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a b s t r a c t

A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally
packing identical rectangles within an arbitrary convex region are introduced in the present work. The
convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of
the items, preserving the orthogonality constraint, are allowed. The solution method is based on a com-
bination of branch and bound and active-set strategies for bound-constrained minimization of smooth
functions. Numerical results show the reliability of the presented approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many packing and cutting problems can be adequately modeled
by nonlinear programming (NLP). On the one hand, nonlinearities
can easily handle the essence of the original problem, while dis-
crete models may be such that their solutions are only approxima-
tions to the solutions of the original problem. On the other hand, in
most cases, the global solution of the NLP models may be required,
and finding the global solution of general NLP problems is a diffi-
cult task for which much research is expected in the following
years (see, for example, Birgin, Floudas, and Martínez (in press),
Floudas (1999) and the references therein). Whether or not dealing
with nonlinearities is profitable depends on the packing problem at
hand.

Packing problems for which nonlinear approaches proved to
be effective and efficient include the packing of circles (or cylin-
ders) and spheres (Birgin & Gentil, 2010; Birgin & Sobral, 2008;
Birgin, Mart�ınez, & Ronconi, 2005), and the packing of rectangles
within arbitrary convex regions with a variety of positioning
constraints (Birgin, Mart�ınez, Mascarenhas, & Ronconi, 2006;
Birgin, Mart�ınez, Nishihara, & Ronconi, 2006; Mascarenhas &
Birgin, 2010). In Mart�ınez and Mart�ınez (2003) and Mart�ınez
et al. (2009), PACKMOL was introduced as successful tool for build-
ing initial configurations for molecular dynamics simulations,
based on the packing of spheres by nonlinear optimization.
Hybrid methods that combine nonlinear models with heuristics
ll rights reserved.

in), lobato@ime.usp.br (R.D.
have also been considered in Liu, Xue, Liu, and Xu (2009),
Locatelli and Raber (2002), Maranas, Floudas, and Pardalos
(1995), Mladenović, Plastria, and Urosevic (2005), Nurmela and
Österga�rd (1997), Wang, Huang, Zhang, and Xu (2002), among
others, for packing identical or different circular pieces within
several types of objects. In Yanasse, Morabito, and Arenales
(2008), mixed integer linear and nonlinear formulations for
staged cutting problems and 2-stage two-dimensional guillotine
cutting patterns are reviewed. In Morabito and Arenales (2000)
and Yanasse and Morabito (2006, 2008), mixed integer nonlinear
models for cutting problems based on p-group cutting patterns
are introduced. The introduced models are linearized by classical
techniques – paying the price of adding new binary variables to
the models – and then solved with the modelling language GAMS
and the solver CPLEX.

In the present work, we deal with the problem of packing (or
cutting) identical rectangular items within an arbitrary convex
two-dimensional object. The object is made of an isotropic mate-
rial and therefore it does not impose any constraints on the orien-
tation of the items being packed. The cutting process, however,
requires the items to satisfy an orthogonality constraint, i.e. only
rotations of 90� with respect to a unique angle of rotation for all
the items are allowed. The unique angle of rotations (other than
the 90� rotations) for the whole set of items can also be regarded
as a rotation of the object. Given the object and the dimensions
of the identical items, the goal is to pack as many items as possible
within the object and without overlapping. The problem can be
classified as ‘‘two-dimensional, rectangular identical item packing
problem (IIPP)” according to the typology introduced in Wäscher,
Haußner, and Schumann (2007).

http://dx.doi.org/10.1016/j.cie.2010.07.004
mailto:egbirgin@ime.usp.br
mailto:lobato@ime.usp.br
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The present approach is related to two previously published
works (Birgin, Mart�ınez, Mascarenhas, et al., 2006; Birgin,
Mart�ınez, Nishihara, et al., 2006) that also deal with the packing
of identical rectangles within arbitrary convex regions. The differ-
ence between the present approach and previous ones pertains to
the positioning constraints applied to the rectangular items. In Bir-
gin, Mart�ınez, Nishihara, et al. (2006), the orientation of the object
and the items is fixed and only 90-degree rotations are allowed. In
this sense, the decision space of the problem tackled in the present
research is larger and, as a result, solutions with more packed
items are expected. On the other hand, the problem presented in
Birgin, Mart�ınez, Mascarenhas, et al. (2006) considers an individual
angle of rotation for each rectangle. The overlapping of such rect-
angles is a hard-to-model computational geometry problem that
was accomplished using continuous and differentiable constraints,
with the help of the Sentinels concept (Birgin, Mart�ınez, Mascare-
nhas, et al., 2006; Mascarenhas & Birgin, 2010). While this is the
model whose global optimal solution implies the largest number
of packed items, the difficulty in finding such global optimal solu-
tion may result in poor quality solutions for the associated packing
problem. Using the model introduced in the present work may be
useful, even when the orthogonality constraint between the items
is not imposed by the real packing problem. Fig. 1 illustrates the
kind of solutions found by the three different approaches.

A nonlinear model and a solution method are introduced in the
present paper. For a given number of items, the packing model
consists of minimizing the overlapping between the items subject
to being accommodated within the object. The objective function is
continuous and differentiable with respect to the continuous
variables and there are integrality constraints in a subset of the
decision variables. The solution method is based on a combination
of branch and bound and a modern active-set strategy for bound-
constrained minimization of smooth functions (Birgin & Mart�ınez,
2002). In order to be able to apply such techniques, a desirable
property of the introduced model is pursued: the relaxed version
of the model (ignoring the integrality constraints) to be continuous
and differentiable with respect to all its decision variables. For
packing as many items as possible, problems with an increasing
number of items are considered.

The paper is organized as follows. In Section 2, the mixed inte-
ger continuous nonlinear model is derived. Section 3 describes the
solution method. Numerical results are presented and analyzed in
Section 4. Section 5 summarizes the conclusions and includes some
lines for future research.

2. Mixed integer continuous nonlinear model

Let X ¼ x 2 R2jgjðxÞ 6 0; j ¼ 1; . . . ;m
� �

be a convex subset of
R2. For all k = 1, . . . ,N, consider a rectangle R(ak, bk) centered at
the origin of the two-dimensional Cartesian coordinate system
with ak, bk > 0 being the fixed values of its horizontal and vertical
Fig. 1. The three problems consist in packing identical rectangular items within a convex
and (b) represent the case in which an orthogonality constraint is imposed to the items.
(b). In (c), the case of an isotropic object without any positioning constraint imposed on t
in (b) and (c) contain 28 rectangles.
sides, respectively. Assume that we want to place those N rectan-
gles in such a way that the interior of the intersection of any pair
of different rectangles is empty and they are contained in X. (Since
X is convex, the fact that the vertices of a rectangle are in X is en-
ough to guarantee that the rectangle is contained in X.) Moreover,
assume that an orthogonality constraint is imposed on any pair of
rectangles, i.e. sides of any two different rectangles must be paral-
lel or perpendicular to each other.

Let h 2 R be a variable anticlockwise rotation angle common to
all the N rectangles. Let Ck 2 R2 be the variable center of R(ak, bk),
and let pk 2 {0, 1} be a binary variable, which indicates whether
an extra 90-degree rotation is being applied to R(ak, bk) (pk = 1) or
not (pk = 0), independently of the common rotation angle h. Then,
the problem, called PackN from now on, consists of finding values
for the 3N + 1 variables h 2 R; Ck 2 R2 and pk 2 {0, 1}, for
k = 1, . . . ,N, such that the N rectangles R(ak, bk) – with displace-
ments Ck, 90-degree rotations represented by pk and the common
rotation given by h – are contained in X without overlapping.

Given a rectangle R(a, b) with horizontal side a and vertical side
b and p 2 ½0; 1� � R, define the length and the height as

‘ða; b;pÞ ¼ ð1� pÞ aþ p b and
hða; b;pÞ ¼ ð1� pÞ bþ p a; k ¼ 1; . . . ;N: ð1Þ

Note that if p = 0 then the rectangle with length ‘(a, b, p) and
height h(a, b, p) coincides with R(a, b). If p = 1, however, the rectan-
gle with length ‘(a, b, p) and height h(a, b, p) coincides with a 90-
degree rotation of R(a, b), i.e. coincides with R(b, a).

Let Q(h) be the anticlockwise rotation matrix

QðhÞ ¼
cos h � sin h

sin h cos h

� �
: ð2Þ

Using (1) and (2) and considering an angle of rotation h, a dis-
placement C with respect to the origin and an orthogonal rotation
represented by p 2 {0, 1}, it becomes clear that the four vertices of
a rectangle R(a, b) are given by:

V swðRða; bÞ;C;p; hÞ ¼ C þ QðhÞ
�0:5‘ða; b; pÞ
�0:5hða; b;pÞ

� �
;

V seðRða; bÞ;C;p; hÞ ¼ C þ QðhÞ
0:5‘ða; b;pÞ
�0:5hða; b;pÞ

� �
;

VneðRða; bÞ;C;p; hÞ ¼ C þ QðhÞ
0:5‘ða; b;pÞ
0:5hða; b;pÞ

� �
;

VnwðRða; bÞ;C;p; hÞ ¼ C þ QðhÞ
�0:5‘ða; b;pÞ
0:5hða; b;pÞ

� �
:

ð3Þ

Referring to the four vertices of rectangle R(ak, bk) as
Vk

i � ViðRðak; bkÞ; Ck; pk; hÞ for all i 2 D ¼ fsw; se;ne;nwg
and k ¼ 1; . . . ;N, the constraints that state the rectangles must be-
long to X can be modeled as:
region, but different positioning constraints are imposed on the items. Graphics (a)
(a) deals with an anisotropic object while the isotropic object case is represented in
he items is illustrated. The packing in (a) contains 26 rectangles, while the packings
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Vk
i 2 X for all i 2 D and k ¼ 1; . . . ;N;

or

gjðV
k
i Þ 6 0 for all i 2 D; j ¼ 1; . . . ;m; and k ¼ 1; . . . ;N; ð4Þ

plus pk 2 {0, 1}, for k = 1, . . . ,N. Provided gj(�), j = 1, . . . ,m, are contin-
uous and differentiable functions and by the differentiability of (1)–
(3), we have that constraints (4) are continuous and differentiable
with respect to the decision variables Ck, pk and h.

Consider a pair of rectangles Rðak1 ; bk1 Þ and Rðak2 ; bk2 Þ with dis-
placements Ck1 and Ck2 , orthogonal rotations represented by
pk1 ; pk2 2 f0;1g, and a common angle of rotation h. The horizontal
and vertical coordinate-wise distances with respect to the h anti-
clockwise rotation of the Cartesian system of coordinates, between
the displacements Ck1 and Ck2 are given by jdðCk1 ;Ck2 ; hÞxj and
jdðCk1 ; Ck2 ; hÞyj, respectively, where

dðCk1 ;Ck2 ; hÞ �
dðCk1 ;Ck2 ; hÞx
dðCk1 ;Ck2 ; hÞy

 !
¼ QðhÞTðCk1 � Ck2 Þ:

Then, the non-overlapping constraint between Rðak1 ; bk1 Þ and
Rðak2 ; bk2 Þ can be modeled as

jdðCk1 ;Ck2 ; hÞxjP ‘ðak1 ; bk1 ;pk1 Þ þ ‘ðak2 ; bk2 ;pk2 Þ
� �

=2;

or

jdðCk1 ;Ck2 ; hÞyjP ðhðak1 ; bk1 ; pk1 Þ þ hðak2 ; bk2 ;pk2 ÞÞ=2:

ð5Þ

Squaring both sides of inequalities in (5), substituting t 6 0 by
max{0,t}2 = 0 and replacing (t1 = 0 or t2 = 0) by t1 � t2 = 0, the
non-overlapping constraints between every pair of rectangles can
be written as the continuous and differentiable constraints

max 0;ð‘ðak1 ;bk1 ;pk1 Þþ‘ðak2 ;bk2 ;pk2 ÞÞ2=4�½dðCk1 ;Ck2 ;hÞx�
2

n o2
�

max 0;ðhðak1 ;bk1 ;pk1 Þþhðak2 ;bk2 ;pk2 ÞÞ2=4�½dðCk1 ;Ck2 ;hÞy�
2

n o2
¼0;

for all k1¼1; . . . ;N�1 and k2¼k1þ1; . . . ;N;

ð6Þ

and pk 2 {0, 1}, for k = 1, . . . ,N. Note that squaring the maximum
with zero is necessary to obtain differentiability.

So, problem PackN can be modeled as a continuous and differ-
entiable feasibility problem given by (4) and (6) plus the con-
straints pk 2 {0, 1}, for k = 1, . . . ,N. Solving the feasibility problem
is equivalent to finding a global minimizer with zero-valued objec-
tive function of the optimization problem

minimize f ðh;C1; . . . ;CN ;p1; . . . ;pNÞ;
subject to pk 2 f0;1g for k ¼ 1; . . . ;N; ð7Þ

where

f ðh;C1; . . . ;CN ;p1; . . . ;pNÞ¼
XN

k¼1

Xm

j¼1

X
i2D

maxf0;gjðV
k
i Þg

2þ
XN�1

k1¼1

XN

k2¼k1þ1

�max
�

0;ð‘ðak1 ;bk1 ;pk1 Þþ ‘ðak2 ;bk2 ;pk2 ÞÞ2=4

� dðCk1 ;Ck2 ;hÞx
h i2

	2

�max
�

0;ðhðak1 ;bk1 ;pk1 Þ

þhðak2 ;bk2 ;pk2 ÞÞ2=4� dðCk1 ;Ck2 ;hÞy
h i2

	2

: ð8Þ

Note that non-identical rectangles are being considered. Hence,
the presented model can be used to pack a given fixed set of non-
identical rectangles within a convex region. Considering that all
rectangles are identical, the packing problem of packing as many
identical rectangles as possible can be modeled as finding the
largest integer value of N such that the minimum of (7) and (8)
is equal to zero (or such that the feasibility problem given by (4)
and (6) plus pk 2 {0, 1}, for k = 1, . . . ,N, is solvable).

3. Solution method

In this section, we describe a branch and bound method to solve
problems of the form:

minimize f ðxÞ;
subject to ‘ 6 x 6 u; xi 2 Z for all i 2 I;

where f : Rn ! R is a smooth nonlinear and generally nonconvex
function, I # {1, . . . ,n} is the set of indices of the variables with inte-
grality constraints, and �1 < ‘i 6 ui <1; 8 i 2 I. In the branch
and bound algorithm, each node of the tree corresponds to a sub-
problem, which is defined by a mixed integer bound-constrained
minimization problem. The relaxed subproblem associated with a
subproblem is defined as the subproblem itself without its integral-
ity constraints. In other words, relaxed subproblems are bound-
constrained minimization problems.

In the search tree, a node is fathomed in three different situa-
tions: S1. The associated subproblem is infeasible (it can be trivially
checked); S2. The optimal solution of the relaxed associated sub-
problem satisfies the integrality constraints (and, therefore, there
is no further need for branching); and S3. The optimal value of
the relaxed associated subproblem, that is a lower bound on the
optimal value of the (non-relaxed) associated subproblem, is great-
er than or equal to the value of the current incumbent solution.

The selection of a node to solve follows the depth-first rule.
When a node is branched, two nodes are generated by splitting a
bound constraint. The selection of the variable whose bound will
be splitted follows a rule based on pseudocosts (Benichou et al.,
1971). Pseudocost is a measure associated with each variable of a
problem. It aims to quantify the importance of a variable within
a problem and to predict the deterioration in the optimal value
of the problem when the range of variation of the variable is
reduced.

Consider that a node N is selected to be solved. The first step is
to solve its relaxed subproblem. Let x̂N be the solution of the re-
laxed subproblem. If by S1–S3 the node can be fathomed, we are
done. Otherwise, we have that bI ¼ fi 2 Ijx̂N

i R Zg– ;. Let us assume
that, by a rule that will be detailed below, xi with i 2 bI is selected to
have its bound splitted in the branching process. In the two new
nodes ND and NU , the subproblem bound constraint ‘i 6 xi 6 ui

is replaced by ‘i 6 xi 6 x̂N
i


 �
and x̂N

i

� 

6 xi 6 ui, respectively. Let

now x̂ND and x̂NU be the solutions of the relaxed subproblems asso-
ciated with nodes ND and NU , respectively. In the two subprob-
lems ND and NU , variable xi had its range reduced with respect
to its range in subproblem N. There are many ways of computing
pseudocosts for xi. In the present work, following the suggestion gi-
ven in Eckstein (1994), local ‘‘down” and ‘‘up” pseudocosts for xi are
computed as

dD
i ¼

f ðx̂ND Þ � f ðx̂NÞ
x̂i � x̂ib c

and dU
i ¼

f ðx̂NU Þ � f ðx̂NÞ
dx̂ie � x̂i

:

For those variables xi with i 2 I for which at least a local down
(up) pseudocost was computed, their global down (up) pseudocosts
DD

i (DU
i ) are given by the average of its local down (up) pseudocosts.

Global down (up) pseudocosts of variables whose local down (up)
pseudocosts have not been computed are defined as the average of
the global down (up) pseudocosts of the other variables.

The rule for selecting a variable, whose explanation was delayed
in the previous paragraph, is based on the global pseudocosts (see
Benichou et al., 1971) and merely says to select a variable xi� such
that
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i� ¼ arg max
i2I

min DD
i ;D

U
i

n on o
:

In case of tie, we select the variable with the smallest index. The
expectation is that new generated nodes with a large deterioration
in their optimal values will be rapidly fathomed.

The incumbent solution is updated considering the solutions of
the relaxed subproblems that satisfy the integrality constraints
(i.e., that are also solutions of the corresponding subproblem).
When the solution of a relaxed subproblem does not satisfy the
integrality constraints, its rounded counterpart is considered.
Rounding each component to its nearest feasible integer value is
trivial and provides a feasible solution for the subproblem that
may improve the incumbent solution.

In S3, it is stated that a node is fathomed if the optimal value of
the relaxed subproblem is greater than or equal to the value of the
incumbent solution. This fathoming rule is correct only if by opti-
mal value of the relaxed subproblem we mean global optimal va-
lue, which can only be easily computed for convex objective
functions. This is not the case of the packing problem being consid-
ered. To overcome this inconvenience, we use two combined
strategies:

Multistart: By running a local bound-constraints
minimization solver from Nmulti P 1 dif-
ferent initial points and considering the
solution to be the best local minimizer
so far obtained, we aim to enhance the
probability of finding global solution of
relaxed subproblem.

Untightened fathoming: Let fbest be the value of the incumbent
solution and let N and x̂N be a node
and the best local solution obtained for
its relaxed subproblem, respectively. By
S3, N should be fathomed if f ðx̂NÞ
P fbest. We consider an untightened ver-
sion of that condition. The untightened
condition uses a known lower bound f̂ lb

on the optimal value of the relaxed sub-
problem and a parameter a 2 [0, 1] that
expresses the degree of confidence on
finding the global solution of the relaxed
subproblem. The untightened condition
states that node N should be fathomed if
af ðx̂NÞ þ ð1� aÞf̂ lb P fbest: ð9Þ
1 There are a few typographical errors in the definition of g1(�) for problems 12–16
in Birgin, Mart�ınez, Mascarenhas, et al. (2006) and Birgin, Mart�ınez, Nishihara, et al.
(2006).
Using a = 1, nodes are fathomed as if the global solutions of the re-
laxed subproblems were being computed. Using a = 0, inequality (9)
is reduced to f̂ lb P fbest. In this case, a node is fathomed only if a
known lower bound for the node relaxed subproblem guarantees
that the node is useless.

We use GENCAN (Birgin & Mart�ınez, 2002), an active-set method
for bound constrained local minimization for solving the branch
and bound relaxed subproblems. GENCAN adopts the leaving-face
criterion presented in Birgin and Mart�ınez (2001) that employs
the spectral projected gradients defined in Birgin, Mart�ınez, and
Raydan (2000) Birgin, Mart�ınez, and Raydan (2001). For the inter-
nal-to-the-face minimization, GENCAN uses a general algorithm with
a line search that combines backtracking and extrapolation. As we
computed first and second derivatives of problem (7) and (8), each
step of GENCAN computes the direction inside the face using the
Newton direction and subroutine MA57 from HSL for solving the
linear systems. For a description of basic techniques of continuous
optimization and active-set methods see, for example, Dennis and
Schnabel (1983) and Luenberger (1984) (pp. 326–330). For a pub-
licly available version of GENCAN, see the TANGO Project web site
http://www.ime.usp.br/	egbirgin/tango/.
4. Implementation details and numerical experiments

We implemented the branch and bound method described in
Section 3 that uses the continuous bound-constraints minimiza-
tion solver GENCAN for solving the node relaxed subproblem. Codes
are in Fortran 77 and Fortran 90. They were compiled with gfortran
(GNU Fortran version 4.2.1) and the compiler option ‘‘-O3” was
adopted. All the experiments were run on a 2.4 GHz Intel Core2
Quad Q6600 processor, 4 Gb of RAM memory and Linux operating
system.

We consider the same set of rectangular items and convex re-
gions considered in Birgin, Mart�ınez, Mascarenhas, et al. (2006)
and Birgin, Mart�ınez, Nishihara, et al. (2006). For the sake of com-
pleteness,1 Table 1 shows the description of each problem (inequal-
ities that describe the convex region X, dimensions of the
rectangular items, and areas of the convex regions and the
rectangles).

There is a trade-off between computational cost and losing the
optimal solution by wrongly fathoming a node in the selection of
the untightened S3 threshold parameter a 2 [0, 1]. Moreover, the
probability of finding the global solution of a relaxed subproblem
is enhanced by solving each relaxed subproblem starting from
Nmulti P 1 different initial points. Preliminary numerical experi-
ments varying a 2 {1, 10�1, 10�2, . . .} and Nmulti 2 {5, 100} showed
that combination a = 10�4 and Nmulti = 5 allows the method to find
solutions at least as good as the ones reported in Birgin, Mart�ınez,
Nishihara, et al. (2006). The untightened version of fathoming rule
S3 requires a lower bound f̂ lb for the optimal value of the node re-
laxed subproblems. We use f̂ lb ¼ 0. It is easy to see that the objec-
tive function (8) of the problem at the root node, which coincides
with the objective function of the subproblems and the relaxed
subproblems, is greater than or equal to zero as it is a sum of
squares.

The branch and bound scheme also considers a lower bound flb

for the optimal value of the problem at the root node. The whole
search process is stopped if the value of the incumbent solution
achieves the given lower bound. As explained in the previous par-
agraph, zero is the natural candidate for flb. This lower bound is
tight only if a feasible solution for the packing problem exists. In
the numerical experiments, we set flb = 10�8. It means that if a fea-
sible point x* of the problem at the root node such that the objec-
tive function (8) evaluated at x* is smaller than or equal to 10�8 is
found, the method will be stopped and x* will be returned as a
solution of the packing problem given by (7) and (8). In other
words, it means that a packing with N rectangles was found. Other-
wise, if the method stops with an incumbent solution whose value
is larger than 10�8, it will be said that a packing with N rectangles
was not found.

The whole process starts by trying to solve problem (7) and (8)
with N = 1. If a solution of the packing problem is found, we set
N N + 1 and we try again. The process stops when a packing with
N rectangles cannot be found, and the solution found for the pack-
ing problem with N* = N � 1 is considered as the solution of pack-
ing as many rectangles as possible. In Birgin, Mart�ınez, Nishihara,
et al. (2006), an explanation empirically confirmed with numerical
experiments justifies the use of this kind of sequential process of
increasing N one by one instead of other strategies such as bisec-
tion. Roughly speaking, packing a few less rectangles than the

http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/


Table 1
Definition of the problems.

Problem Convex region Rectangular item

Description Area a � b Area

1 g1ðx1; x2Þ ¼ �x1
g2ðx1; x2Þ ¼ �x2
g3ðx1; x2Þ ¼ �x1 � x2 þ 3
g4ðx1; x2Þ ¼ x2

1 þ x2
2 � 100

74.1 2 � 1 2

2 g1ðx1; x2Þ ¼ �7x1 þ 6x2 � 24
g2ðx1; x2Þ ¼ 7x1 þ 6x2 � 108
g3ðx1; x2Þ ¼ ðx1 � 6Þ2 þ ðx2 � 8Þ2 � 9

21.7 1.1 � 0.55 0.61

3 g1ðx1; x2Þ ¼ �x1
g2ðx1; x2Þ ¼ x1 � 8
g3ðx1; x2Þ ¼ ðx1 � 6Þ2 þ x2

2 � 81
g4ðx1; x2Þ ¼ ðx1 � 1:7Þ2 þ ðx2 � 10Þ2 � 81

54.4 2 � 0.6 1.2

4 g1ðx1; x2Þ ¼ x2
1 � x2

g2ðx1; x2Þ ¼ x2
1=4þ x2 � 5

13.3 1 � 0.4 0.40

5 g1ðx1; x2Þ ¼ x2
1 � x2

g2ðx1; x2Þ ¼ �x1 þ x2
2 � 6x2 þ 6

g3ðx1; x2Þ ¼ x1 þ x2 � 6

10.9 0.9 � 0.3 0.27

6 g1ðx1; x2Þ ¼ �x1 þ x2
2 � 6x2 þ 6

g2ðx1; x2Þ ¼ x1 þ x2
2 � 3x2 � 3=4

10.2 0.9 � 0.3 0.27

7 g1ðx1; x2Þ ¼ ðx1 � 2Þ2=4þ ðx2 � 4Þ2=16� 1 25.1 2 � 0.5 1

8 g1ðx1; x2Þ ¼ ðx1 � 6Þ2=4þ ðx2 � 6Þ2=36� 1
g2ðx1; x2Þ ¼ ðx1 � 6Þ2=36þ ðx2 � 6Þ2=4� 1
g3ðx1; x2Þ ¼ x1 � x2 � 3
g4ðx1; x2Þ ¼ �x1 þ x2 � 2

13.2 0.7 � 0.5 0.35

9 g1ðx1; x2Þ ¼ ðx1 � 3Þ2=4þ ðx2 � 4Þ2=16� 1
g2ðx1; x2Þ ¼ ðx1 � 2:65Þ2=4þ ðx2 � 4Þ2=16� 1
g3ðx1; x2Þ ¼ �x1 þ 1
g4ðx1; x2Þ ¼ x1 � x2 � 1
g5ðx1; x2Þ ¼ x1 þ x2 � 9

13.7 0.8 � 0.6 0.48

10 g1ðx1; x2Þ ¼ ðx1 � 6Þ2=36þ ðx2 � 6Þ2=4� 1
g2ðx1; x2Þ ¼ ðx1 � 6Þ2=9þ ðx2 � 8Þ2=9� 1

13.6 0.95 � 0.35 0.33

11 g1ðx1; x2Þ ¼ ðx1=6Þ4 þ ðx2=2Þ4 � 1
g2ðx1; x2Þ ¼ 8x1 � 11x2 � 26

34.7 1.9 � 0.5 0.95

12 g1ðx1; x2Þ ¼
ffiffiffi
3
p

x1 þ x2 �
ffiffiffi
3
p
ð4þ 8=

ffiffiffi
3
p
Þ

g2ðx1; x2Þ ¼ �
ffiffiffi
3
p

x1 þ x2
g3ðx1; x2Þ ¼ �x2

32.2 1 � 1 1

13 g1ðx1; x2Þ ¼
ffiffiffi
3
p

x1 þ x2 �
ffiffiffi
3
p
ð3þ 10=

ffiffiffi
3
p
Þ

g2ðx1; x2Þ ¼ �
ffiffiffi
3
p

x1 þ x2
g3ðx1; x2Þ ¼ �x2

33.3 1 � 1 1

14 g1ðx1; x2Þ ¼
ffiffiffi
3
p

x1 þ x2 �
ffiffiffi
3
p
ð8þ 2=

ffiffiffi
3
p
Þ

g2ðx1; x2Þ ¼ �
ffiffiffi
3
p

x1 þ x2
g3ðx1; x2Þ ¼ �x2

36.3 1 � 1 1

15 g1ðx1; x2Þ ¼
ffiffiffi
3
p

x1 þ x2 �
ffiffiffi
3
p
ð9:302Þ

g2ðx1; x2Þ ¼ �
ffiffiffi
3
p

x1 þ x2
g3ðx1; x2Þ ¼ �x2

37.5 1 � 1 1

16 g1ðx1; x2Þ ¼
ffiffiffi
3
p

x1 þ x2 �
ffiffiffi
3
p
ð7þ 4=

ffiffiffi
3
p
Þ

g2ðx1; x2Þ ¼ �
ffiffiffi
3
p

x1 þ x2
g3ðx1; x2Þ ¼ �x2

37.5 1 � 1 1
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maximum capacity of the object is a very easy task, while packing
the optimal quantity or trying to pack more than the maximum ob-
ject load are very time-consuming problems. In the ‘‘easy cases”,
the branch and bound is rapidly terminated by achieving the
known zero-valued lower bound on the optimal value, while in
the ‘‘hard cases” the branch and bound search tree is fully ex-
plored. As in Birgin, Mart�ınez, Nishihara, et al. (2006), the whole
process of increasing N can be stopped if a known upper bound
for its value is achieved, but this is never the case for arbitrary con-
vex regions, where upper bounds based on a quotients of areas are
never tight. The process can also be started from a lower bound for
N different from 1 as suggested at the beginning of this paragraph.
As explained above, however, the first problems (with small values
for N) are simple and solving them or not makes no difference.

Table 2 shows, for each problem, the number of rectangles
that were packed in Birgin, Mart�ınez, Mascarenhas, et al. (2006)



Table 2
Number of packed items. When compared to the number of packed items in Birgin,
Mart�ınez, Nishihara, et al. (2006), where only orthogonal rotations are allowed, it can
be seen that the extra common angle of rotation allows more items to be packed
within the same object. Comparing these results with the number of packed items in
Birgin, Mart�ınez, Mascarenhas, et al. (2006), where no orthogonality constraint is
imposed and each item has its own angle of rotation, it can be seen that, even with
additional positioning constraints, the simplicity of the present model allows one to
find better quality solutions in some cases.

Problem Number of packed items

Orthogonal items Free rotations
(Birgin, Mart�ınez,
Mascarenhas, et al.,
2006)

Only 90-degree
rotations (Birgin,
Mart�ınez, Nishihara,
et al., 2006)

90-degree
rotations plus a
common rotation
angle

1 32 32 32
2 28 30 30
3 40 40 37
4 26 28 28
5 33 34 35
6 30 32 32
7 19 19 20
8 32 33 32
9 22 24 24

10 34 34 32
11 31 31 –
12 25 25 27
13 26 26 28
14 29 29 29
15 29 29 30
16 30 30 31
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allowing arbitrary rotations, the number of rectangles that were
packed in Birgin, Mart�ınez, Nishihara, et al. (2006) allowing only
Fig. 2. Graphical represent
90-degree rotations, and the number of rectangles that were packed
in this study (allowing 90-degree rotations and an extra common
angle of rotation for the whole set of rectangles). On the one hand,
the results obtained solving the model introduced in the present
approach are expected to have at least as many packed items as
the ones obtained in Birgin, Mart�ınez, Nishihara, et al. (2006),
where no rotations are allowed. The experiments confirm that
expectation: the same number of items was packed in problems
1, 3, 7, 10, 11, 12, 13, 14, 15 and 16, while one or two more items
were packed for the remaining problems. On the other hand, the
comparison is not as clear with the free-rotations model introduced
in Birgin, Mart�ınez, Mascarenhas, et al. (2006). While the present
model has a smaller feasible set, it seems to be easier to find global
solutions for larger values of N. We found solutions with the same
number of items in problems 1, 2, 4, 6, 9 and 14 (even imposing
the orthogonality constraint between the items), solutions with
one or two less items in problems 5, 7, 12, 13, 15 and 16, and solu-
tions with up to three more items in problems 3, 8 and 10. Fig. 2
illustrates the solutions. Fig. 3 compares the solutions found for
problem 8 in Birgin, Mart�ınez, Mascarenhas, et al. (2006), Birgin,
Mart�ınez, Nishihara, et al. (2006) and in the present approach.

A few words about the accuracy of the obtained solutions are in
order. We considered solutions points such that the value of the
objective function (8) is not greater than 10�8. The objective func-
tion consists of the sum of two terms: one that penalizes the vio-
lation of the object constraints and other that penalizes the
overlapping between the items. The independent values of those
terms at the reported solutions are showed in Table 3. Irrespective
of that, another measure of overlapping between the items is being
computed. Clearly, the intersection between a pair of orthogonal
rectangles is null or gives a rectangle. We will call this rectangle
an ‘‘intersection rectangle”. We computed the area of the intersec-
tion rectangles between every pair of rectangular items. The last
ation of the solutions.



Fig. 3. Graphical representation of the solutions found for a problem with the convex regions and the item dimensions of problem 8. In (a), the orthogonality constraint
between the items is imposed and only 90-degree rotations are allowed. It corresponds to the problem introduced in Birgin, Mart�ınez, Nishihara, et al. (2006). In (b), the
orthogonality constraint is maintained and a common angle of rotation for all the items is added. It corresponds to the problem been tackled in the present work. Finally, (c)
corresponds to the free-rotations model introduced in Birgin, Mart�ınez, Mascarenhas, et al. (2006) based on the Sentinels concept. With the present approach, we were able to
find a solution with one more item when compared to the other two approaches. Although it is hard to see from the picture, there is a small common angle of rotation of
h 
 1.60� for the items in (b).

Table 4
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column of Table 3 displays the area of the intersection rectangle
with the largest area.

Finally, Table 4 shows some measures of the computational ef-
fort made by the branch and bound strategy to find the reported
solutions. The last column shows the accumulated CPU time used
by the method to solve problem (7) and (8) for increasing values
of N starting from N = 1 and up to N = N*. The other two columns
show the number of explored nodes in the branch and bound tree
and the corresponding CPU time, both related to the problem with
N = N*. Subtracting the time spent in the last problem from the
accumulated CPU time, it is easy to see that, for the hardest in-
stances 1, 3, 4, 5 and 11, solving problems with less than N* items
is very cheap. In general, to find a ‘‘near-to-the-best” packing is an
easy task. This observation justifies, as already observed in Birgin,
Mart�ınez, Mascarenhas, et al. (2006) and Birgin, Mart�ınez, Nishiha-
ra, et al. (2006), the sequential strategy adopted to determine N*
instead of any other strategy based on bisection.

Last but not least, the present approach, as are the ones intro-
duced in Birgin, Mart�ınez, Mascarenhas, et al. (2006) and Birgin,
Mart�ınez, Nishihara, et al. (2006), is suitable for packing rectangles
within general convex regions. When the convex region takes the
particular form of a rectangle, we are faced with the well known
pallet loading problem (Birgin, Morabito, & Nishihara, 2005; Birgin,
Lobato, & Morabito, 2010; Lins, Lins, & Morabito, 2003; Morabito &
Morales, 1998), for which dedicated solution methods exist.
Numerical experiments presented in Birgin, Mart�ınez, Mascare-
Table 3
Accuracy of the solutions.

Problem Objective function value at the solution Maximum
overlapping area

Constraints
violation term

Overlapping
violation term

1 5.2E�13 2.4E�16 1.44432E�07
2 2.1E�11 1.1E�15 1.88327E�06
3 1.3E�13 1.1E�14 4.60587E�08
4 8.3E�14 2.0E�15 1.98382E�07
5 3.6E�10 6.2E�11 1.43665E�05
6 5.3E�17 1.2E�18 7.20967E�09
7 0.0E+00 1.4E�23 0.00000E+00
8 6.3E�14 6.4E�18 1.80352E�07
9 1.5E�17 0.0E+00 1.89104E�09

10 5.4E�17 5.5E�18 3.88860E�09
11 1.1E�12 2.1E�12 1.89224E�07
12 0.0E+00 8.0E�19 0.00000E+00
13 8.9E�19 1.1E�18 2.50940E�10
14 2.2E�17 0.0E+00 1.21657E�09
15 0.0E+00 5.0E�23 0.00000E+00
16 1.5E�23 0.0E+00 1.21323E�12
nhas, et al. (2006) show that nonlinear-based methods, such as
the one presented here, are not competitive with clever methods
developed for this particular case.

5. Conclusions and future work

The problem of orthogonally packing identical rectangles with-
in isotropic convex regions was modeled as mixed integer contin-
uous feasibility and optimization problems. A straightforward
extension of a well established continuous bound-constrained
minimization solver was developed to solve mixed integer nonlin-
ear bound-constrained optimization problems. Its application to
the packing problem models showed that the method is reliable.
As a side result, the introduced models, together with the ones pre-
sented in Birgin, Mart�ınez, Mascarenhas, et al. (2006) and Birgin,
Mart�ınez, Nishihara, et al. (2006), constitute a nice set of test prob-
lems for global mixed integer continuous solvers. As future work,
two different topics deserve further investigation. First, strategies
for eliminating the undesirable symmetry property (Liberti,
2009) of the introduced packing models may be studied and incor-
porated into them. Second, the extension of GENCAN for mixed inte-
ger bound-constrained problems can be incorporated in an
augmented Lagrangian framework, like the one implemented in
ALGENCAN (Andreani, Birgin, Mart�ınez, & Schuverdt, 2007, 2008), to
Computational cost of the branch and bound strategy. Note that solving the packing
problem with N* items is very expensive compared to solving all the other problems
with less than N* items.

Problem Computational cost

Last problem (with N*
items)

Increasing values of N from 1 to N*

# nodes CPU time (s) CPU time (s)

1 39,816 10350.08 10574.47
2 7 11.57 94.78
3 1,482,841 620836.38 622073.00
4 3,090,896 304453.28 304674.76
5 11,128 4717.57 4953.22
6 2121 906.31 1056.20
7 46 3.35 6.21
8 11,306 1462.63 1754.43
9 341 23.34 47.45

10 641 114.30 276.47
11 251,245 64088.21 64298.39
12 6 0.35 1.60
13 2 0.18 1.27
14 1 0.33 1.78
15 5 3.09 4.34
16 3 1.58 2.89
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solve mixed integer (general-constrained) nonlinear programming
problems, obtaining a MINLP solver based on augmented
Lagrangians.
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