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A quorum-sensing regulatory cascade for siderophore-mediated 
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ABSTRACT Iron is a transition metal used as a cofactor in many biochemical reac­
tions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake 
systems, such as the iron-chelating compounds siderophores. In this work, we identified 
and characterized novel regulatory systems that control siderophores in the environmen­
tal opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transpo­
son mutant library for siderophore halos identified seven possible regulatory systems 
involved in siderophore-mediated iron homeostasis in C. violaceum. Further characteri­
zation revealed a regulatory cascade that controls siderophores involving the transcrip­
tion factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of 
the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, 
violacein, and protease production. We determined that these effects occurred due to 
VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the 
CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and 
null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the 
cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent 
regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were 
activated at high cell density by both CviI and CviR. However, genes related to iron 
homeostasis and many other processes were regulated by CviR but not CviI, suggesting 
that CviR acts without its canonical CviI autoinducer. Our data revealed a complex 
regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in 
C. violaceum.

IMPORTANCE The iron-chelating compounds siderophores play a major role in bacterial 
iron acquisition. Here, we employed a genetic screen to identify novel siderophore 
regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. 
Many mutants with increased siderophore halos had transposon insertions in genes 
encoding transcription factors, including a novel regulator called VitR, and CviR, the 
regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the 
pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory 
protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS 
mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, 
proteases, and antibiotics production). However, genes related to iron homeostasis and 
type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-
independent manner. Our data unveil a complex regulatory cascade integrating QS and 
siderophores in C. violaceum.

KEYWORDS transcription factors, quorum-sensing, iron homeostasis, iron uptake, 
siderophores, Chromobacterium violaceum

I ron is an essential micronutrient required by almost all living organisms since it acts as 
a cofactor for enzymes involved in crucial biological processes (1, 2). Bacteria uptake 
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iron from different sources and in distinct ways (3). While Fe2+ is directly transported 
by systems located in the cytoplasmic membrane, such as FeoAB and EfeUOB, 
the insoluble form Fe3+ is solubilized and transported as siderophore-Fe3+ complexes. 
Siderophores are low molecular weight molecules with high affinity for Fe3+ (4–6). In 
Gram-negative bacteria, Fe3+-siderophore complexes are transported across the outer 
membrane by TonB-dependent receptors, and from the periplasm to the cytoplasm by 
ABC-type transporters (2, 7).

Bacteria maintain iron homeostasis by regulating gene expression in response to 
iron availability. In most bacteria, this is an orchestrated mechanism involving Fur, 
an iron-sensing global transcription factor, and iron-responsive small regulatory RNAs 
(sRNAs) (8–10). When a sufficient amount of iron is present, the Fur-Fe2+ metalloprotein 
complex represses genes encoding iron uptake systems by binding to a specific DNA 
sequence known as Fur box, located in their promoter regions (1, 8, 10, 11).

Other regulatory mechanisms controlling iron homeostasis have been identified. In 
Xanthomonas campestris, a virulence-associated global regulator called XibR positively 
regulates motility and iron uptake and storage, while it negatively regulates sidero­
phore synthesis in response to iron levels (12). Iron homeostasis can be integrated into 
quorum-sensing (QS) circuits, a cell-cell communication process in which cells produce, 
detect, and respond to signaling molecules called autoinducers (13). Considering that 
siderophores are known as public goods, it is not surprising that the QS systems of some 
bacteria regulate siderophore production (14–17).

Chromobacterium violaceum is a Gram-negative, saprophytic bacterium found in the 
soil and water of tropical and subtropical regions (18); it is an opportunistic pathogen 
that causes severe infections in humans (19, 20). C. violaceum produces a violet-colored 
pigment called violacein, which has been shown to have antibacterial, antiparasitic, 
antiviral, and antitumor actions in vitro (21, 22). In C. violaceum, the violacein production 
is activated by the CviIR QS system, in which the CviI enzyme produces N-acyl-L-homo­
serine lactone (AHL) autoinducers (23). At high cell density (HCD), the AHLs accumulate 
and bind to the CviR regulator, which in turn regulates several processes (24–27). A CviR 
DNA binding site was mapped upstream of the violacein biosynthesis operon and used 
for in silico prediction of other potential CviR-regulated genes (25). However, the global 
CviR regulon and the connection between QS and iron homeostasis remains unexplored 
in C. violaceum.

Our group has shown that C. violaceum synthesizes at least two catecholate 
siderophores (chromobactin and viobactin) required for C. violaceum virulence (28). 
We propose that these siderophores are assembled by the nonribosomal peptide 
synthetases (NRPS) CbaF and VbaF from the 2,3-DHBA precursor and imported by 
the TonB-dependent receptors CbuA and VbuA, respectively (28). In another study, we 
have demonstrated that C. violaceum uses heme via the ChuPRSTUV system, and that 
both siderophores and heme are important iron acquisition strategies during infection 
(29). Further work by our group has shown that Fur protects C. violaceum against iron 
overload and oxidative stress. Also, Fur represses genes related to iron homeostasis and 
controls virulence in this bacterium (30). However, it remains unknown whether other 
transcription factors regulate the production and uptake of siderophores in C. violaceum.

In this work, we identified novel regulatory mechanisms involved in iron homeostasis 
in C. violaceum by screening a transposon mutant library for altered siderophore halos 
in peptone-sucrose agar with Chrome Azurol S (PSA-CAS) plates. Our data unveil a 
regulatory cascade involving the transcription factor VitR that culminates in the QS 
system CviIR controlling siderophore-mediated iron homeostasis.
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RESULTS

A global transposon mutagenesis approach reveals novel regulatory systems 
involved in siderophore-mediated iron homeostasis in C. violaceum

Fur, a master iron-responsive regulator, represses siderophore production and utilization 
in C. violaceum (30). To identify novel regulatory systems controlling siderophores, we 
used the T8 transposon (30, 31) to generate a library of 10,000 transposon mutants in 
C. violaceum ATCC 12472. Library screening on siderophore-indicative PSA-CAS plates 
revealed 132 transposon-mutant strains with altered siderophore halos: 101 strains with 
increased halos and 31 strains with decreased ones (siderophores deplete iron resulting 
in orange halos) (Table S1). Sequencing of semi-degenerate PCR products from the 
132 mutant strains identified unique transposon insertion sites in 25 different genes in 
the C. violaceum genome, with some genes showing multiple independent transposon 
insertions (Table S1). Mutated genes grouped into different functional categories, and six 
encoded regulatory systems (Fig. 1A; Table S1). We focused on three of these regulatory 
systems: (i) the transcription factor VitR (CV_1057) (Fig. 1B); (ii) the two-component 
system AirSR (CV_0536-37) (Fig. 1C); and (iii) the transcription factor CviR (CV_4090) of 
the QS system CviIR (Fig. 1D). For all these genes, we further confirmed the presence 
of transposon insertions by PCR, and we generated null mutant strains (Fig. 1B through 
D). We demonstrated in this work that these regulatory systems operate together in a 
regulatory cascade (Fig. 1E). These results indicate that several regulatory systems control 
siderophore-mediated iron homeostasis in C. violaceum.

The two-component system AirSR plays a role in siderophore homeostasis

Transposon insertions into the genes CV_0535, CV_0536, and CV_0537 increased the 
siderophore halos (Table S1; Fig. 1C). Recently, the orthologs of CV_0535-36-37 in C. 
violaceum ATCC 31532 were characterized as an antibiotic-induced response system (Air 
system) composed of an oxidoreductase (AirM), a histidine kinase (AirS), and a response 
regulator (AirR). The Air system acts via the CviIR signaling pathway to activate violacein 
production (32). In agreement with our findings on the transposon-mutant strains, the 
null-mutant strains ∆airS, ∆airR, and ∆airSR showed an increase in siderophore halos; 
these phenotypes were reversed by complementation (Fig. 2A and B). These results 
indicate that the two-component system AirSR controls siderophore homeostasis in C. 
violaceum.

The transcription factor VitR controls siderophore, violacein, and biofilm 
formation in C. violaceum

Transposon insertion in CV_1057 resulted in increased siderophore halos (Table S1; 
Fig. 1B). The gene CV_1057 encodes a putative transcription factor belonging to the 
superfamily Cro, family XRE, that we named VitR (violacein inhibitor regulator). A ∆vitR 
mutant strain showed increased siderophore halos, validating the phenotype of the 
transposon mutant (Fig. 3A and B). Interestingly, we observed that when grown in 
Luria-Bertani (LB) broth for 24 h, the ∆vitR mutant produced less violacein than the 
wild-type (WT) strain (Fig. 3C). Also, ∆vitR formed less biofilm than the WT strain (Fig. 3D). 
Growth curves indicate that ∆vitR had the same growth in LB (Fig. 3E), but a slight growth 
decrease in LB-chelated for iron (150 µM DP) (Fig. 3F), when compared to the WT strain. 
All observed phenotypes were rescued in a ∆vitR-complemented strain (Fig. 3). Taken 
together, these data indicate that VitR regulates siderophores, violacein production, and 
biofilm formation in C. violaceum.

VitR controls many processes by acting as a direct repressor of vioS

To identify VitR-regulated genes, we performed RNA-seq on WT and ∆vitR strains grown 
in LB at HCD (Table S2; Fig. 4A and B). The gene with the highest expression in ∆vitR 
was vioS, which encodes a protein that inhibits violacein production (33), possibly 
by inhibiting the QS regulator CviR through protein-protein interaction (33). Many 

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.01397-23 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
M

ay
 2

02
5 

by
 1

43
.1

07
.3

.2
13

.

https://doi.org/10.1128/msystems.01397-23


downregulated genes in ∆vitR are involved in processes that are regulated by CviR 
(violacein biosynthesis, proteases, and chitinase), suggesting that their altered expres­
sion levels in ∆vitR is an indirect effect of vioS overexpression (Table S2; Fig. 4A and 
B). The vitR gene is next to and is divergently transcribed in relation to vioS (Fig. 1B 
and 4C). The vioS and vitR promoter expression was investigated by beta-galactosidase 
assays (Fig. 4C). The expression of vioS was fully repressed in the WT strain and entirely 
de-repressed in the ∆vitR mutant in all conditions tested, supporting the RNA-seq data 
and indicating that VitR represses the vioS expression. Iron and Fur have little or no effect 
on vioS expression (Fig. 4C). The vitR expression levels decreased under iron limitation 
in the WT, and in ∆vitR and ∆fur, regardless of iron levels (Fig. 4C). These data show that 
VitR activates itself and is also activated by Fur under iron sufficiency conditions. We 
investigated whether the purified VitR protein binds to the intergenic region between 

FIG 1 Functional classification of the genes with transposon insertion and identification of the insertion site in mutant strains of regulatory genes. (A) Functional 

classification of 25 genes with transposon insertion that affected siderophore activity. (B–D) Gene organization of the regulatory systems with transposon 

insertions, and PCR to confirm the insertion and the null-mutant strains. Black arrowhead, one insertion site; white arrowhead, multiple insertion sites; WT, 

wild-type strain; T8, transposon mutant strain of the indicated gene; ∆, null-mutant strain of the indicated gene; molecular weight marker 1 kb plus DNA Ladder 

(Thermo Scientific). Black arrows above the genes indicate position of the primers used to confirm mutant strains (the same used to complement the mutant 

strains). Null mutants, shorter products due to gene deletion; T8 mutants, absence of products due to 6 kb transposon insertion. (E) Scheme depicting the QS 

regulatory cascade investigated in this work.
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vioS and vitR by electrophoretic mobility shift assay (EMSA) (Fig. 4D). We observed DNA 
binding starting at 10 nM of VitR, with complete protein binding occurring at 25 nM. 
This binding was specific, as demonstrated by a competition assay using a nonspecific 
probe as control (Fig. 4D). Altogether, our data indicate that VitR activates its own 
expression and represses vioS by binding directly to their promoters. To confirm that 

FIG 2 Characterization of the two-component system airSR. (A) CAS (Chrome Azurol S assay for siderophores) tests showing the production of siderophores 

(orange halos) by the indicated strains inoculated on PSA-CAS plates. We generated null mutant strains for the airSR system with the same phenotype as the 

airS::T8 and airR::T8 strains. (B) Measurement of the CAS halo areas of the indicated strains. Data from three biological assays. Statistical analyses using one-way 

ANOVA followed by Holm-Sidak’s multiple comparisons test. *P < 0.05; ***P < 0.001; ****P < 0.0001; when not indicated, not significant (n.s.).

FIG 3 Phenotypic characterization of the vitR regulator. (A) CAS tests showing the production of siderophores (orange halos) by the indicated strains inoculated 

on PSA-CAS plates. We generated a null mutant strain for the CV_1057 (vitR) gene with a similar phenotype as the vitR::T8. (B) Measurement of the CAS halo areas 

of the indicated strains. Data from three biological assays. Statistical analyses using one-way ANOVA, followed by Dunnett’s multiple comparisons test. *P < 0.05; 

**P < 0.01; when not indicated, not significant (n.s.). (C) Growth of the indicated strains in LB medium to verify the production of violacein. (D) Biofilm assay of 

the indicated strains. The strains were grown in LB medium for 24 h and the assay was performed with crystal violet to quantify biofilm. Data from six biological 

assays. Statistical analyses using one-way ANOVA followed by Dunn’s multiple comparisons test. **P < 0.01; ***P < 0.001; when not indicated, n.s. (E) Growth of 

wild-type and mutant strains in LB medium. (F) Growth of wild-type and mutant strains under iron deficiency by addition of 150 µM DP to the LB medium. The 

curves were determined by measuring the OD600 of the cultures during the first 8 h (1 h intervals) and at 24 h (items E and F).
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VitR operates via vioS, we generated ∆vioS and ∆vitR/vioS mutant strains. While ∆vitR had 
lower violacein production, biofilm formation, and proteolytic activity and an increased 
siderophore halo, for ∆vioS and ∆vitR/vioS all these phenotypes were similar to those 
observed in the WT strain (Fig. 5). These data demonstrate that the ∆vitR phenotypes are 
exclusively attributed to the de-repression of vioS in this mutant.

The CviIR QS system controls siderophore homeostasis in C. violaceum

Among the transposon-mutant strains with increased siderophore halos, 51 strains (50%) 
had insertions in the coding region or in the promoter of the cviR gene (CV_4090), 
which encodes the regulator of the C. violaceum CviIR QS system (Table S1; Fig. 1D). 
To confirm that the CviIR QS system controls siderophores, we performed the PSA-CAS 
assays using cvi null mutant strains. As expected, the ∆cviR and ∆cviI mutants had 
increased siderophore halos compared to the WT strain, with all the complemented 
strains having the phenotype reversed (Fig. 6A and B). To verify whether the increased 
siderophore halos in the ∆cviR strain were related to a specific siderophore, we generated 
insertion mutants in each of the NRPS genes (cbaF and vbaF) using the ∆cviR mutant 

FIG 4 Global expression analysis to identify the VitR regulon in C. violaceum. (A) Volcano plot from RNA-seq data with the distribution of differentially expressed 

genes in the vitR versus WT comparison. RNA-seq was performed on three biological replicates from bacteria cultured in LB at high cell density (HCD). 

(B) Functional categorization of genes regulated by vitR. (C) Expression of the promoter region of the vitR and vioS genes in the indicated strains. All strains 

containing the constructs with the indicated promoter were grown until OD600 0.6–0.8 and were treated or not for 1 h with 100 µM of DP. Data from six biological 

assays. Statistical analyses using two-way ANOVA followed by Sidak’s multiple comparisons test. *P < 0.05; **P < 0.01; **** P < 0.0001; when not indicated, not 

significant (n.s.). (D) EMSA with specific (vioS/vitR) and nonspecific (chuP) promoter regions to verify direct binding by the VitR regulator. S—specific unlabeled 

probe; N—non-specific unlabeled probe; P—50 nM His-VitR protein.

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.01397-23 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
M

ay
 2

02
5 

by
 1

43
.1

07
.3

.2
13

.

https://doi.org/10.1128/msystems.01397-23


as a background. In both double-mutants, the size of the siderophore halos was slightly 
smaller compared to that in the ∆cviR strain (Fig. 6A and B), suggesting that the CviIR 
QS system of C. violaceum affects the homeostasis of both siderophores. Previously, 
we found that a double mutant cbaF/vbaF no longer produce siderophore halos (28). 
Considering that the deletion of either cviR, vitR, or airR led to increased siderophore 
halos, we tested whether these transcription factors regulate the expression of the cviR 
promoter in an iron-dependent manner. The beta-galactosidase assays revealed that (i) 
there is no difference in cviR expression under iron deficiency; (ii) CviR is not self-regula­
ted; (iii) VitR does not regulate cviR expression, which agrees with VitR acting on CviR via 
VioS; and (iv) under these conditions, AirR does not regulate cviR (Fig. 6C).

FIG 5 Phenotypic characterization of the ∆vioS and ∆vitR/vioS mutants. (A) Growth of the indicated strains in LB medium to verify the production of violacein 

and CAS tests showing the production of siderophores (orange halos) by the indicated strains inoculated on PSA-CAS plates. (B) Quantification of violacein 

production of the indicated strains. The strains were grown in LB medium under agitation at 37°C for 24 h. After incubation, 500 µL of culture was homogenized 

with 500 µL of acetone. After centrifugation, OD575 was measured for quantification of violacein. Data from three biological assays. ****P < 0.0001; when 

not indicated, not significant (n.s.). One-way ANOVA followed by Tukey’s multiple-comparison test. (C) Measurement of the CAS halo areas of the indicated 

strains. Data from three biological assays. Statistical analyses using one-way ANOVA followed by Dunnett’s multiple comparisons test. ****P < 0.0001, when not 

indicated, n.s. (D) Biofilm assay of the indicated strains. The strains were grown in LB medium for 24 h and the assay was performed with crystal violet to quantify 

biofilm. Data from six biological assays. Statistical analyses using one-way ANOVA followed by Dunnett’s multiple comparisons test. *P < 0.05; ***P < 0.001; ****P 

< 0.0001; when not indicated, n.s. (E) Protease tests showing the production and secretion of proteases in M9 plates supplemented with 1.5% of powdered 

milk. Measurement of the protease halo areas of the indicated strains. Data from three biological assays. Statistical analyses using one-way ANOVA followed by 

Dunnett’s multiple comparisons test. *P < 0.05; when not indicated, n.s.
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CviR regulates CviI-dependent and CviI-independent regulons

Given the connections of VitR and AirR with CviR and the shared phenotype of increased 
siderophore halos in the mutants of these transcription factors, we speculated that 
the CviIR QS system regulates genes involved in siderophore/iron homeostasis. Despite 
the many studies on the CviIR QS system (23–27, 34), the global repertoire of genes 
regulated by CviI and CviR remains unknown in C. violaceum. To compare the transcrip­
tome profiles of the WT, ∆cviR, and ∆cviI strains, we performed RNA-seq from these 
strains grown in LB on HCD. There were more differentially expressed genes (DEGs 
with more than twofold changes) in the absence of cviR (956 DEGs) (Table S2; Fig. 7A) 
than it did in the absence of cviI (470 DEGs) (Table S2; Fig. 7B). CviR/CviI had a global 
transcriptional impact, regulating most cell processes (Fig. S1A and C). Using RT-qPCR, 
we validated the expression profile of several up- and downregulated genes in ∆cviR 
and ∆cviI (Fig. 7C and D; Fig. S1B and D). Most of the genes regulated by cviI were also 
regulated by cviR (84%), while fewer genes regulated by cviR depended on cviI (41%) 
(Fig. 7E and F), suggesting that CviR regulates many genes without its CviI-produced 
canonical autoinducer. We observed that almost all VitR-regulated genes belong to the 
CviIR regulons (80%), with vioS being the only gene that was exclusively repressed by 
VitR (Fig. 7E and F). These data support the hypothesis that VitR acts upstream to the 

FIG 6 The CviIR QS system regulates siderophore activity in C. violaceum. (A) CAS tests showing the production of siderophores (orange halos) by the 

indicated strains inoculated on PSA-CAS plates. The genes encoding siderophore synthetase enzymes (cbaF and vbaF) were mutated in the ∆cviR background. 

(B) Measurement of the CAS halo areas of the indicated strains. Data from three biological assays. Statistical analyses using one-way ANOVA followed by 

Dunnett’s multiple comparisons test. ***P < 0.001; ****P < 0.0001; when not indicated, not significant (n.s.). (C) Expression of the promoter region of cviR in the 

indicated strains. All strains containing the constructs with the indicated promoter were grown until OD600 ~3.0 and were treated or not for 1 h with 100 µM of 

DP. Data from three biological assays.

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.01397-23 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
M

ay
 2

02
5 

by
 1

43
.1

07
.3

.2
13

.

https://doi.org/10.1128/msystems.01397-23


CviIR system via the VioS protein (Fig. 1E). To evaluate if VioS inhibits CviR by protein-pro­
tein interaction, we performed a double-hybrid yeast assay. Our data indicate that VioS 
directly interacts with the CviR protein (Fig. S2).

Expression of CviR and CviI-regulated genes according to cell density

To reveal whether the expression of CviR and CviI-regulated genes change according to 
cell density, we compared the RNA-seq data from the WT at HCD (this work) with that 
from the WT at LCD grown under the same conditions (unpublished data) (Table S2). As 

FIG 7 Genome-wide analysis of CviI and CviR-regulated genes in C. violaceum. (A) Volcano plot from RNA-seq data with the distribution of differentially 

expressed genes in the ∆cviR versus WT comparison. RNA-seq was performed in three replicates from bacteria cultured in LB at high cell density (HCD). 

(B) Volcano plot from RNA-seq data with the distribution of differentially expressed genes in the ∆cviI versus WT comparison. RNA-seq was performed in three 

replicates from bacteria cultured in LB at HCD. (C) Correlation of differentially expressed genes in ∆cviR. The log2 fold changes obtained from the RNA-seq data 

were plotted against the log2 fold changes determined by RT-qPCR for the indicated genes. (D) Correlation of differentially expressed genes in ∆cviI. The log2 fold 

changes obtained from the RNA-seq data were plotted against the log2 fold changes determined by RT-qPCR for the indicated genes. (E and F) Venn diagrams 

showing the overlap and unique subset of genes whose expression was lower (E) or higher (F) in the ΔvitR, ΔcviI, and ΔcviR strains at high cell density (OD 4.0). 

Purple circles represent differentially expressed genes in the ΔcviR strain compared to the WTHCD strain. Blue circles indicate differentially expressed genes in the 

ΔcviI strain compared to the WTHCD strain. Yellow circles indicate differentially expressed genes in the ΔvitR strain compared to the WTHCD strain. RNA-seq was 

performed in three replicates per strain and per condition.
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expected, most CviR and CviI-regulated genes (68%) had their expression levels altered 
according to cell density (Fig. 8A).

Genes related to classical QS-dependent processes are activated by CviIR at 
high cell density

To identify the processes activated by CviR/CviI at HCD, we focused on 258 genes 
downregulated in both ∆cviR and ∆cviI (Fig. 7E). Of these, 191 genes were also upregula­
ted in WT at HCD (Fig. 8B). This group of 191 genes includes genes encoding a lectin 
(CV_1744), many extracellular hydrolytic enzymes (one collagenase, three chitinases, 
seven protases), and clusters of antibiotic biosynthesis (vioABCDE for violacein and 
aniIQPMNHKL for anisomycin) (Fig. 8C) that are known QS-associated processes in C. 
violaceum (25, 26). Also included in this group, there are several large gene clusters 
(CV_1395 to CV_1407, CV_1541 to CV1547, CV_2798 to CV_2804, CV2831 to CV_2837, 
and CV_3940 to CV_3961), which may be related to the production of new small 
bioactive metabolites that were previously detected but not identified in a metabolome 
analysis of C. violaceum (26). Remarkably, two CRISPR/Cas loci (CV_1224 to CV_1230 and 
CV_1751 to CV_1754), the gene clusters for CvP4 phage (some genes of CV_2114 to 

FIG 8 C. violaceum has distinct CviR and CviI regulons. (A) Volcano plot with the distribution of differentially expressed genes in the WTHCD versus WTLCD 

comparison. Colored dots highlight the genes that were also differentially expressed in the mutants of the CviIR QS system. C. violaceum ATCC 12472 was grown 

in LB medium to OD ~1.0 for a low cell density (LCD) condition and to OD ~4.0 for a high cell density (HCD) condition. RNA-seq was performed in three replicates. 

(B) Venn diagrams showing the overlap and unique subset of genes upregulated in HCD and downregulated in the mutants of the CviIR QS system. The blue 

circle represents upregulated genes in the WTHCD strain. The red circle indicates downregulated genes in the ΔcviR and ΔcviI strains. (C) Heatmap showing a 

subset of the genes activated by the CviIR QS system at HCD. (D) Heatmap showing a subset of the genes regulated by the CviR, regardless of cell density and 

Cvil. Comparison of WTHCD versus WTLCD, ∆cviR versus WTHCD, and ∆cviI versus WTHCD.
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CV_2150) and R-body production (CV_0721 to CV_0737), and genes encoding antioxi­
dant enzymes (ohrA, sodB2, and tpx) were also activated by CviIR at HCD (Fig. 8C).

Genes related to iron/siderophore uptake are activated by CviR at low cell 
density

Our RNA-seq data revealed that many genes related to iron/siderophore acquisition 
were downregulated in ∆cviR but their expression levels were almost unaffected in 
∆cviI. Consistent with a mechanism of CviR activation at LCD, most of these genes were 
expressed at higher levels at LCD than at HCD (Fig. 8D). Such genes encode transport­
ers for iron acquisition (feoB and exbBD), including iron bound to the siderophores 
chromobactin (cbuA and CV_1487-88-89), viobactin (CV_2234-35), and heme (chuR). 
Therefore, the increased siderophore halos in ∆cviR seem to be related to an impaired 
siderophore uptake. These data suggest that in addition to being regulated by Fur in 
response to iron levels, as reported by Santos et al. (30), the genes involved in sidero­
phore-mediated iron acquisition are also activated by CviR at LCD, which must optimize 
iron uptake. Many other processes beyond the scope of this study were regulated by the 
CviIR QS system. For instance, almost every gene of a large cluster encoding the type VI 
secretion system (T6SS) was downregulated in ∆cviR, and genes encoding the Cpi1 type 
III secretion system (T3SS) were upregulated in ∆cviR and ∆cviI (Fig. 8D).

DISCUSSION

Siderophores enable bacteria to survive in iron scarcity, an environmental condition 
commonly encountered by pathogenic and free-living bacteria. However, siderophore 
synthesis and utilization must be finely regulated to avoid superfluous production, 
toxicity, and unwanted use of siderophores by non-producing organisms (16, 35, 36). 
In this study, we used an unbiased transposon mutagenesis approach to identify novel 
regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum 
(Table S1), a bacterial pathogen that relies on endogenous siderophores to infect 
mammalian hosts (28). Among the identified regulatory systems, we characterized a 
regulatory cascade involving the transcription factor VitR, the two-component system 
AirSR, and the QS system CviIR (Fig. 1 and 9). This cascade allows C. violaceum to tailor 
the expression of siderophore-mediated iron acquisition genes according to cell density, 
adding a novel layer of regulation to the already known iron level-based Fur-mediated 
repression (30).

In this study, we characterized VitR as a novel transcription factor that controls 
siderophore, violacein, and biofilm formation in C. violaceum (Fig. 3). Our data provide 
evidence that VitR operates upstream of the CviIR QS system by acting as a direct 
repressor of vioS, as follows: (i) VitR binds to the intergenic region where divergent 
promoters of the vioS and vitR genes are found, repressing vioS and activating its own 
expression (Fig. 4); (ii) all phenotypes of ∆vitR mutant were rescued in a double ∆vitR/vioS 
mutant (Fig. 5); and (iii) almost all VitR-regulated genes belong to the CviIR regulons 
(Fig. 4, 7E and F). In addition, we demonstrated a direct interaction between VioS and 
the QS regulator CviR (Fig. S2), corroborating a previous hypothesis that VioS inhibits 
CviR through protein-protein interaction (32, 33). Therefore, unlike other iron-sensing 
transcription factors that in response to iron directly regulate large regulons, such as 
XibR and VgrR in X. campestres (12, 37), VitR exerts its effects as a dedicated local 
repressor of vioS, and its connection with iron seems to be indirect via Fur-mediated vitR 
regulation. The signal that releases VitR from DNA to trigger vioS expression remains to 
be determined. VitR belongs to the Cro superfamily, XRE family of transcription factors. 
DNA binding of XRE family members can be antagonized by small molecules (BzdR 
regulator) or by DNA mimic proteins (NHTF regulator) (38–40). Thus, we hypothesize that 
CV_1058, a protein of unknown function, could inhibit the DNA-binding activity of VitR 
through a protein-protein interaction mechanism.

Our data indicate that CV_0535-36-37 plays a role in the regulation of siderophores 
in C. violaceum ATCC 12472 (Fig. 1 and 2). This system has been characterized in C. 
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violaceum ATCC 31532 as an antibiotic-induced system (airMSR) acting through the CviIR 
signaling pathway to activate violacein production during C. violaceum competition with 
Streptomyces spp. (32). We tested violacein production in airMSR mutants in C. violaceum 
ATCC 12472, but the phenotypes that have been described in C. violaceum ATCC 31532 
were not observed (data not shown). Thus, the CV_0535-36-37 system in C. violaceum 
ATCC 12472 appears to sense signals other than antibiotics. Indeed, C. violaceum ATCC 
31532 has been reclassified as Chromobacterium subtsugae (41, 42), and uses short-chain 
AHLs instead of the long-chain AHLs used by C. violaceum ATCC 12472 for QS activation 
(23–26).

An important finding of our study was that the CviIR QS system is involved in the 
regulation of siderophores in C. violaceum, since the mutation of the cviIR genes led 
to increased siderophore halos on PSA-CAS plates (Fig. 6). In agreement with our data, 
it has been described that mutation of QS systems leads to increased siderophores in 
Burkholderia ambifaria, Pseudomonas chlororaphis, and Vibrio vulnificus (14, 15, 17). To 
understand how the CviIR QS system controls siderophore levels in C. violaceum, we 
identified the entire repertoire of CviR and CviI-regulated genes (Fig. 7) and checked 
whether their regulation was cell density-dependent (Fig. 8). Surprisingly, we found 
that CviR regulates CviI-dependent and CviI-independent regulons, suggesting that CviR 
can act regardless of its canonical CviI autoinducers, which in C. violaceum ATCC 12472 
are several long-chain AHLs (23, 26). For instance, almost all genes of a large cluster 
encoding the T6SS were downregulated in ∆cviR but not in ∆cviI, which is consistent 
with our previous data that CviR, but not CviI, is required for C. violaceum T6SS-medi­
ated competition (43). Dissimilar phenotypes and regulons were also described in the 

FIG 9 A regulatory cascade involving the CviIR QS system regulates siderophores in C. violaceum. The VitR regulator under iron sufficiency is self-activated and 

activated by Fur. VitR is a dedicated repressor of vioS, which encodes a protein that inhibits CviR through protein-protein interaction (dashed line). At high cell 

density in the presence of the CviI autoinducers, the CviR regulator activates the production of AHLs (cviI), violacein (operon vioABCDE), anisomycin (operon 

aniIQPNMHKL), and proteases (CV_4240). In a CviI-independent mechanism, the CviR regulator activates the AirMSR system and the genes necessary for the 

uptake of siderophores (CV_3553, CV_2234, CV_2235, cbaF, cbaCE, and CV_1487-90 e cbuA) at low cell density in C. violaceum.
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Pseudomonas aeruginosa RhlI/R QS system (44), and in this case an alternative PqsE-pro­
duced ligand accounts for the expression of RhlR-dependent genes in the absence 
of RhlI (45). As expected, genes encoding classical QS-dependent processes described 
in Chromobacterium spp. were activated at high cell density by both CviI and CviR 
(Fig. 8), including those for extracellular enzymes like proteases and chitinases, and for 
biosynthesis of the antibiotics violacein and anisomycin (24–26, 46).

Siderophores are considered public goods, like many extracellular enzymes (47, 
48). However, the pattern of QS-mediated regulation of genes related to iron/sidero­
phore acquisition was distinct from what was observed for extracellular enzymes, since 
siderophore genes were more expressed at LCD than at HCD and were downregula­
ted in ∆cviR but not in ∆cviI (Fig. 8). These results suggest that C. violaceum boosts 
its capacity to acquire iron via siderophores at LCD via CviR activation. A similar 
QS regulatory strategy has been described for the global QS regulator LuxT, which 
regulates siderophores in Vibrio harveyi (49). In this bacterium, the same QS-regulated 
siderophore cluster produces cell-associated and soluble siderophores to optimize iron 
uptake according to the bacteria’s life stages (16). It has been described in Paracoccus 
denitrificans that a QS system leads to a shift from TonB-dependent to TonB-independent 
iron uptake strategies during biofilm formation (50).

Future studies should investigate the role of the CviIR QS system in the pathogenesis 
of C. violaceum infecting mammals, as this system has been investigated in invertebrate 
models (26, 34). Also, a detailed analysis of the chemical structure of siderophores 
chromobactin and viobactin may provide insight into their role in different C. violaceum 
life stages.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions

All the strains and plasmids used in this work are described in Table S3. Escherichia 
coli strains were cultured in LB medium and C. violaceum strains were cultured in LB 
medium or M9 minimal medium supplemented with 0.1% casein hydrolysate. When 
necessary, cultures were supplemented with kanamycin (50 µg/mL), ampicillin (100 µg/
mL), nalidixic acid (4 µg/mL), gentamicin (40 µg/mL for C. violaceum or 20 µg/mL for 
E. coli), or tetracycline (5 µg/mL in liquid medium for C. violaceum, 10 µg/mL in agar 
plates for C. violaceum, or 12 µg/mL for E. coli). Iron-deficient conditions were obtained by 
supplementation with 2,2′-dipyridyl (DP) (Sigma) as previously defined for C. violaceum 
(28). Saccharomyces cerevisiae AH109 strain was cultured in yeast peptone dextrose 
adenine (YPDA) medium (51).

Generation and screening of a transposon mutant library

To obtain transposon mutants in C. violaceum, the ISlacZ/hah (T8) transposon present 
in the pIT2 plasmid was used (31). We have validated this transposon to generate 
mutants in C. violaceum using as background a spontaneous nalidixic acid resistant 
mutant (CVNALR) (30). To obtain several random insertion mutants, the C. violaceum CVNALR 

strain was conjugated with E. coli SM10λpir carrying the pIT2 vector. A library with 
approximately 10,000 mutants was organized in 96-well plates and frozen at −80°C. 
These C. violaceum mutants were screened for altered halos in the siderophore-indica­
tive PSA-CAS plates. Mutants with decreased or increased halos were selected and the 
transposon insertion site was identified by semi-degenerate PCR (Table S4), followed by 
Sanger sequencing as described (30, 31).
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Construction of C. violaceum mutant strains

Null-mutant strains were derived from the wild-type strain ATCC 12472 and generated by 
allelic exchange (in-frame null deletion) as previously described (28, 52). Primers used for 
cloning, sequencing, and mutant confirmation are listed in Table S4.

Construction of complemented strains

Null mutants were trans-complemented with the wild-type copies of the genes 
containing their promoter regions cloned into the replicative plasmids pMR20 or pSEVA. 
Primers used for cloning are listed in Table S4.

Siderophore production assay

Measurement of siderophore production was performed by the universal Chrome Azurol 
S (CAS) agar plate assay (53) with the replacement of the MM9 medium by peptone-
sucrose agar (PSA) (28, 54). About 10 µL of C. violaceum cultures was spotted on PSA-CAS 
agar plates, and siderophore production was evaluated by orange halos that appeared 
after incubation for 24 h at 37°C. The area of the halos was measured using the ImageJ 
program. All experiments were performed in three biological replicates.

Static biofilm

For the biofilm assay, the strains were grown in LB medium from an OD600 of 0.01 in glass 
tubes and incubated at 37°C without shaking for 24 h. After incubation, the cultures were 
washed, and the biofilm was stained with 0.1% crystal violet. After washes, the biofilm 
was resuspended in 1 mL of 100% ethanol and the OD600 was measured. Experiments 
were performed in six replicates.

Growth curves

To evaluate the growth of the mutant strains over time, growth curves were performed. 
For this experiment, the wild-type and mutant strains were initially cultivated in LB 
medium overnight and the cultures were diluted to an OD600 of 0.01 in 4 mL of LB 
medium and incubated under agitation (250 rpm). Growth was determined by meas­
urement of the OD600 for the eight initial points, in addition to the 24 h point. For 
an iron-deficient condition, LB medium was supplemented with 150 µM of DP. The 
experiments were performed in three biological replicates.

Violacein production

To analyze the violacein production of the different strains, an initial cultivation was 
performed in LB medium at 37°C overnight, and then cultures were diluted to an OD600 
of 0.01 and incubated at 37°C under agitation. The cultures were photographed after 
24 h to verify violacein production. To quantify the violacein production, 500 µL of 
the cultures was mixed with 500 µL of 100% acetone. Tubes were vortexed for 30 s 
and centrifuged for 5 min at 13,000 rpm. The organic phase, containing violacein, was 
quantified in a spectrophotometer at a wavelength of 575 nm. The experiments were 
performed in three biological replicates.

Protease assay

To verify the presence of proteases, the wild-type and mutant strains were grown 
overnight in the M9 medium at 37°C. Ten microliters of these cultures was plated 
on the surface of M9 medium supplemented with 1.5% powdered milk replacing the 
casein hydrolysate. The plates were incubated at 37°C for 24 h and the halos produced 
were measured using the ImageJ program. The experiments were performed in three 
replicates.
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RNA purification and RNA-seq

Total RNA of the wild-type, ΔvitR, ΔcviI, and ΔcviR strains were extracted from three 
independent biological replicates. The bacterial strains were grown in LB medium at 
high cell density (OD600 ~ 4,0), and the RNA samples were extracted using TRIzol 
reagent and purified using Direct-zol RNA Purification Kit (Zymo Research), following 
the manufacturer’s instructions. Purified RNAs were sent to NGS Soluções Genômicas 
for RNA sequencing (RNA-seq) (https://ngsgenomica.com.br). The RNA integrity was 
verified using a 2100 Bioanalyzer instrument (Agilent Technologies). Depletion of rRNA 
and cDNA library preparation were performed using lllumina Stranded Total RNA Prep 
with Ribo-Zero Plus (Illumina). The cDNA libraries were quantified by qPCR, followed by 
sequencing in a NextSeq2000 equipment (Illumina).

Bioinformatic analysis of RNA-seq data

The raw data were processed using the frtc pipeline available at https://github.com/
alanlorenzetti/frtc/ (55). Briefly, the quality of the reads was checked using Rqc (56), the 
adapters were trimmed, and the remaining low-quality ends (Q < 30) were removed 
using Trimmomatic (57). The trimmed reads were aligned against the reference genome 
(C. violaceum ATCC 12472, genome assembly ASM770v1) using HISAT2 (58). Differential 
expression analysis was performed using the scripts available at https://github.com/
alanlorenzetti/ccrescentus_RNASeq_analysis (59). The read counts were performed using 
GenomicAlignments (60) and differential expression analysis using DESeq2 (61) with 
the following cluster design: Δ_vitR_HDC versus WT_HDC, Δ_cviI_HDC versus WT_HDC, 
Δ_cviR_HDC versus WT_HDC, and WT_HDC versus WT_LDC. Genes with log2 fold 
change ≥1 or ≤−1 and adjusted P value <0.01 were considered differentially expressed. 
Functional categorization was performed using the Clusters of Orthologous Groups 
(COG) with some manually added annotations based on previous lab work.

Construction of transcriptional lacZ fusions and β-galactosidase assay

The region upstream of the genes of interest was amplified by PCR with proper primers 
(Table S4) and cloned into the pGEM-T easy plasmid (Promega). The insert was removed 
by digestion and subcloned into the pRKlacZ290 vector to generate transcriptional 
fusions to the lacZ gene. C. violaceum cultures harboring these reporter plasmids were 
grown in different conditions: (i) LB medium until OD600 0.8–1.0 and (ii) LB medium until 
OD600 0.6–0.8 and treated or not with 100 µM of DP for 1 h. Next, the cells were assayed 
for β-galactosidase activity based on a previously described protocol (30).

Gene expression by RT-qPCR

The C. violaceum wild-type, ΔcviR, and ΔcviI strains were grown in LB medium until 
high cell density (OD600 ~ 4.0). Total RNA was extracted and purified as described 
above. Two micrograms of total RNA from each sample were converted to cDNA using 
the High-Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific). Quantita­
tive PCR (qPCR) reactions were performed using the PowerUp SYBR Green Master Mix 
(Thermo Fisher Scientific), the specific primers (Table S4), and 0.5 µL of cDNA. The relative 
expression was calculated by the 2−ΔΔCt method (62). Data from three biological replicates 
were normalized by an endogenous control (minD gene) and a reference condition (WT).

Expression and purification of VitR

The coding region of the vitR gene was PCR-amplified (Table S4) and cloned into the 
pET15b vector (Table S3). The recombinant histidine-tagged protein was overexpressed 
in E. coli BL21(DE3) by induction with 1 mM isopropyl-D-thiogalactopyranoside (IPTG) 
for 2 h at 37°C in LB medium. After induction, the soluble fraction containing the 
His-VitR protein was purified using NTA-resin affinity chromatography in phosphate 
buffer, according to the manufacturer’s recommendations (Qiagen). After concentration 
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(Vivaspin 6 Concentrator, Sartorius Stedim Biotech) and desalting (PD 10 Desalting 
Columns, GE Healthcare), the purified VitR protein was resolved by 15% SDS-PAGE.

Electrophoretic mobility shift assay

The promoter regions of the vitR and chuP genes were amplified by PCR using the 
oligonucleotides listed in Table S4. These DNA fragments were labeled with [γ-32P]ATP 
(PerkinElmer) by using T4 polynucleotide kinase (Thermo Scientific) and purified with 
the NucleoSpin Gel and PCR Cleanup kit (Macherey-Nagel). The DNA binding reactions 
were performed in interaction buffer (10 mM Tris-HCl [pH 7.5], 40 mM KCl, 1 mM MgCl2, 
0.1 mg/mL bovine serum albumin, 1 mM DTT, and 5% glycerol), 0.1 mg/mL competitor 
salmon sperm DNA, DNA probes and different concentrations of His-VitR at a final 
volume of 20 µL. All interaction reactions were incubated at 25°C for 25 min. Next, 3 µL of 
50% glycerol was added, and the samples were separated by native 5% polyacrylamide 
gel electrophoresis in Tris-borate (TB) buffer. Competition assays were performed using 
50 nM of His-VitR as described above in the presence of a 10-fold excess of unlabeled 
specific (promoter region vitR) or non-specific (promoter region chuP) probes. The gels 
were dried, and the signal was detected by autoradiography.

Yeast double-hybrid assay

To verify protein-protein interaction, we performed a double-hybrid assay in S. cerevi­
siae according to Lin and Lai (51). Briefly, the coding region of the vioS and cviR 
genes was PCR-amplified (Table S4) and cloned into vectors pGADTK7 (prey, fusion 
with activation domain) and pGBKT7 (bait, fusion with DNA-binding domain), respec­
tively. The constructs were transformed into S. cerevisiae strain AH109 and positive 
colonies were selected on synthetic minimal medium without leucine and tryptophan 
supplementation (SD-WL). To verify the protein-protein interaction, different clones were 
grown in minimal synthetic medium without leucine, tryptophan, histidine, and adenine 
(SD-WLHA) supplementation.

Statistical analysis

Statistical analysis was performed in GraphPad Prism version 8. For the column graphs, 
the normality test was performed using Shapiro-Wilk’s test and group comparison was 
performed by one-way analysis of variance (ANOVA), followed by multiple comparisons 
test. For the grouped graphs used in the β-galactosidase assay statistical analysis was 
performed by two-way ANOVA, followed by multiple comparisons test. Statistically 
significant P values or other tests that were performed are indicated in the figure’s 
subtitles.
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