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Abstract

The purpose of this study is essentially pedagogical and aims to provide an additional

argument in clarification of a question often raised by first-year undergraduate mechan-

ical engineering students concerning the reason for using two frames of reference—

one fixed in space and one fixed in the rigid-body—to describe its motion. The rea-

soning employed to illustrate the inappropriateness of using a single reference frame

entails showing that the equations of motion, thus obtained, are far more complex than

the equations resulting from application of the traditional Euler Method. This point is

illustrated through the well-known frictionless symmetrical spinning top problem.
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Introduction

The teaching of Classical Dynamics in undergraduate mechanical engineering
courses traditionally begins with the presentation of Newton’s Laws and their
application to the description of the motion of a free material particle subjected
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to an external force ~F ¼ ~Fðx; y; z; _x; _y; _z; tÞ dependent on position, velocity and
time, in the most general case. As lecturers of Theoretical Mechanics for first-
year undergraduate engineering students who have attended one semester of
Calculus and Linear Algebra classes, we realize that they have no difficulty in
understanding the general method of solving this problem, which can be summa-
rized by the following algorithm:

1. define an inertial frame of reference Oxyz;
2. associate to this frame of reference an orthonormal basis ~i~j ~k;
3. represent the particle in a generic position ~rðx; y; zÞ in Oxyz;
4. define an initial kinematic condition ~r0ðx0; y0; z0Þ and _~r0ð _x0; _y0; _z0Þ for the

particle;
5. write Newton’s 2nd Law ðmd2~r=dt2 ¼ ~FÞ for the particle;
6. integrate this differential equation between the instants of interest, assuming the

initial conditions to be those established in step 4.

Naturally, the previous algorithm may raise many questions among students,
such as: Does the differential equation have a unique solution, regardless of the
function representing the applied force? How do I proceed if the obtained differ-
ential equation is not separable? What if the integral obtained is too complicated to
be solved by any analytical method? And if a numerical integration method
becomes necessary, which one is most recommended? It should be noted, however,
that those doubts occur at some step of the process, but do not affect its general
understanding.

The situation changes completely when moving on to the subsequent and nat-
ural problem in Dynamics: studying the motion of a constrained material system
subjected to external forces. In order not to have to resort to the methods of
Analytical Mechanics, this problem is usually simplified by adding that mutual
distances between particles are invariant with time, that is, studying the motion of
a rigid body subject to external forces. In such a case, it is not enough to determine
the motion of the body centre of mass—a problem analogous to that of the motion
of a single particle—but it is also necessary to cope with the changes of the ori-
entation of the body—a problem in undergraduate engineering courses that is
usually approached through the application of Euler’s equations.1–3

At this step of the teaching process, we have observed that the required concepts
in applying the Euler method for rigid-body dynamics give rise to doubts that may
lead students to formulate incorrect mathematical models. As we know, this
method requires the use of two frames of reference: one fixed in space, called the
fixed frame, and another, firmly attached to the rigid body, called the mobile frame.

Students learn that the use of two frames of reference, rather than a single
frame, provides the geometric elements for the definition of three angles—preces-
sion, nutation, and spin—that properly define the orientation of the body at every
instant. Likewise they notice that the derivative of the angular momentum expres-
sion described in the fixed frame becomes more complex. At this moment,
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however, it is observed that students expect we were able to quantify the increase in
complexity resulting from this approach.

The purpose of this article is, therefore, to address the issue raised in the pre-
vious paragraph. Further, although Euler’s equations are applied in numerous
articles devoted to teaching Engineering,4,5 we found no references in the literature
that have a similar focus. This article is organized as follows. In the second section,
we review the angular momentum theorem, emphasizing the essential concepts of
correct application when the material system is a rigid body. In the third section,
this theorem is applied to deduce the motion equations of a symmetric top, a
classical problem in Dynamics. In the fourth section, we explore the same problem
but, rather than using the Eulerian approach, we derive the angular momentum
vector with the aid of a symbolic mathematical tool. In the fifth section, numerical
simulations are performed, and the results provided by the two methods are com-
pared. The last section presents the conclusions of the study.

Euler’s method for rigid-body dynamics

For a system of material particles P1;P2; . . .Pn subjected to forces ~F1; ~F2; . . . ~Fn

(see Figure 1), the angular momentum ~HO, in a pole O that moves with velocity~vO,
is given by

~HO ¼
Xn
i

½ðPi �OÞ ^mi~vi� (1)

in which the “^” symbol stands for cross-product. Differentiating the above
expression with respect to the fixed frame FðOXYZÞ results in:

_~HO ¼ �~vO ^
Xn
i

mi~vi þ
Xn
i

½ðPi �OÞ ^ ~Fi� ¼ �~vO ^m~vG þ ~MO (2)

where ~MO is the moment of the external forces at O.
Now, referring to Figure 2, when the material system is a rigid body B, the Euler

method prescribes: (i) using two reference frames, namely, FðOXYZÞ, fixed in
space, and MðOxyzÞ, mobile relative to F , but firmly attached to body B; (ii)
adopting the system of coordinates of M to describe the following vectors: ðPi �
OÞ (position of particle Pi), ~x ¼ ½xx xy xz�T (angular velocity of B relative to F )
and ~HO(angular momentum of B with respect to O relative to F ). This is summa-
rized in the following set of equations:

ðPi �OÞ ¼ xi~i þ yi~j þ zi~k (3)

107Martins et al.



x ¼ xx
~i þ xy

~j þ xz
~k (4)

~HO ¼
Xn
i

½ðPi �OÞ ^mi~vi�

¼
Xn
i

½ðPi �OÞ ^mið~vO þ ~x ^ ðPi �OÞÞ�

¼ ðG�OÞ ^m~vO þ
Xn
i

mi½ðPi �OÞ ^ ð~x ^ ðPi �OÞÞ�

¼ ðG�OÞ ^m~vO þ
Xn
i

mif½ðPi �OÞ:ðPi �OÞ�~x � ½ðPi �OÞ:~x�ðPi �OÞg
~HO ¼ ðG�OÞ ^m~vO þ ½JO�~x

(5)

Figure 1. System of particles and fixed frame of reference F ðOXYZÞ.

Figure 2. Rigid body B and frames of reference: fixed, F ðOXYZÞ, and mobile, MðOxyzÞ 2 B.
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where m is the mass of the rigid body B and

½Jo� ¼
JOx �JOxy �JOxz

�JOyx JOy �JOyz

�JOzx �JOzy JOz

2
64

3
75 (6)

is its inertia matrix with respect to poleO, written in coordinates of the Oxyz system.
The two terms on the right side of equation (5) can be interpreted as follows:

• ðG�OÞ ^m~vO: angular momentum with respect to pole O of an ideal particle
of mass m, moving with instantaneous velocity ~vO and situated at the centre of
mass G of body B;

• ½JO�~x: angular momentum with respect to a hypothetically fixed pole O of rigid
body B, moving around O with angular velocity ~x.

Taking the derivative of the first term, relative to the fixed frame F , results in

d

dt
½ðG�OÞ ^m~vO� ¼ �~vO ^m~vG þ ðG�OÞ ^m~aO (7)

To take derivative of the second term, relative to the fixed frame F , we use the
derivative formula of a generic vector function ~W described in a frame M that
moves in relation to F with angular velocity ~x,2 that is:

d ~W

dt

����
F
¼ d ~W

dt

����
M

þ ~x ^ ~W (8)

Thus, we have,

d

dt
ð½JO�~xÞjF ¼ d

dt
ð½JO�~xÞjM þ ~x ^ ð½JO�~xÞ (9)

The above expression demonstrates the ingenuity of the Euler method: since the
inertia matrix ½JO�, expressed in coordinates of the system Oxyz, is invariant for an
observer firmly attached to frameM, we arrive at the following result:

d

dt
ð½JO�~xÞjF ¼ ½JO� _~x þ ~x ^ ð½JO�~xÞ (10)

Then, by combining equations (7) and (10) we see that the derivative takes the form

d

dt
~HO

����
F
¼ �~vO ^m~vG þ ðG�OÞ ^m~aO þ ½JO� _~x þ ~x ^ ð½JO�~xÞ (11)
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Finally, comparing equations (11) and (2) results in the expression of the angu-

lar momentum theorem for a rigid body, i.e.:

ðG�OÞ ^m~aO þ ½JO� _~x þ ~x ^ ð½JO�~xÞ ¼ ~MO (12)

For the case where the pole O is a fixed point, the first term is zero and the

resulting simplified version of equation (12) is called Euler’s equation. It is impor-

tant to emphasize that the many texts on Dynamics omit this first term on the left

side of equation (12). The remaining equation, ½JO� _~x þ ~x ^ ð½JO�~xÞ ¼ ~MO, is valid

only if O is a fixed point or ðG�OÞ is parallel to ~aO.

Dynamics of a symmetric top

In this section, we show how difficult it would be to solve a problem of Rigid Body

Dynamics if, rather than applying Euler’s method, we adopted the same approach—

hereinafter referred to as” Newton’s method”—used to describe the motion of a

material point. In order to establish a basis for comparison between the application

of the two methods, we have chosen the description of the dynamics of a

balanced symmetric top moving around a frictionless, fixed point, under the

action of gravity, as illustrated in Figure 3. The four frames of reference used to

describe the orientation of the top are also displayed. The fixed frame of reference is

F (OXYZ axes, orthonormal basis ~I~J~K). The first auxiliary frame, Ox1y1z1, is

obtained by applying to OXYZ a precession w around OZ; the second auxiliary

frame, Ox2y2z2, results from a nutation h of Ox1y1z1 around Ox1; and finally, the

mobile frame M (Oxyz axes, orthonormal basis~i~j ~k), firmly attached to the top, is

obtained through a rotation / (spin) of Ox2y2z2 around axis Oz1. The transforma-

tion matrix— which converts the coordinates of the M-frame to those of the

F -frame—is defined as

l ¼
~i:~I ~i:~J ~i:~K

~j:~I ~j:~J ~j:~K
~k:~I ~k:~J ~k:~K

2
664

3
775 (13)

Dynamics of a symmetric top using Euler’s method: the easy way

As previously mentioned, Euler’s method makes use of the mobile frame of

reference MðOxyzÞ to obtain the equations of motion. Such a task is well

documented in textbooks on Mechanics1,2; thus, here we have chosen to straight-

forwardly present those equations. The reader interested in a thorough discussion

may consult the cited references. Since O is a fixed point, equation (12) simplifies as
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½JO� _~x þ ~x ^ ð½JO�~xÞ ¼ ~MO (14)

In adopting the simplified notation sin(•)¼ s and cos(•)¼ c, the absolute angular
velocity vector and the inertia matrix of the top, both described in the mobile
frame of reference MðOxyzÞ are, respectively,

~x ¼ ð _wshs/þ _hc/Þ~i þ ð _wshc/� _hs/Þ~j þ ð _wchþ _/Þ~k (15)

and ½Jo� ¼
I 0 0

0 I 0

0 0 J

2
64

3
75 (16)

By differentiating the angular velocity vector ~x in relation to time and with
respect to the fixed frame F , and noticing that the only moment about O is pro-
vided by the weight mjj~gjj at G, such that ðG�OÞ ¼ z~k, the equations of
motion are,

€w ¼ J� 2I

I

� �
ch
sh

� �
_h _w þ J

I

� �
1

sh

� �
_/ _h (17)

€h ¼ I� J

I

� �
shch _w

2 � J

I

� �
_w _/shþ mgz

sh
I

� �
(18)

Figure 3. Spinning symmetric top.
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€/ ¼ _h _wsh� ch
J� 2I

I

� �
ch
sh

� �
_w _h þ J

I

� �
1

sh

� �
_h _/

" #
(19)

Those 2nd order non-linear ordinary differential equations can be integrated

either numerically or analytically to provide the motion of the top. Although

some algebraic work was necessary to uncouple the terms containing the

2nd derivatives in relation to time, the simplicity of Euler’s method justifies the

title of this section.

Dynamics of a symmetric top using “newton’s method”: the hard way

We will now show how the spinning top equations of motion become intricate

when “Newton’s method”, suitable for describing the motion of a single material

particle, is applied to describe the rotation motion of a rigid body. In this case, the

top’s angular momentum ~HO is written in the fixed frame of reference. First, we

use the transformation matrix of equation (13) to convert the coordinates from the

M to the F -frame. The result of computing the inner products for each of the

components of the l matrix is

~i

~j
~k

2
664

3
775 ¼

cwc/� swchs/ swc/þ cwchs/ shs/

�cws/� swchc/ sws/þ cwchc/ shc/

swsh �cwsh ch

2
64

3
75

~I

~J

~K

2
664

3
775 (20)

Equation (20) is used to obtain the angular velocity vector and the inertia

matrix in the F -frame. The angular velocity is

~X ¼ ð _hcwþ _/swshÞ~I þ ð _hsw� _/cwshÞ~J þ ð _w þ _/chÞ~K (21)

In order to describe the inertia matrix, ½JO�, in the F -frame, we apply the fol-

lowing transformation:

½JO� ¼ lT:½Jo�:l (22)

Matrix ½JO� has components whose expressions are cumbersome. Therefore, it is

presented as a partitioned matrix,

½JO� ¼ ½ J1 J2 J3 � (23)
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with columns

J1 ¼
JðcwÞ2ðchÞ2 � IðcwÞ2ðchÞ2 � JðcwÞ2 � ðchÞ2Jþ IðcwÞ2 þ IðchÞ2 þ J

cwsw
�
ðchÞ2J� IðchÞ2 � Jþ I

�
swshchð�Iþ JÞ

2
6664

3
7775
(24)

J2 ¼
cwsw

�
ðchÞ2J� IðchÞ2 � Jþ I

�
�JðcwÞ2ðchÞ2 þ IðcwÞ2ðchÞ2 þ JðcwÞ2 � IðcwÞ2 þ I

�cwshchð�Iþ JÞ

2
6664

3
7775 (25)

J3 ¼
swshchð�Iþ JÞ
�cwshchð�Iþ JÞ
ðchÞ2J� IðchÞ2 þ I

2
64

3
75 (26)

Therefore, the absolute angular momentum ~HO of the top, with respect to the
fixed pole O, described in F -frame is

~HO ¼ ½JO�~X ¼ HX
~I þHY

~J þHZ
~K; (27)

with

HX ¼
�
ðJ� IÞðcwÞ2ðchÞ2 þ ðI� JÞ

�
ðcwÞ2 þ ðchÞ2

�
þ JÞ

�
ð _/cwþ _/swchÞ

þ cwsw
�
ðJ� IÞðchÞ2 � Jþ I

�
ð _h � _/cwshÞ

þ shswchðJ� IÞð _w þ _/chÞ
(28)

HY ¼ cwsw
�
ðJ� IÞðchÞ2 � Jþ I

�
ð _hcwþ _/swchÞ

þ
�
ðI� JÞðcwÞ2ðchÞ2 þ ðJ� IÞðcwÞ2 þ I

�
ð _hsw� _/cwshÞ

� shcwchðJ� IÞð _w þ _/chÞ
(29)

HZ ¼ shswchðJ� IÞð _hcwþ _/swshÞ
� shcwchðJ� IÞð _hsw� _/cwshÞ
þ
�
Iþ ðJ� IÞðchÞ2

�
ð _w þ _/chÞ

(30)
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The next step, the application of angular momentum theorem, equation (12),
requires the differentiation of equation (27) in relation to time and with respect to
the F -frame, seen as

_~HO ¼ _HX
~I þ _HY

~J þ _HZ
~K (31)

The time derivatives of the scalar components of ~HO are:

_HX ¼
�
2ðI� JÞcwðchÞ2 _wswþ 2ðI� JÞðwÞ2ch _hsh

þ 2ðJ� IÞcw _wswþ 2ðJ� IÞch _hsh
�
ð _hcwþ _/swshÞ

þ
�
ðJ� IÞðcwÞ2ðchÞ2 þ ðI� JÞðcwÞ2 þ ðI� JÞðchÞ2 þ J

�
:

ð€hcw� _h _wswþ €/swshþ _/ _wcwshþ _/ _hswchÞ
� _wðswÞ2

�
ðJ� IÞðchÞ2 � Jþ I

�
ð _hsw� _/cwshÞ

þ ðcwÞ2 _w
�
ðJ� IÞðchÞ2 þ I� J

�
ð _hsw� _/cwhÞ

þ cwsw
�
2ðI� JÞ _hchsh

�
ð _hsw� _/cwshÞ

þ cwsh
�
ðJ� IÞððchÞ2 � 1Þ

�
ð€hswþ _h _wcw� €/cwshþ _/ _wswsh� _/ _hcwchÞ

þ _hðchÞ2shðJ� IÞð _w þ _/chÞ þ sh _wcwchðJ� IÞð _w þ _/chÞ
� ðshÞ2sw _hðJ� IÞð _w þ _/chÞ þ shswchðJ� IÞð€w þ €/ch� _/ _hshÞ

(32)

_HY ¼ � _wðshÞ2
�
ðJ� IÞððchÞ2 � 1Þ

�
ð _hcwþ _/swshÞ

þ _wðcwÞ2
�
ðJ� IÞððchÞ2 � 1Þ

�
ð _hcwþ _/swshÞ

þ cwsw
�
2ðI� JÞ _hshch

�
ð _hcwþ _/swshÞ

þ cwsw
�
ðJ� IÞððchÞ2 � 1Þ

�
ð€hcw� _h _wswþ €/swshþ _/ _wcwshþ _/sw _hchÞ

þ
�
2ðJ� IÞ _wswcwðchÞ2 þ 2ðJ� IÞ _hshchðcwÞ2 þ 2ðI� JÞ _wswcw

�
ð _hsw� _/cwshÞ

�
þ
�
ðI� JÞðcwÞ2ðchÞ2 þ ðJ� IÞððcwÞ2 þ 1Þ

�
� ð€hswþ _h _wcw� €/cwshþ _/ _wswsh� _/ _hcwchÞ
� ðshÞ2cw _hðJ� IÞð _w þ _/chÞ þ sh _wswchðJ� IÞð _w þ _/chÞ
þ ðshÞ2cw _hðJ� IÞð _w þ _/chÞ � shcwchðJ� IÞð€w þ €/ch� _/ _hshÞ

(33)
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_HZ ¼ _hðchÞ2shðJ� IÞð _hcwþ _/swshÞ þ sh _wcwchðJ� IÞð _hchþ _/swshÞ
� ðshÞ2sw _hðJ� IÞð _hcwþ _/swshÞ þ shswchðJ� IÞð€hcw� _h _wswþ €/swsh

þ _/ _wcwshþ _/sw _hchÞ � _hðchÞ2cwðJ� IÞð _hsw� _/cwshÞ
þ sh _wswchðJ� IÞð _hsw� _/cwshÞ þ ðshÞ2cw _hðJ� IÞð _hsw� _/cwshÞ
� shcwchðJ� IÞð€hswþ _h _wcw� €/cwshþ _/ _wswsh� _/cw _hchÞ
þ 2ðI� JÞ _hchshð _w þ _/chÞ þ

�
ðJ� IÞðchÞ2þ I

�
ð€w þ €/ch� _/ _hshÞ

(34)

At this point, we must stress that the computation of the derivatives presented

in equations (32) to (34) was only possible with the help of a symbolic math

software (Maple); moreover, if all operations among parentheses were expanded,

the whole expression for
_~H0 would have around 300 summation terms, many of

them containing 4 or 5 multiplications among sines and cosines of the arguments h,
/ and w, as well as their first and/or second derivatives. Comparatively, using

Euler’s approach, according to equations (17) to (19) the total number of summa-

tion terms is 8, with 1 to 5 internal multiplications.

Numerical simulation

In the previous section, we obtained the equations of motion for the spinning top

using “Newton’s method”. With the aid of the Maple symbolic math software, we

managed to differentiate the angular momentum vector and decouple the resulting

equations. The expressions obtained are not presented in the article, for they

spread throughout several pages of A4-format paper. Integrating a system of

second order differential equations with such a huge number of terms is not jus-

tifiable, since the desired results can be easily achieved through Euler’s method.

According to this rationale, we did not integrate those awkward equations.
Although this finding illustrates the significant difficulty of applying Newton’s

method, rather than Euler’s method, in rigid-body dynamics, we consider that it is

still worthwhile presenting the behaviour of the inertia matrix and of the angular

momentum vector in the fixed frame, which is possible once the time evolution of

the Euler angles is available as input to equations (23) to (30).
To this end, we employed Euler’s method to numerically simulate a specific

instance of the spinning top motion, namely, regular precession, thus obtaining

the necessary time history of the Euler angles. In such a motion, there is a strict

relationship among the initial values of nutation angle, precession, and rotation

(spin) angular velocities given by6

_/ ¼ I

2J _w
2 _w

2
1� J

I

� �
coshþ 2mgz

I

� �" #
(35)
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In adopting precession velocity _w ¼ 4 rad=s and nutation angle h ¼ p=6 rad, the
rotation velocity computed according to equation (35) is approximately 221 rad=s.
The spinning top parameters used in the simulation are given in Table 1.

Before proceeding, we must point out that regular precession is only a theoret-
ical situation, due to the frictionless hypothesis of the mathematical model. In a
real scenario, even if point O is modelled as a smooth semi-spherical surface, the
action of a frictional moment should be considered. The discussion on the general
dynamics of spinning tops goes beyond the scope of this work and can be found in
the literature.6,7

The results of the simulation are now presented. As seen in Figure 4, the time
evolution of the products of inertia exhibit a periodic behaviour in which the
oscillation period is T ¼ 2p= _w ’ 1:57 s, in accordance with the prescribed regular
precession. Moreover, the phase difference of p=2 between JXZ and JY Z, and of
p=4 between JXY and JXZ & JY Z, is in agreement with the description of the

Table 1. Spinning top parameters.

m ðkgÞ I ðkg:m2Þ J ðkg:m2Þ z ðmÞ
85e�3 1:72e�4 3:75e�5 3:75e�2

Figure 4. Products of inertia described in coordinates of the F -frame.
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motion in a fixed frame of reference, since the inertia ellipsoid, associated to the
similarity transformation given by equation (23), rotates around the OZ axis.

Another consistency check of the results presented is given by the invariance of
the trace of the inertia matrix, depicted in Figure 5, along with the individual

Figure 5. Moments of inertia described in coordinates of the F -frame.

Figure 6. Trajectory of the tip of the angular momentum vector ~HO and of the centre of mass G
in the F -frame.
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components of the main diagonal. The projection of the angular momentum ~HO in

the OZ axis, HZ, is an invariant of the spinning top motion. In the particular case

of a regular precession, invariance of HZ implies that the moment of inertia about

OZ, JZ, is also invariant; the values of JX and JY must, as a consequence, be in

opposition of phase, in order to keep the trace invariant, as shown in this

same figure.
The trajectory of the tip of the angular momentum vector ~HO and of the centre

of mass G are presented in Figure 6. The projection of ~HO onto OZ is constant as

well as the Z coordinate of the centre of mass, thus corroborating the assertion of

the previous paragraph.

Conclusion

In this paper, we propose to answer a common question posed by undergraduate

mechanical engineering students who are faced, for the first time, with learning

Euler’s method for rigid-body dynamics:” Why is it necessary to describe the

angular momentum of the rigid body in the body-fixed frame of reference? Why

can we not adopt the procedure used when applying Newton’s 2nd Law, i.e.,

describing the angular momentum in a fixed frame of reference?”
Our approach to highlighting the inappropriateness of adopting such a method

consisted of describing the angular momentum of the body in a fixed frame of

reference and showing that the resulting differential equations of motion are so

intricate that, even with the aid of symbolic and numeric mathematical tools,

integrating those equations is extremely difficult.
Then, in order to stress the ingenuity of Euler’s method in rigid-body dynamics,

we solved the problem of a spinning top constrained to moving around a friction-

less pivot and showed that the solution to this problem was far more straightfor-

ward when using Euler’s method. Furthermore, we used a simple transformation

of the results from the moving to the fixed frame in the special case of regular

precession to validate Euler’s approach—a result that could not be achieved by

straightforwardly integrating the corresponding differential equations obtained

with the Newton method, as emphasized before.
It might be argued that the paper could be more convincing if there were more

numerical simulation examples with comparisons. The investigation of more com-

plex problems of rigid-body movement around a fixed point (e.g.: assuming that

the body mass is not homogeneously distributed, or that there are friction forces at

the contact) would only hinder the process of building and validating of dynamic

models based either on Euler’s or Newton’s methods, but would not bring any

advantage in return.
Of course, other examples of more complex mechanical systems could still have

been examined. Nevertheless, attempts to solve those kind of problems using

Newton’s method would be inadequate. The dynamic modelling, based on

Euler’s approach, of any mechanism made up of bodies connected to each other
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by means of hinges and linear guides in open or closed kinematic chains already
produces highly complex nonlinear differential equations.

In conclusion, we feel that the arguments and examples presented in this article
will be useful in convincing students of the overwhelming practical challenges in
applying Newton’s method to problems in rigid-body dynamics and the wisdom of
using Euler’s approach.
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