

ANÁLISE COMPARATIVA E CARACTERIZAÇÃO CINÉTICA DE KOMBUCHA OBTIDA A PARTIR DE CAFÉ VERDE 100% ARÁBICA EM DIFERENTES CONCENTRAÇÕES DE SACAROSE

João Ricardo Vicente Filho

Prof^a. Dr^a. Agnieszka Joanna Pawlicka Maule

Bacharelado em Química IQSC/Universidade de São Paulo

joaorvf@usp.br

Objetivos

Os principais objetivos deste trabalho foram obter a kombucha a partir de café verde 100% arábica e avaliar de maneira comparativa a influência de diferentes concentrações de sacarose nos parâmetros físico-químicos da bebida, para assim, realizar a caracterização cinética e composicional do processo fermentativo, já que não há muitos trabalhos científicos associados a essa versão da bebida.

Métodos e Procedimentos

Realizou-se a caracterização cinética e composicional da bebida em diferentes concentrações de sacarose (açúcar demerara) durante 14 dias para o processo de 1ª fermentação com dados sendo coletados diariamente, e para 2ª fermentação (em frasco fechado e sem adição de acúcar) com dados coletados no dia 0 e no 7º dia, com método de preparo mostrado na Fig. 1. Todas as matrizes fermentativas foram alocadas em estufa com temperatura fixada à 25 °C. Para caracterização cinética da bebida foram monitorados os parâmetros de sólidos solúveis totais (SST), pH, acidez total e cor. Para caracterização composicional foram determinados o teor alcoólico, teor de compostos fenólicos e a concentração dos ácidos orgânicos presentes nas matrizes fermentativas, sendo esses o ácido acético, o ácido lático e o ácido D-glucónico.

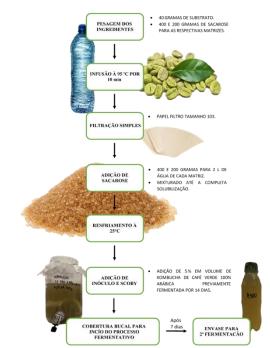


Figura 1. Fluxograma de preparação de kombucha a partir de café verde.

Resultados

Acerca das análises cinéticas do processo fermentativo as diferentes concentrações de açúcar para cada matriz de fermentação resultaram em correlações fortes em ralação a análise dos parâmetros físico-químicos da

bebida (Fig. 2). Já em termos composicionais a bebida apresentou um comportamento diretamente proporcional do teor alcoólico em relação a concentração de sacarose inicial, comportamento que não se repetiu de maneira significativa para os compostos fenólicos e ácidos orgânicos (Fig. 3) durante o proposto período em que se realizou o estudo.

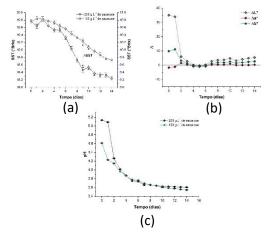


Figura 2. Parâmetros físico-químicos de SSTs (a), diferença de cor ΔL^* , Δa^* e Δb^* (b) e pH (c) das matrizes da 1ª fermentação.

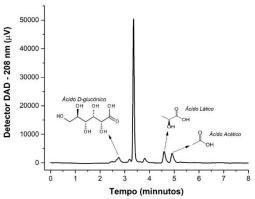


Figura 3. Cromatograma exemplar da amostra de 7º dia da matriz de fermentação de concentração de 100 g L-1 de sacarose a qual se realizou a quantificação dos ácidos orgânicos característicos da bebida.

Conclusões

Os principais resultados desse trabalho a serem destacados, revelaram que a bebida apresentou um bom potencial antioxidante com valores da ordem 800 mg L⁻¹ em Equivalente de Ácido Gálico (EAG), sendo que essa ordem de grandeza se mostrou estável para as 2ªs fermentações, as quais, não se tem tantos dados disponíveis na literatura. Também verificou-se que o teor alcoólico da bebida se mostrou diretamente proporcional concentração de sacarose inicial presente, e que as condições anaeróbicas da etapa de carbonatação (2ª fermentação) tem um efeito potencializador no que tange ao aumento e ao maior acúmulo de etanol gerado no meio. E por último, em termos composicionais, maiores concentrações sacarose de no fermentativo não se mostraram diretamente proporcionais a produção dos ácidos orgânicos característicos da bebida.

Agradecimentos

Agradecimentos ao CNPq (bolsa 3095) ao Instituto de Química de São Carlos da Universidade de São Paulo e minha Orientadora pela oportunidade de desenvolvimento deste projeto.

Referências

DE MIRANDA, J. F. et al. Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, v. 87, n. 2, p. 503–527, 2022.

COELHO, R. M. D. et al. Kombucha: Review. International Journal of Gastronomy and Food Science, v. 22, n. July, p. 100272, 2020. JAYABALAN, R.; MARIMUTHU, S.; SWAMINATHAN, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, v. 102, n. 1, p. 392–398, 2007.