV , (13)

where Φ(V) is the conditional probability of firing at t + 1 given V at t, and PE/I
t (V) is the probability of having

a neuron with potential V at time t.
This relation is sufficient for deriving the temporal evolution map for ρ because the reset of the potential

causes the kth subpopulation of neurons that fired together to also evolve together until they fire again. This

6
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allows us to write PE/I
t (V) as a sum of subpopulations,

PE/I
t (V) =

∞∑
k=0

η
E/I
k [t] δ

(
V − UE/I

k [t]
)

, (14)

with δ(V) the Dirac’s delta function and

η
E/I
k+1[t + 1] =

(
1 − Φ(UE/I

k [t])
)
η

E/I
k [t], (15)

UE/I
k+1[t + 1] = μUE/I

k [t] + Iext[t] + pJρE[t] − qWρI[t], (16)

where UE/I
k [t] is the membrane potential of the kth population of excitatory or inhibitory neurons that fired k

time steps before t and η
E/I
k [t] is the proportion of such neurons with respect to the total excitatory or inhibitory

population. The potentials U come from equation (12), and the k = 0 population has UE/I
0 [t] = 0 for any t,

since the reset potential is zero. Then, equation (13) is reduced to:

ρE/I[t + 1] =
∞∑

k=0

Φ(UE/I
k [t]) ηE/I

k [t]. (17)

A neuron with firing age k at time t can, at time t + 1, either fire with probability Φ(UE/I
k [t]) or become part

of the population with firing age k + 1 that has density ηE/I
k+1[t + 1].

The stationary state is given by the fixed point of equation (17). Inserting equations (15) and (16) into
equation (17) and assuming that the state of the system at t + 1 equals the state at t, we get:

ρ =

∞∑
k=1

ηkΦ(Uk), (18)

ηk = ηk−1(1 − Φ(Uk−1)), (19)

Uk = μUk−1 + Wρ+ Iext = (Wρ+ Iext)
k−1∑
n=0

μn = (Wρ+ Iext)
1 − μk

1 − μ
, (20)

where U0 = 0, and we have used W = pJ − qW because ρE = ρI = ρ. Plugging equations (19) and (20) into
(18) and shifting the sum index yields:

ρ =

∞∑
k=0

ηk(1 − Φ(Uk))Φ(μUk + Wρ+ Iext).

Considering the case where the stationary potentials lie on the linear part of the firing function, Φ, i.e.
θ < U1 < · · · < U∞ < VS, with U∞ = (Wρ+ Iext)/(1 − μ) being the limiting potential when k →∞. Then,
using the expression from equation (2), we may explicitly write the second Φ(V) in the previous equation to
get

ρ =
∞∑

k=0

ηk(1 − Φ(Uk)) Γ (μUk + Wρ+ Iext − θ).

By using the relation in equation (18) and the normalization
∑∞

k=0ηk = 1, we obtain:

ρ = −ΓWρ2 +
(
μ+ ΓW − Γ(Iext − θ)

)
ρ+ Γh − Γμ

∞∑
k=0

ηkΦ(Uk)Uk,

where we define h = Iext − (1 − μ)θ as the suprathreshold external current, which may be regarded as an
external field. Using equation (20) to describe Uk only outside of the Φ function argument in the sum of the
last term, leads to:

ΓW

1 − μ
ρ2 +

(
1 − μ+

Γh

1 − μ
− ΓW

)
ρ− Γh − μ(Wρ+ Iext)

1 − μ

∞∑
k=0

ηkΦ(Uk)μk = 0, (21)

that holds when all stationary potentials lie in the linear region of the Φ function, i.e., when U1 > θ and U∞ <

VS, as we have assumed (other solutions are trivial two-cycles or a fixed point equal to zero—the absorbing
state).
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3.5. Critical exponents without homeostasis
The leakage of the cells should not be instantaneous, but rather happen in the time scale given by ∼ 1/μ.
Hence, it is reasonable that 0 < μ � 1 is the important range for the dynamics of the network. However, we
show here that the value of μ does not change the critical exponents, and that μ = 0 is well-defined. Within
this range, the sum in equation (21) converges to zero close to the critical point Wc, or whenever the network
lies in a silent regime (zero firings in average). This happens because, when in silence, the firing rate of the
network ρ =

∑
k ηkΦ(Uk) → 0 (which holds arbitrarily close to W c as well), and ηkΦ(Uk)μk � ηkΦ(Uk) for

k � 0. The firing rate ρ is the order parameter and, thus, it must go to zero on the critical point. In this case,
equation (21) is simplified to:

ΓW

1 − μ
ρ2 +

(
1 − μ+

Γh

1 − μ
− ΓW

)
ρ− Γh = 0. (22)

The critical point lies on the null external field, h = hc = 0, yielding the steady solution to equation (22), also
known as the order parameter,

ρ =
W − W c

W
(1 − μ) ∼ (W − Wc)β , (23)

with β = 1 being its corresponding critical exponent, and

Wc =
1 − μ

Γ
. (24)

These relations can also be written in terms of the synaptic coupling ratio, g = W/J, as:

ρ =
g − gc

g − p/q
(1 − μ), gc =

p

q
− 1 − μ

qΓJ
. (25)

For μ = 0, the expression for gc reduces to the one obtained previously in reference [15].
The field exponent is obtained by isolating h in equation (22), taking W = Wc, and expanding for small ρ,

h =
(1 − μ)ρ2

(1 − μ− ρ)Γ
∼ ρδh

Γ
, (26)

with δh = 2. The susceptibility exponent, χ = ∂ρ/∂h|h=0, is obtained by differentiating equation (22):

χ =
∂ρ

∂h

∣∣∣∣
h=0

=
W c(1 − μ+ ΓW) − (1 − μ)W

W(W − W c)(1 − μ)
∼ (W − W c)−γ , (27)

with γ = 1. This value, together with β = 1 and δh = 2 puts this model into the mean-field directed percola-
tion (MF-DP) universality class [20, 28]—see figure 1 for a complete phase diagram. Thus, having 0 � μ < 1
does not change the nature of the phase transition undergone by the E/I network, as expected [15, 18, 33].
Also, we see that taking μ = 0 is well-defined, since equations (21)–(27) remain valid. For that reason, we use
μ = 0 in all our simulations.

3.6. The homeostatic steady state is SOqC
So far, we have seen the static version of the model, where all the synaptic weights J and W, and the thresholds θ,
remain constant over time. It has an MF-DP phase transition. Now, we will introduce homeostatic mechanisms
to W and θ in the hopes of generating a SOqC state [1, 3]. We will derive a mean-field map for the dynamics of
the network subjected to homeostatic synaptic inhibition and threshold adaptation. Many studies have shown
that a single homeostatic dynamics leads to hovering around the critical point [34–38]. Here, we investigate in
details whether two independent homeostatic dynamics are able to do the same. The discussion in this section
is systematically explored in terms of the phase diagrams of the E/I network in figures 3 and 4.

Sinceμdoes not change the critical exponents, we takeμ = 0 for simplicity, such that all the subpopulations
k � 1 have the same membrane potential: from equation (16), Uk+1[t] = Uk[t] = U1[t] (recall that U0 = 0).
This reduces the probability in equation (14) to Pt(V) = ρ[t]δ (V) + (1 − ρ[t]) δ(V − U1[t]). Note that now
there are only two subpopulations: the neurons that fired at time t, corresponding to η0[t] = ρ[t], and the
neurons that did not fire, yielding η1[t] = 1 − ρ[t] from the normalization condition

∑
k ηk[t] = 1. Using
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Figure 3. Attractors of the SOqC dynamics over the static phase diagram. Simulations of the system given by equations (1)–(5).
(A) and (B) The average of the steady state (i.e., the attractor) of each particular parameter configuration is plotted as a symbol.
Increasing symbol sizes indicate the increasing of the parameter mentioned in the legend. Configurations that yielded AI activity
(defined by CV[1/(Nρ)] > 1 [32]) with PL avalanche distributions are represented with filled symbols (empty symbols do not
satisfy both criteria simultaneously). All parameter configurations yield dynamically balanced E/I synapses to O

[
1/τθ

]

(equation (34)). The attractors are overlayed on the static phase diagram to show that the network always converges to either: the
bifurcation lines (fold, transcritical and flip); or strictly to h ∼ hc = 0 when τ θ � 1; but the synaptic depression is not able to
lead the system toward g ∼ gc without tuning A = Ac, even though PL avalanches are found in many different configurations (see
figure 6) with many amplitudes A. (B) A zoomed-in version of the phase space in the left; and (C) an example of a particular
parameter configuration that yields AI activity.

Figure 4. Phase diagrams of the SOqC mean-field map. Phase diagrams of the homeostatic model in the planes (A) τ vs A; (B) τ θ

vs A for fixed τw = 1000; and (C) τ θ vs A for fixed τw = 10 000. The solid line marks a numerically determined subcritical
Neimark–Sacker (N–S) bifurcation from the stable fixed point of equation (28) (colored region), the dotted line indicates a flip
bifurcation for large τθ and A, and the dashed line highlights the fine-tune of the inhibition amplitude A = Ac (equation (32);
configurations along this line correspond to the upward triangles in figure 3; it always borders the N–S bifurcation). The color
represents the values of 〈W〉 = W∗, so the critical fluctuations (〈ρ〉 ∼ ρc, 〈W〉 ∼ Wc, 〈θ〉 ∼ θc) are only found in the vicinity of
the Ac line (pink, red, orange tones). PL avalanches with dragon-king events are found in the whole colored region for large
enough τθ .

this probability in equation (13) and averaging equations (4) and (5) over sites, we obtain the following three-
dimensional mean-field map:

ρ[t + 1] = (1 − ρ[t])Γ
(
pJρ[t] − qW[t]ρ[t] + Iext − θ[t]

)
,

W[t + 1] = W[t] +
1

τw
(A − W[t]) − uwW[t]ρ[t],

θ[t + 1] = θ[t] − 1

τθ
θ[t] + uθθ[t]ρ[t].

(28)

Here, we are only interested in the solutions with ρ > 0, since we used only the linear part of the Φ function
to derive the ρ[t] map in equation (28). The steady state of the mean-field map is given by the fixed point

(ρ∗, W∗, θ∗) = (ρ[t + 1], W[t + 1], θ[t + 1]) = (ρ[t], W[t], θ[t])

9
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and yields two different types of solutions: the stable dynamics (when θ∗ > 0),

ρ∗ =
1

uθτθ

W∗ =
A

1 + uwτw
uθτθ

θ∗ = Iext +
pJ

uθτθ
− qA

uθτθ + uwτw
+

1

(1 − uθτθ)Γ

(29)

and the unstable hyper-excited state (θ∗ = 0). The stability of the asymptotic solution in equation (29) was
numerically checked.

To compare the mean-field map with simulations, we run the system given by equations (1)–(5) for a long
time (of the order of N), then discard the transient of about 104 time steps, then we average over time the
remaining time series of the three variables, yielding 〈ρ〉 (to be compared with ρ∗), 〈W〉 (to be compared with
W∗), and 〈θ〉 (to be compared with θ∗). We call these averages the attractor of the network. The fixed point in
equation (29) is compared with the averages from the simulations in figure 2, yielding a great agreement for
all-to-all networks with more than 104 neurons.

The critical point of the underlying system that we want to dynamically reach is given by W c = pJ − qWc =

1/Γ (equation (24)) and hc = Iext − θc = 0, which yields:

ρc = 0,

Wc =
p

q
J − 1

qΓ
,

θc = Iext.

(30)

From equation (29), we see that taking fixed uθ , uw and τw with uθτ θ � 1 is enough to achieve

ρ∗ ∼ ρc = 0 +O
[
1/τθ

]
,

θ∗ ∼ θc = Iext +O
[
1/τθ

]
,

(31)

but that would still leave us with
W∗ ∼ A +O

[
1/τθ

]
,

when τ θ �= τw, or

W∗ =
A

1 + uw/uθ
,

when both homeostatic dynamics have equal time constants.
We can visualize whether the system has dynamically reached the critical point by plotting the attractor

of the network (given by the averages of ρ, W and θ) on top of the phase diagram of the static system from
figure 1. This is done in figure 3(A). Each symbol in this plot represents the asymptotic attractor for a different
parameter configuration of the system. For example, take the configuration where τ θ = τw = τ and A = 73.5,
which is plotted as blue circles (the other parameters are set with the values given in the methods section).
The size of the circle is proportional to τ , so we notice that as τ increases, the closer the attractor gets to
〈h〉 = Iext − 〈θ〉 = 0 (and hc = 0 from the static system). In fact, as we just calculated above, the approach to
〈h〉 = 0 happens as fast as O

[
1/τ

]
. The same reasoning here applies to all other parameter configurations in

figure 3(A), and the size of their corresponding symbols is proportional to the parameter that is indicated in
the legend as increasing .

Even though we see in figure 3(A) that the attractors approach θ ≈ Iext, the same does not happen over
the g axis, considering 〈g〉 = 〈W〉 /J. We can only meet this last requirement for reaching the critical point,
W∗ ∼ Wc (or equivalently, g∗ ∼ gc = Wc/J), by fine-tuning the parameter A = Ac, with

Ac =
pJΓ− 1

qΓ

(
1 +

uwτw
uθτθ

)
. (32)

This particular choice of A = Ac is shown in figure 3(A) as green straight triangles, and indeed we see that it
goes exactly over the top of the underlying critical point (g, h) = (gc, hc) = (1.5, 0) as τ is increased.

In order to visualize the fine-tuning A = Ac, we trace the phase diagrams of the mean-field map for the
homeostatic model, equation (28), in figure 3(B) for equal time scales, τ θ = τw = τ and 3C (for indepen-
dent time scales). The equal time scale case is simpler, in that Ac is a constant that borders a subcritical
Neimark–Sacker (N–S) bifurcation for large enough τ (determined numerically). This bifurcation separates
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a phase where the model presents a stable fixed point (plotted in colors, representing stochastic oscillations in
the network simulation) from a regime of large amplitude periodic oscillations. The same separation happens
when the time scales τ θ and τw are independent, and the curve defined by Ac still borders the N–S bifurcation.
The region painted in shades of red close to the A = Ac line, is where the so-called quasicritical fluctuations
appear, since in these regions, we get W∗ = 〈W〉 ∼ Wc in addition to equation (31).

To understand why the fine-tuning is necessary, it is useful to isolate W∗ from the ρ[t] map in equation (28),
using ρ∗ = 1/(uθτ θ),

W∗ =
p

q
J − 1

qΓ

1

1 − 1
uθτθ

− uθτθ
q

(θ∗ − Iext)

W∗ ∼ Wc −
uθτθ

q
(θ∗ − Iext) +O[1/τ 2

θ ].

(33)

Since θ∗ − Iext ∼ O
[
1/τθ

]
, the last term in equation (33) is of O [1], resulting in a displacement from the

critical point along the g = W∗/J axis that is independent of τ θ (see in figure 3 how the attractors are scattered
all over the phase diagram of the underlying static system).

Although the requirements upon ρ∗ and θ∗ are met through quasicritical fluctuations when τ θ � 1, the
system still requires fine-tuning on the inhibitory synaptic amplitude A, as described by equation (32), to be
able to dynamically hover close to the critical point (gc, hc) in figure 3. However, setting A = Ac is not required
to obtain AI activity, and later we will show that it is not required for getting PL avalanches either. This is
because W∗ ∼ A for τθ →∞, instead of tending to Wc. This fine-tuning on the amplitude parameters are
known to be needed in self-organizing neuronal systems without bulk-conservation of membrane potential
[2]. They compensate for the dissipation of electrical activity by invariably forcing the synapses to restore
themselves toward A after every spike.

However, an interesting result of having two homeostatic mechanisms is that equation (33) tells us how to
overcome the fine-tuning: if θ∗ − Iext ∼ O

[
1/τ 2

θ

]
, then all the requirements of homeostatic criticality would be

met without any other parameter tuning. Conversely, equation (33) also means that the synaptic homeostasis
is constantly being canceled by the threshold dynamics, avoiding the complete dynamical reach of the critical
point. Nevertheless, the system is capable of self-organizing toward ρ∗ ≈ 0 and θ∗ ≈ Iext.

3.7. The homeostatic steady state is balanced
The self-organizing of the system toward the critical point is weak, yielding a SOqC state due to dissipation. But
what happens to the synaptic currents during this self-organization process?—here, we show that the SOqC
state achieves perfectly balanced synaptic currents. This demonstration had only been done numerically in a
previous work [15].

The net synaptic current is given by equation (3). In the mean-field steady state, we have the excitatory
current IE = pJρ∗, and the inhibitory one, II = −qW∗ρ∗, where ρ∗ and W∗ are given by equation (29), resulting
in the net contribution

ΔIE/I = IE + II =
pJ

uθτθ
− qA

uθτθ + uwτw

ΔIE/I ∼ 0 +O
[
1/τθ

]
,

(34)

taking the limit uθτ θ � 1 for fixed uθ , uw and τw . In fact, our model achieves synaptic balance whenever the
parameters obey the conditions uθτ θ � uwτw � 1, and uθτθ � pJ − qA. This analytical equation is in very
good agreement with simulation results for the synaptic currents, IE, II and ΔIE/I (figure 5). As τ and N grow,
both the excitatory and inhibitory currents and their amplitudes tend to zero.

This shows that the homeostatic system is balanced up to O
[
1/τθ

]
. This means that although we may have

different ratios of E/I currents (as expressed by A/J), and different regimes of steady activity, as evidenced by
each attractor in figure 3, the system will still manage to dynamically balance its synaptic currents due to the
homeostatic mechanisms.

3.8. Avalanches and active cluster scaling
We showed in the previous sections that the fundamental requirement to obtain a quasicritical dynamics and
synaptic balance is τ θ � 1. Here, we show how this condition changes the distribution of avalanches of the
homeostatic system when we have either equal or different time scales for inhibition and threshold adaptation.
In figure 6(A), we show the avalanches for equal time scales τ = τθ = τw , both with and without the fine-
tuning of A = Ac given in equation (32). The configuration with A > Ac lies in the colored region of the phase
diagram in figure 4. PL emerges for large τ , as expected, although a small bump at the tail of the distributions is
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Figure 5. Synaptic currents. (A) Stationary value of the synaptic currents and their maximum amplitudes (inset) as a function of
τ . Both tend to zero as τ grows, and the net steady current follows equation (34) with very good agreement. (B) The maximum
amplitude of the synaptic currents decays as the total number of neurons in the network grows, meaning that the synaptic balance
gets tighter with network size [11]. Symbols are simulation results and solid lines are the analytical calculations. Dashed lines
between symbols serve only as guides to the eye.

Figure 6. Avalanches of the homeostatic model. The distribution of avalanche sizes (s, left) and duration (T, center), together
with the scaling relation (right). (A) Equal time scales, τθ = τw = τ , with two values of τ . Notice two things: first, for τ = 500
(red circles and pink squares), the distributions are messy and do not follow any PL, but for τ = 104, a PL is observed for small to
intermediary avalanches, having a peak for large avalanches typical of supercritical systems. Secondly, having the fine-tune
A = Ac = 30 (equation (32)) does not improve or worsens the PL shape. (B) Different time scales, τ θ = 104 is fixed, with
τw = 105 (red circles and pink squares, Ac = 165) and τw = 3000 (blue triangles, Ac = 19.5). Notice that the PL shape remains
for any configuration of parameters here, regardless of fine-tuning A = Ac or the value of τw . (A) and (B) The avalanche
exponents that were obtained by MLE, τ

′
= 1.3 and τ ′

t = 2.33 for P(s) and P(T), respectively, are shown as dashed lines in the
left and middle panels; in solid lines, we plot the exponents of the static system, τ ′ = 1.5 and τ ′

t = 2, to show that the PLs are
visually compatible with the underlying MF-DP dynamics. In the scaling law plot (right panels), the underlying MF-DP exponent
is also shown as a solid line [1/(σν⊥z) = 2], and we plot a curve with slope = 1 as dashed line to give the reader a margin of error
for the simulation data. The PL in (A) for τ = 104 and A = 73.5 corresponds to the filled circle attractor in figure 3. This
particular configuration has all the features of E/I networks together: AI activity, synaptic balance and PL avalanches.

unavoidable. This bump is expected because 〈ρ〉 > O
[
1/τ

]
and true criticality requires ρ ≡ 0 (which is only

present on the critical point of the underlying static system, when W and θ are constant parameters).
Allowing the two time scales to be different, we also have PL avalanches with a bump for large τθ � 1 and

large τw � 1 (figure 6) irrespective of the relative values of these quantities. The PLs appear both with and
without the fine-tuning of the inhibition amplitude A. In fact, the PLs are visually better when A > Ac for all
time scale configurations shown in the figure.

The PL was adjusted by an MLE to yield τ
′
= 1.3 and τ ′t = 2.33 for the size and duration distributions,

respectively. In figures 6(A) and (B) left and middle panels, however, the PLs are also visually compatible
with the exponents of the underlying critical point (τ ′ = 1.5 and τ ′t = 2). This is expected, since the mech-
anism that generates these PLs comes from a homeostatic adaptation around an MF-DP critical point. Con-
versely, the average size versus duration, 〈s〉 (T) ∼ T1/(σν⊥z), does not generally obey the MF-DP scaling law
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Figure 7. Distribution of active clusters. (A) Histogram of ρ[t] with self-organization (the homeostatic model, main panel) and
without (the static model, top inset). For the static model, a PL is found with Fisher exponent φ = 1 only in the critical point.
Bottom inset: collapse of the data in the main panel showing the scaling function for Pcluster(ρ), yielding a scaling exponent
φ = 0.50 ± 0.17 for the homeostatic model at A = Ac. (B) The distribution of active sites for A > Ac yields the same scaling
exponent φ = 0.50 ± 0.17 as the one obtained with the fine-tuning of the amplitude A = Ac; it also presents perfect finite-size
scaling (bottom inset) despite the supercritical bump at the tail of the distribution.

with 1/(σν⊥z) = 2. Although this is expected (remember the system is always slightly supercritical because
〈rho〉� 0), the scaling law seems to be loosely obeyed for longer avalanches.

The configuration with A = 73.5 and τ = 104 in figure 6(A) corresponds to the filled circle in figure 3(A),
hence it displays AI activity (since CV[1/(Nρ)] > 1), PL avalanches with a bump and synaptic balance. The
configuration with A = Ac, however, displays PL avalanches without AI activity, since it is located in the
periodic activity region of the phase diagram of figure 4(A).

Beyond avalanche distributions, we also checked for the distribution P(ρ) sampling ρ[t] over the whole
simulation time. The advantage of this distribution is that we do not need to threshold the ρ[t] time series
to calculate avalanches. Although not standard in the brain-related literature, some percolation models can
be shown to obey a PL distribution for its instantaneous cluster sizes Pcluster(ρ) ∼ ρ−φ, where φ is known
as the Fisher exponent [39, 40]. This distribution is at times confused with the avalanche distribution, and
has been shown experimentally to obey a PL in EEG and fMRI experiments [8, 41]. The static model has
φ = 1 on the critical point g = gc with h = 0, and no PL in the super/subcritical regimes (see figure 7(A), top
inset). On the other hand, the homeostatic version of the model has φ = 1/2, and presents perfect collapse
for different network sizes N. The same PL holds irrespective of A (figure 7)—a reminiscent evidence of the
critical dynamics.

4. Discussion

In this paper, we introduced a system with a quasicritical state (generated by the homeostatic mechanisms
of synaptic depression and threshold adaptation) that presents an AI firing pattern typical of E/I networks
(defined by CV > 1 [32], see figures 3 and 6). Simultaneously, this state presents PL avalanche distributions
with exponents that are compatible with some experiments [6, 7, 42]. Namely, the exponents are τ

′
= 1.3 and

τ ′t = 2.33 for size and duration, respectively, and both PLs are indistinguishable from the MF-DP avalanche
exponents (τ ′ = 1.5 and τ ′t = 2). However, the full system is always slightly supercritical and the ensuing
avalanches do not present scale-invariance irrespective of parameter tuning [1, 2]. Consequently, the typi-
cal supercritical bump appears at the tail of the avalanche distributions [36], and the crackling noise scaling
relation is not generally valid anymore.

In previous works, the bump tended to disappear by increasing the time scale τ of the adaptation vari-
able [2, 26, 34, 36, 38, 43]. Here, this does not seem to be the case. The bump persists because, in our system,
there are two competing self-organizing dynamics, causing a shift from the critical point in the inhibition
weight variable W (equation (33)). Previously, a recurrent neural network with Hebbian plasticity and adap-
tive thresholds has been shown to give rise to PL avalanches when the network is driven by random inputs
[44]. Here, although we employ another neuron model under a different synaptic adaptation, we were able
to provide a deep understanding of how these PLs develop. In fact, the coexistence of the two mechanisms
sometimes leads our system to also hover around a first order phase transition (notice that some attractors
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converge close to the fold bifurcation in figure 3). This could be related to self-organized bistability [23]—a
mechanism known to generate avalanches with characteristic supercritical bumps.

The only way to fix the shift in the inhibition strength W is by forcing the system to hover around the critical
point with A = Ac given by equation (32) (a fine-tuning procedure). However, we showed in figure 6 many
configurations for which a PL appeared in the distribution of avalanches even without the need to fix A = Ac.
Moreover, although the crackling noise relation (equation (8)) is not valid, we can see that the homeostatic
system still has a trend to follow the scaling relation 〈s〉 (T) ∼ T1/(σν⊥z) with 1/(σν⊥z) = 2. This exponent is
only vaguely visible for long avalanches in systems with large time scales and adjusted inside the stable fixed
point region of the phase diagrams in figure 4—a reminiscent signature of the underlying critical point.

In summary, the only fine-tuning our system needs is to force it to formally hover around the MF-DP
phase transition. No fine-tuning is required for obtaining AI activity with PL avalanches and synaptic balance,
as we showed in figures 3 and 6. Synaptic balance is always guaranteed (equation (34)). The only requirement
is that the adaptation time scales must be large. We did not do an extensive search on the parameter space
for configurations where the system presented both AI activity and PL avalanches. However, we found a few
configurations that did present these two features simultaneously among the many we studied. This indicates
that these findings are neither rare nor exceptions.

There are two ways to try and improve the self-organization toward the critical point in the system that we
studied here. One is by having a threshold dynamics that converges to the external current as fast as 1/τ 2

θ . This
is because 〈W〉 is shifted from Wc due to θ∗ − Iext ∼ O

[
1/τθ

]
. A second mechanism would be metaplasticity

[45], by letting the intensity A of the inhibitory synapses adapt too. Other solutions could involve altering the
firing function, Φ(V), such that we get an equation for ρ that depends on W and θ through different types of
non-linearities.

The homeostatic adaptation of inhibitory synapses is inspired by experimental evidence. For example,
inhibitory plasticity mechanisms enforces E/I balance in the auditory cortex, with significant consequences
for learning and behavior; and in many sensory systems, sharp increases in excitation are followed by sharp
increases in inhibition a few milliseconds later [10, and references therein]. Additionally, threshold adaptation
has been observed in different types of cells, such as in the CA3 pyramidal cells and in hilar Mossy cells [46].
Here, we put these two important mechanisms together and obtain generic synaptic balance (to the O

[
1/τθ

]
),

independently of any of the parameters of the model. This is another unifying aspect of our theory, since the
balance happens concomitantly with the self-organized quasicritical fluctuations.

Looking for power laws in avalanche distributions is not the most reliable way of looking for a critical
point [42]. In absorbing state systems, such as branching processes, the theory gives us many other functions
that are potentially observable (see [20], table 4.1, and the review in [42]). In some models, the distribution of
active clusters, Pcluster(ρ), is known to present a PL in the critical point [39, 40]. Here, we showed that this is true
both for the static and the homeostatic versions of the our E/I network. Nevertheless, the cluster size exponent
decreases from 1 to 0.5 with the addition of the adaptation mechanisms. PL cluster size distributions are also
found experimentally in the brain [8, 41], although sometimes they are mistakenly referred to as avalanche
distributions.

The quest put forward by the brain criticality hypothesis continues. Our model displays synaptic balance
(independently of parameters) with AI firing patterns, under a two-variables self-organizing dynamic that
drives the system close to the critical field, hc = 0; at the same time that this seemingly stochastic AI state takes
place, the activity is complex: neuronal avalanches and activity clusters are distributed according to power
laws—a reminiscent signature of the criticality that underlies adaptation mechanism. These features are typical
of different fields in theoretical neuroscience, and our model is, then, a step toward putting these different
frameworks together.
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