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Abstract: (1) Background: Forests throughout the world are managed to fulfil a range of commercial
and ecosystem services. The same applies to managed areas of the Amazon forest. We explore
a method of sustainable forest management (SFM) which anticipates the result of processes of
natural mortality of large, mature trees that could fall and damage their neighbors. Collecting
all the information required for planning logging in the Brazilian Amazon is, currently, a hard,
time-consuming and expensive task. (2) Methods: This information can be obtained more quickly,
accurately and objectively by including airborne laser scanning (ALS) products in the operational
plan. We used ALS point clouds to isolate emergent crowns from the canopy height model. Then,
we performed field work to validate the existence of these trees, and to understand how many
commercial trees (tree diameter > 50 cm) we identified by orienting the trees search through the
emergent canopy model. (3) Results: We were able to detect 184 (54.4%) trees from 338 field-recorded
individuals in 20 plots (totaling 8 ha). Of the detected trees, 66 individuals were classified as having
potential for commerce. Furthermore, 58 individuals presented the best stem quality for logging,
which represents more than seven high quality commercial trees per hectare. The logistic regression
showed that the effects that positively influence the emergent crown formation are strongly presented
in the commercial species. (4) Conclusions: Using airborne laser scanning can improve the SFM
planning in a structurally complex, dense and mixed composition tropical forest by reducing field
work in the initial stages of management. Therefore, we propose that ALS operational planning can
be used to more efficiently direct field surveys without the need for a full census.

Keywords: LiDAR; tropical rainforest; sustainable forest management; selective logging;

emergent crowns

1. Introduction

Forest management planning demands several types of information related to the
forest resources and their context. From the perspective of the forest resources, these
comprise extent, quantity, composition, and resource condition [1]. Regarding the context,
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information on logging equipment characteristics, road layout, growing stock, silvicul-
tural activities, terrain description, streamflow network are required. Forest management
effectiveness depends on spatially explicit, accurate, and time-effective information.

Sustainable forest management (SFM) demands: (i) delineating relatively homoge-
nous units based on characteristics such as tree species composition and stand structure [2],
(ii) determining the best route to logging extraction to minimize soil and forest impacts [3]
and (iii) reaching the easily derived indicators to monitor forest management activities [4,5].
SEM organizes actions that allow the ordering of production, implementing the selective
logging practices [6,7]. In addition, an SFM plan must guarantee the forest production’s
continuity, avoid waste of wood, and certify the forest products resulting from the exploita-
tion [8,9]. The accuracy and level of detail of the information has special limitations when
forest management plans are implemented in areas that are not easily accessible [3].

Currently, an SFM plan relies on extensive and laborious forest inventory procedures,
which contributes to increasing the business risk and cost [3,10]. The Brazilian law, for
example, demands an extensive field data collection before any authorization is granted
to cut a tree. Two main data collections are necessary. First, the forest inventory based
on sample plots is implemented to support information to propose the SFM plan. After
the approval of the SFM, it is necessary to get, annually, the approval to implement the
operational activities. For that, a second field data collection is performed, recording all
the trees (commercial and non-commercial) with diameter at breast height (DBH) greater
than 50 cm presented in the annual production unit (also known as census). The census
is the most important step for the operational planning since it not only quantifies the
volume but also geolocates the trees, quantifies the commercial trees and records additional
information such as stem quality, natural direction for tree falls, occurrence of stream flows,
existence of gaps, presence of vines, and slope variation, among others.

Long-term analyses have shown that selective logging in areas with absence of other
disturbances, such as fire and illegal logging, do not heavily affect biodiversity, and the
effects on ecosystem processes are moderated [11]. Conversely, illegal and/or conventional
logging is a key point of concern, since it threatens biodiversity conservation by deforesta-
tion [9,12]. Thus, individual tree information, including location and characterization, is
fundamental to supporting the implementation of any SEM plan. Mapping those trees
based on field work is a hard task in forests with large extent and sometimes under extreme
conditions found in tropical forests (e.g., humidity, temperature, mosquitoes, etc.) [13].

To overcome those difficulties, a sequence of recent studies [3,10,14-16] has shown that
high-resolution products provided by airborne LiDAR (a.k.a. Airborne Laser Scanning—
ALS) could be used to improve the SFM and operational planning. ALS generates data sets
on large scales [17,18], from which it is possible to detect and segment trees [19,20]. For
instance, the linkage between spatial resolution (pixel size) and the concomitant objects
that can be characterized (trees, stands) is well understood, with high spatial resolution
data enabling single tree detection and analysis, and lower-spatial-resolution data sources
enabling coarser stand-level (or broader) analyses [19,21]. Some individual tree detection
and segmentation algorithms give the estimated position, size and shape of crowns [21].
This method preferentially detects trees that reach or grow above the mean forest canopy,
i.e., the emergent crowns [19,22]. However, an important limitation to ALS consolidation
as a resource for tropical forest planning is the qualitative comprehension of what ALS is
capable of seeing regarding the forest.

Rather than supplanting existing approaches, ALS data can be integrated into current
forest management processes [23] by providing information about the vertical structure
that can be linked with the horizontal structure from field plots [19,24]. Studies have
shown that ALS data can already provide information about the terrain characteristics [25],
drainage network [26], forest characteristics [24,27], gaps dynamics [28,29], vegetation
structure [30-32], coarse woody debris [33], tree life stage [34], diameter distribution [35,36],
and others. However, ALS can only provide limited information related to forest composi-
tion, i.e., tree species [37].
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In this paper, we used single tree locations detected by processing the ALS data, to
run an inventory aiming to find and characterize the trees quantitatively and qualitatively
in the field. To our knowledge, this is the first attempt to first qualify the information
extracted by ALS data from a tropical forest.

Three goals are defined for this paper: (1) quantify and qualify (e.g., species, commer-
cial interest, crown luminosity, stem quality and size) the detected /non-detected trees based
on ALS processing; (2) from the detected trees, quantify the percentage of trees that match
legal criteria for logging; (3) identify characteristics that influence detection /non-detection
of the individual trees’ characteristics.

2. Materials and Methods

The study was conducted at the Experimental Station for Tropical Silviculture (ZF2,
Figure 1), at the National Institute of Amazon Research (INPA), located in Manaus (AM,
Brazil). The area is located between the coordinates 02°33'43” S to 02°40'23” S and
60°07'15” W to 60°13/31” W and is composed of dense tropical forest of “terra-firme”
with two main toposequences: valleys and plateaus [38]. The plateau is formed mainly
of Yellow Oxisols, while valleys are formed by Hydromorphic Sandy [39]. The elevation
above sea level ranges from 44 to 112 m (Figure 1A). The climate is classified as Af, ac-
cording to Képpen, and is characterized by high temperature, precipitation and humidity
year-round [40]. Temperatures vary between 23 °C and 31 °C and mean annual precipita-
tion can reach 2078 mm [39]. The site where the study was conducted has mean canopy
height of 30 m, and the emergent trees can grow over 44 m tall [39] (Figure 1B).

We launched 20 field plots (20 x 200 m?) in areas covered by four airborne laser scan-
ning transects collected by the “Improving Biomass Estimation Methods for the Amazon”
project [41] between 2016 and 2018. Within the area mapped by the transects, as criteria
we selected four experimental sites, accessible by internal road and having previously
been surveyed. Inside each site, the plots were randomly selected. The ALS campaign
produced a point cloud using the LiDAR Harrier 68i sensor parameterized to allow a
minimum density of 4 points.m~2. The horizontal and vertical accuracy was £1.0 m and
+0.5, respectively. Each transect covers 375 ha (12.5 x 0.3 km?) [42-45].

The ALS data were processed in the FUSION software version 3.80 [46] by removing
outliers, homogenizing point cloud density, classifying the ground returns, creating the
digital terrain model, normalizing the cloud, producing the canopy height model, and
filtering the emergent canopy (>35 m). The outliers were removed by applying a search
window of 20 m and considering as outliers all points outside the mean elevation & 3
standard deviation of returns within the window. Points were then classified as ground
by the Kraus and Pfeifer algorithm [47,48] considering a window size of 8 m [25] and
the standard parameter of FUSION [46]. We interpolated the ground points to create a
digital terrain model (DTM) with 1-m pixel resolution. The canopy height model was
created by interpolating the highest above ground points which are normalized with
respect to the DTM [49]. The emergent canopy model was produced by applying a lower
threshold of 35 m to the CHM. Then, we used the raster to vector function from QGIS
to automatically create the crown polygons. Finally, to support the field campaign, we
uploaded the vectorized crowns into the GNSS receiver.

During the field campaign we measured all trees with DBH > 50 cm in the 20 plots
of 20 m x 200 m. The DBH was defined based on the threshold imposed by the Brazilian
law on a SFM plan as the minimum allowable diameter size for logging [50]. For each
tree, we recorded the following attributes: DBH, species, stem quality, canopy illumi-
nation, geographic coordinates, commercial interest and the correspondence to an ALS
crown polygon. We identified the species based on previous botanical works developed
in neighboring areas, and using the expertise of staff at INPA ZF-2 [51-53]. The com-
mercial interest was based on the list provided by the Brazilian Forest Service (available
in http:/ /snif.florestal.gov.br /pt-br/especies-florestais, accessed on 22 May 2019). Stem
quality is divided into three levels according to percentage of commercial volume potential
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(straightness, defects, and bifurcations) [54]. The canopy illumination was defined visually
as follows: if the canopy reached the highest layer in the forest and receives direct sunlight,
it was classified as illuminated; the canopies presented in the mean canopy layer but with
incidence of sunlight, they were classified as partially illuminated; lastly, trees under the
mean canopy height were classified as shaded [54].

-60°13' -60°11’ -60°9’ -60°7"
N ' A)
ol /N h
on | | on
& &
@
& &
on | | N
& &
© ZF2
DTM (meters)
2| 1125 &
W 44.4 N
CHM (meters)
i 48.7 0 1 2km
0 [ —
= . Geographic coordinate | S
g D Field plots system: WGS 84 g

-60°13' -60°11" -60°9' -60°7'

Figure 1. Study area is located at Experimental Station for Tropical Silviculture (ZF2), in Manaus,
Amazonas State. (A) Digital terrain model (DTM) overlapped with the 20 field plots measured during
the field work. (B) 20 x 200 m? field plot and the canopy height model (CHM).

We used a regular navigation GNSS (Garmim 76Cx), which is commonly used by the
Brazilian foresters. The intention behind this decision is to see how common devices cur-
rently used to support forest management are able to detect the ALS extracted information.
The GNSS collected coordinates combining two satellite systems (GPS and GLONASS)
to reduce the geolocation error [55,56]. We also classified the DTM by applying the Hill-
Climbing clustering algorithm with two clusters to split the data into valleys (floodplain)
and plateaus [57].
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We defined the trees’ sociological position according to [58], from which the author
classified the species into 10 different groups. From these 10 groups, one represents the
pioneer species (group 7), one represents the emergent/climax species (group 8), and the
remaining groups comprised the intermediary species. The field plots were processed
to obtain the frequency and dominance, stem density and the importance value for each
species (IVI = frequency, density and dominance combined). The field data were processed
using the forestmangr package, developed for R [59].

Based on the correspondence to ALS-derived crown polygon (actual class) and to the
crown illumination from the field emergent trees (detected class), we built a confusion
matrix considering: class II—when a tree stem location matched an emergent canopy
polygon (inside polygon) and had its canopy classified as totally or partially illuminated;
class IS—when a tree stem matched an emergent canopy polygon (inside polygon) and had
its canopy classified as shaded; class Ol—when a tree did not match any emergent canopy
polygon (outside polygon) and had its canopy classified as totally or partially illuminated;
class OS—when a tree did not match any emergent canopy polygon (outside polygon) and
had its canopy classified as shaded. The process steps are described in Figure 2.

Remove outliers
Homogenise cloud
Classify ground
returns
Create DTM
Normalise cloud

Create CHM
Filter emergent
crowns

Include crowns . -
inthe GNSS | — """
CHM (m)

device 0

15
25
20
40
19

[ fietd plots Results

DM (m)

Process field data
Calculate detection

Collect data

Field data accuracy

_— Qualify detected and

commercial trees

with previously species name
segmented crowns

Figure 2. Methodological flowchart describing the methodology steps.

Considering the confusion matrix, we calculated for each plot the detection rate
(recall, ¥, Equation (1)) and the correct detection of the trees (precision, p, Equation (2)).
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These two indices were used to obtain the F-score (Equation (3)), which is the overall
accuracy taking into account both commission and omission errors [60].

II

NTENT) @

11
P=1+or @
F—score:2xﬂ 3)

(r+p)

To qualify what has been detected from ALS, we analyzed the characteristics that
influence tree detection. The binomial logistic regression (Equation (4)) was used to
evaluate the significance of factors in the detection performance by the ALS. We created a
binary variable considering the detected and non-detected trees as 0 and 1, respectively. In
sequence, we fitted a generalized linear model with a logistic link using the binary variables
as a function of tree characteristics (stem quality—cif, commercial — com, and sociological
position—sp) and toposequence (topo). We chose the model based on the significance of the
parameters (p-valor < 0.05) and the Akaike Information Criteria (AIC).

loge[lfp} = logit(P) = By + Picif + Bacom + Bzsp + Patopo 4)

where logit (p) is the odds ratio, p is the probability of finding a tree, Bo~fB5 are the logistic
regression coefficients, cif is the stem quality, com is the commercial species, sp is the
sociological position and fopo is the toposequence.

3. Results
3.1. Qualification and Quantification of Inventory Trees

We recorded a total of 338 trees with DBH above 50 cm, distributed in 26 botanical
families and 93 species. The most representative families were Fabaceae (67 individuals),
Lecythidaceae (47 individuals), Sapotaceae (42 individuals), Apocynaceae (30 individuals)
and Vochysiaceae (22 individuals). The most frequent species are Pouteria minima T.D.Penn.
(26 individuals), Goupia glabra Aubl. (18 individuals), Aspidosperma marcgravianum Wood-
son (14 individuals), Piptadenia suaveolens Miq. (13 individuals), Qualea paraensis Ducke
(13 individuals) and Geissospermum argenteum Woodson (10 individuals). The structural
analysis showed that the species with highest importance values were: Pouteria minima
(IVI = 6.52), Goupia glabra (5.15), Qualea paraensis (3.95), Piptadenia suaveolens (3.90), and
Aspidosperma marcgravianum (3.89). Additional information is provided in Supplementary
Tables S1 and S2.

The emergent crowns (height > 35 m) from the ALS canopy height model were linked
to 54.44% of the trees greater than 50 cm of DBH, recorded in the field. Trees from the climax
and intermediary groups were much more predominant among the emergent crowns than
trees from the pioneer group: 74% of intermediary trees and 21% of climax trees were
included in the emergent crowns, while only 3% were pioneer trees. The remaining 2% of
emergent crowns were related to trees not included in any group (Table 1).
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Table 1. Discrimination of each sociological position regarding the number of individuals by ecological group, presence in
the emergent canopy, and commercial interest.

Trees with Commercial

Ecological Groups Detected Trees Not Detected Trees
Interest

Main Species (# Individuals)

Goupia glabra Aubl. (18)
Aspidosperma marcgravianum Woodson (14)
. Sacoglottis guianensis Benth (6)
Climax 39 2 24 Ladenbergia amazonensis Ducke (5)
Cariniana micrantha Ducke (4)
Hymenolobium sericeum Ducke (4)

Pouteria minima T.D.Penn. (26)
Qualea paraensis Ducke (13)
Intermediary 136 118 66 Piptadenia suaveolens Miq. (13)
Geissospermum argenteum Woodson (11)
Couratari stellata A.C.Sm. (9)

Trattinnickia peruviana Loes. (8)
Dipteryx magnifica Ducke (2)
Inga gracilifolia Ducke (2)
Eriotheca longipedicellata A.Robyns (1)
Jacaranda copaia D.Don (1)

Pioneer 5 9 1

Magquira sclerophylla C.C.Berg (2)
Apeiba echinata Gaertn. (1)
Chornelia tenuiflora Diels (1)
. Glycydendron amazonicum Ducke (1)
Not classified 4 > 3 yLyacmellea gracilis Markgr. (1)
Duckesia verrucosa Cuatrec. (1)
Vantanea parviflora Lam. (1)
Vantanea sp. (1)

Total 184 154 94

# represents individual numbers.

3.2. Quantification of Trees with Potential for Logging

Of the 338 trees recorded in the field plots, 28% (94 individuals) are included in
the commercial interest list (Table 2). Goupia glabra and Piptadenia suaveolens were the
commercial species with a greater number of individuals (13 and 12 trees, respectively). Of
the commercial trees, 70% (66 individuals within 17 species) were present in the ALS canopy
height model. Of the detected trees with commercial interest, 88% had stems classified in

the good (i.e., straight, cylindrical and undamaged) or medium quality (slightly tortuous)
class (Table 2).

Table 2. Discrimination of the commercial trees recorded in the field plots.

Individuals Stem Quality Canopy Illumination Main Species (# Individuals)
Goupia glabra (13)
Good: 37 Mluminated: 61 Piptadenia suaveolens (12)
Detected 66 Medium: 21 Partially: 4 Qualea paraensis (8)
Low: 8 Shaded: 1 Couratari stellata (6)
Dinizia excelsa (5)
Goupia glabra (5)
Good: 10 Mluminated: 20 Qualea paraensis (5)
Not detected 28 Medium: 9 Partially: 7 Clarisia racemosa (3)
Low: 9 Shaded: 1 Couratari stellata (3)

Ocotea fragrantissima (3)

# represents individual numbers.
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3.3. Characteristics Influencing the Tree Detection Rate from ALS Emergent Crowns

We observed a high detection rate in our study (r, Table 3), indicating that emergent
ALS-derived crown polygons are commonly associated with trees having DBH above
50 cm. In all plots, the detection rate was above 80%. The precision values (p, Table 3)
indicate the amount of trees having a DBH greater than 50 cm that are linked to an emergent
crown polygon. We found precision rates ranging from 0.27 to 0.81, with 0.55 on average.
Approximately half of trees with DBH above 50 cm in the forest were not associated with
any emergent crowns. The f-score (f-sc) follows the higher variation observed in the p,
ranging from 0.40 to 0.92, and an average of 0.70 (Table 3).

Table 3. Tree detection rate (r), precision (p) and accuracy (f-sc) for each inventory plot. II = tree
found inside ALS-derived polygon and the canopy partially or totally illuminated, OI = tree outside
ALS polygon and canopy partially or totally illuminated and IS = tree inside ALS polygon and

shaded canopy.
Plots II Ol IS r p f-sc
1 6 6 0 1.00 0.46 0.63
3 4 11 0 1.00 0.25 0.40
7 11 2 0 1.00 0.85 0.92
8 6 3 0 1.00 0.67 0.80
10 10 6 0 1.00 0.63 0.77
11 4 9 0 1.00 0.31 0.47
14 13 4 1 0.93 0.76 0.84
15 5 19 0 1.00 0.21 0.34
16 16 1 2 0.89 0.94 0.91
17 10 6 0 1.00 0.63 0.77
18 11 7 0 1.00 0.61 0.76
19 13 5 2 0.87 0.72 0.79
23 6 12 0 1.00 0.33 0.50
25 10 10 1 0.91 0.50 0.65
26 10 7 0 1.00 0.59 0.74
27 6 12 0 1.00 0.33 0.50
28 13 3 0 1.00 0.81 0.90
29 8 5 0 1.00 0.61 0.76
30 9 6 1 0.90 0.60 0.72
31 6 7 0 1.00 0.46 0.63
General 177 143 7 0.96 0.55 0.70

The full model (Equation (4)—AIC = 303.5) had the predictor variables sp and topo non-
significant (p-value > 0.05). Therefore, we ran the model only for the remaining significant
variables (cif and com, AIC = 302.1), which had the coefficients with p-values < 0.001 (***)
for stem quality (cif) and <0.01 (**) for species with commercial interest (com). The bracket
numbers in model 5 are the standard error.

Probability of detecting trees = 1.1026 1 3355) — 0.7107( 1 1751 cif + - -+ 1.0337( 7 5pp7)cOM (5)

A tree with stem quality classified as good (straight, cylindrical and undamaged)
and with commercial interest had a greater probability of being identified in the emergent
crown model. The sociological position and the toposequence (valleys and plateaus) did
not influence (p-value > 0.05) the odds of trees having a detectable emergent crown in the
ALS-CHM.

4. Discussion

Our results showed that in an area of 8 ha, 28% of the trees greater than 50 cm (in
DBH) had commercial interest, and 70% of these were detected and could therefore be
classified in the emergent ALS canopy height model. The number of commercial trees
detected in the canopy height model correlated to more than seven trees per hectare, which
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is sufficient to build an SFM plan around [16]. In comparison, [5] analyzed an inventory in
the 100% (census) of 1253 ha and arrived at a density of 10.21 commercial trees per hectare
with DBH ranging from 50 to 248 cm.

Our study indicated some factors that influence the odds of a tree being part of the
emergent canopy. Characteristics like stem quality and species with commercial interest
positively increase the odds. The sociological position and the toposequence (valleys and
plateaus) did not significantly influence emergent crowns detection. Desired characteristics
for logging among commercial species (cylindrical stems, straight or with a slight tortuosity
and undamaged) positively influence their possession of an emergent crown (and therefore
potential for detection using ALS). Competition for the resources that permit growth is a
key factor in allowing trees to emerge from the mean canopy [44]. Our results highlight
that good-quality stems reflect more highly competitive individuals which have crucial
characteristics enabling them to surpass the others in height growth.

Basing the operational planning on ALS data can reduce costs, accelerate evaluation
and approval by the authorities, and increase transparency and governance. However, we
clearly show that field data are still needed. Therefore, we propose the use of ALS detected
emergent trees to more efficiently target the field work. Before the necessity of sending
field surveyors into the forest, using ALS, in addition to detecting the target trees, it would
be possible to optimize the extraction route, avoid steep terrain and costly topographic
regions [3,25,61]. Instead of doing a census to record all the trees greater than 50 cm DBH,
the field collection will be oriented on the information extracted from ALS data.

Other authors have shown ALS data to enable forest stratification which led to a
reduction of 41% in the required sampling intensity [24]. This significant reduction in
sampling units (from 46 to 27—1 ha plots) saved US $28,500.00 by reducing the field work,
which paid for the ALS data collection (US $26,400.00) [24]. We believe that following the
approach that reduces sampling intensity [24] with the approach proposed in this paper
could be a future object of study. We also encourage similar studies to ours in different
areas to enable the f-score comparison.

The ALS data can support the operational plan with much more information than
an operational plan based only on field data. Previous work has shown that ALS can be
used to monitor logging impact activities [10,15,16,29] and to estimate biomass and carbon
changes [18,62]. To avoid expensive multitemporal ALS to monitor and inspect how forests
recover after being submitted to logging, this could be combined with a cheaper remote
sensing system, such as 3D UAV photogrammetry [63]. Another product that has been
widely used is the detection and segmentation of trees [22]; however, it still presents some
difficulties, such as species identification [37] and individual crown isolation in dense
tropical forests [22], which still makes field work mandatory to obtain this information.
With the advances of remote sensing techniques, such as combining ALS with hyperspectral
data can help to better segment and detect trees, and maybe enable species identification.

5. Conclusions

Using airborne laser scanning can improve SFM planning, reducing field work in the
initial stages of planning and additionally adding value to later operational implementation
stages. There is no doubt that SFM could benefit from new technologies to make forest
management more efficient and less costly, increasing its sustainability. In this paper, we
showed that inclusion of emergent trees detected by ALS can be an alternative to the
necessity of conducting a full census, resulting in a sufficient number of trees to integrate
into an SFM plan, adding transparency, consistency and confidence.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/f12121724/s1, Table S1: Family and species list recorded in the Experimental Station for
Tropical Silviculture, Table S2: Horizontal structural analysis performed for the species recorded in
the Experimental Station for Tropical Silviculture.
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